$b \rightarrow$ sll decays above the D \bar{D} threshold

Beyond the Flavour Anomalies V
Siegen-09/04/2024

Méril Reboud

Based on 2312.00619 [Hanhart, Kürten, MR, van Dyk]

Nonlocal Contributions

$$
\mathcal{H}(b \rightarrow s \ell \ell)=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i=1}^{10} C_{i}(\mu) \mathcal{O}_{i}(\mu)
$$

$$
\mathcal{A}_{\lambda}^{L, R}\left(B \rightarrow M_{\lambda} \ell \ell\right)=\mathcal{N}_{\lambda}\left\{\left(C_{9} \mp C_{10}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\frac{2 m_{b} M_{B}}{q^{2}}\left[C_{7} \mathcal{F}_{\lambda}^{T}\left(q^{2}\right)-16 \pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}\left(q^{2}\right)\right]\right\}
$$

- $\mathrm{B}_{\mathrm{s}} \rightarrow \varphi \mu \mu, \ldots$

Non-local form-factors:

$$
\mathcal{H}_{\lambda}(k, q)=i \int d^{4} x e^{i q \cdot x} \mathcal{P}_{\lambda}^{\mu}\langle\bar{M}(k)| T\left\{Q_{c}\left[\bar{c} \gamma_{\mu} c\right](x), \mathcal{C}_{i} \mathcal{O}_{i}\right\}|\bar{B}(q+k)\rangle
$$

Long story short

1) The contribution is dominated by the charm loops due to $\mathrm{O}_{1 \mathrm{c}}$ and $\mathrm{O}_{2 c}$

Long story short

1) The contribution is dominated by the charm loops due to $\mathrm{O}_{1 \mathrm{c}}$ and $\mathrm{O}_{2 c}$
2) The contribution mimics new physics by shifting C_{9}
\rightarrow Pure data-driven approaches can't resolve SM and NP [Ciuchini et al '21, '22]

Long story short

1) The contribution is dominated by the charm loops due to $\mathrm{O}_{1 \mathrm{c}}$ and $\mathrm{O}_{2 c}$
2) The contribution mimics new physics by shifting C_{9}
\rightarrow Pure data-driven approaches can't resolve SM and NP [Ciuchini et al '21, '22]
\rightarrow Data favors a constant shift in C_{9} [Bordone, Isidori, Maechler, Tinari '24]
At low q^{2} :

Data from LHCb and CMS

Long story short

1) The contribution is dominated by the charm loops due to $\mathrm{O}_{1 \mathrm{c}}$ and $\mathrm{O}_{2 c}$
2) The contribution mimics new physics by shifting C_{9}
\rightarrow Pure data-driven approaches cant resolve SM and NP [Ciuchini et al '21, '22]
\rightarrow Data favors a constant shift in C_{9} [Bordone, Isidori, Maechler, Tinari '24]
At high q^{2} :

Data from LHCb and CMS

Long story short

1) The contribution is dominated by the charm loops due to $\mathrm{O}_{1 \mathrm{c}}$ and $\mathrm{O}_{2 \mathrm{c}}$
2) The contribution mimics new physics by shifting C_{9}
3) Assuming that the analytic structure is well understood, dispersive bounds and explicit calculation at negative q^{2} allows to control the charm-loop below the $\bar{D} \bar{D}$ threshold [Gubernari, MR, van Dyk, Virto '22]

Méril Reboud - 09/04/2024

Long story short

1) The contribution is dominated by the charm loops due to $\mathrm{O}_{1 \mathrm{c}}$ and $\mathrm{O}_{2 c}$
2) The contribution mimics new physics by shifting C_{9}
3) Assuming that the analytic structure is well understood, dispersive bounds and explicit calculation at negative q^{2} allows to control the charm-loop below the $D \bar{D}$ threshold [Gubernari, MR, van Dyk, Virto '22]

Can we say anything (just) above threshold?

Analyticity properties of H_{μ}

- Poles due to the narrow charmonium resonances

Analyticity properties of H_{μ}

- Poles due to the narrow charmonium resonances
- Branch-cut starting at $4 \mathrm{~m}_{\mathrm{D}}{ }^{2}$

GRvDV parametrization

- Nonlocal form factors are expanded using orthonormal polynomials of the arc of the unit circle [Gubernari, MR, van Dyk, Virto '22]:

$$
z(s)=\frac{\sqrt{4 m_{D}^{2}-s}-\sqrt{4 m_{D}^{2}-s_{0}}}{\sqrt{4 m_{D}^{2}-s}+\sqrt{4 m_{D}^{2}-s_{0}}}
$$

$$
\mathcal{H}_{\lambda}(z)=\frac{1}{\phi(z) \mathcal{P}(z)} \sum_{k=0}^{N} a_{\lambda, k} p_{k}(z)
$$

- The coefficients respect a simple bound [Gubernari, van Dyk, Virto '20]:

$$
\sum_{n=0}^{\infty}\left\{2\left|a_{0, n}^{B \rightarrow K}\right|^{2}+\sum_{\lambda=\perp, \|, 0}\left[2\left|a_{\lambda, n}^{B \rightarrow K^{*}}\right|^{2}+\left|a_{\lambda, n}^{B_{s} \rightarrow \phi}\right|^{2}\right]\right\}<1
$$

- The series converges on an arc of the unit circle but the convergence is slow and useless in practice

It is worth it! \rightarrow see Andrea's talk

- Preliminary plot from Hadavizadeh's talk in Moriond
- Fitted with a dispersion relation that implements [Cornella et al '20]:

- 1pt contributions
- 2pt contributions

- tau contribution

The dispersive approach

- Implementing the contributions one by one in a dispersive approach has several drawbacks:
- Unitarity is broken close to the resonances
- Fuzzy distinction between resonant and non-resonant contributions
- The model parameters need to be extracted from other observables and nothing ensures that they equally apply
 to the decay of interest

"Naive" Factorization

$$
\mathcal{H}_{\lambda}(k, q)=i \int d^{4} x e^{i q \cdot x} \mathcal{P}_{\lambda}^{\mu}\langle\bar{M}(k)| T\left\{Q_{c}\left[\bar{c} \gamma_{\mu} c\right](x), \mathcal{C}_{i} \mathcal{O}_{i}\right\}|\bar{B}(q+k)\rangle
$$

- Factorization approximation [Kruger \& Sehgal `96; Lyon \& Zwicky '14; Braß, Hiller et al '16]

$$
\mathcal{H}_{\lambda}^{\mathrm{KS}}\left(q^{2}\right)=\left(C_{F} \mathcal{C}_{1}+\mathcal{C}_{2}\right) \Pi\left(q^{2}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)
$$

- Needs a parametrization of the R-ratio

$$
R=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu \mu\right)} \propto \operatorname{Im} \Pi\left(q^{2}\right)
$$

- Requires additional factors to fit the data \rightarrow large non-factorizable effects?

The R ratio

The main $I^{G}\left(\mathrm{~J}^{\mathrm{PC}}\right)=0-\left(1^{-}\right)$resonances

Thresholds

Méril Reboud - 09/04/2024

K Matrix

- We have a coupled multichannel problem:

$$
\psi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}, \quad \psi \rightarrow \mathrm{D}^{(*)} \mathrm{D}^{(*)}, \quad\left(\Psi \rightarrow \mathrm{BK}^{(*)}\right)
$$

- Resonances are close to thresholds
- K-matrix is the tool to use [Chung et al. '95, PDG's Resonances review]

Real valued couplings

$$
\mathcal{M}=n[1-\mathcal{K} \Sigma]^{-1} \mathcal{K} n
$$

Kinematic factor:
$n_{k}=\left(q_{k} / q_{0}\right)^{l_{k}} F_{l_{k}}\left(q_{k} / q_{0}\right)$
$\mathrm{e}^{+} \mathrm{e}^{-}$and $\mathrm{D} \overline{\mathrm{D}}$ channels

Non-resonant contributions

Some details on the model

- Focus on the $\psi(3770)$ region for a proof of concept

$$
r \in\{\psi(2 S), \psi(3770)\}
$$

- Model the non-DD decays of the $\psi(3770)$ with an effective 2-body P-wave channel

$$
k \in\left\{e^{+} e^{-}, D^{+} D^{-}, D^{0} \bar{D}^{0}, \operatorname{eff}_{\psi(2 S)}, \operatorname{eff}_{\psi(3770)}\right\}
$$

- The resonance pole and residues are extracted from the second Riemann sheet

Results for the $\psi(3770)$ resonance

- Fit several models (with or without non-D $\overline{\mathrm{D}}$ effective channel), excellent p-values
- Interference with the $\psi(2 S)$ crucial to reproduce the experimental shapes

- Isospin symmetry is perfectly recovered

$$
g_{D^{0} \bar{D}^{0}}^{\psi(3770)} / g_{D^{\prime}+D^{-}}^{\psi(3770)}=0.99 \pm 0.03
$$

- $\psi(3770)$ decays dominantly to \bar{D}
$\mathcal{B}(\psi(3770) \rightarrow$ non- $D \bar{D})<6 \%$ at 90% probability

LHCb's B $\rightarrow \mathrm{K}^{(*)} \mathrm{DD}$

- Dalitz analysis of $B \rightarrow K D D$ is available [LHCb '20]
- Problem: we need to single out the DD P-wave contribution
- Studied in a second LHCb paper [LHCb 2009.00025]
- Expansion of the $\bar{D} \bar{D}$ helicity angle in Legendre polynomials
- LHCb provides moments of these distributions

$\psi(3770) \rightarrow D^{+} D^{-}$
$\chi_{c o}(3930) \rightarrow D^{+} D^{-}$
$\chi_{c 2}(3930) \rightarrow D^{+} D^{-}$
$\psi(4040) \rightarrow D^{+} D^{-}$
$\psi(4160) \rightarrow D^{+} D^{-}$
$\psi(4415) \rightarrow D^{+} D^{-}$
X_{0} (2900) $\rightarrow D^{-} K^{+}$
$X_{1}(2900) \rightarrow D^{-} K^{+}$
Nonresonant

Future hurdles

- Extending the $\psi(3770)$ fit to larger q^{2} will open the following issues:
- Analytic difficulties:
- Description of P-waves with different masses
- Description of F-waves channels
- Connection between the waves and the experimental helicities
- Numerical difficulties:
- Jump from 6 channels 2 resonances to 20 channels 5 resonances, i.e. from $\mathrm{O}(10)$ to $\mathrm{O}(100)$ parameters \rightarrow assume isospin symmetry? U-spin?
- Jump from 2 to 8 Riemann sheets
- Huge number of experimental data points that need to be evaluated
- This work is in progress (it is fun, you can join if you feel unoccupied)
- Yesterday on the arXiv: K-matrix description including the $\Psi(4040)$ [Hüsken et al '24]

Conclusion \& Outlook

- Nonlocal contributions to $b \rightarrow$ see decays are a main source of theory uncertainties.
- A systematic approach based on analyticity and unitarity allows for a description of these contributions below the open-charm threshold.
- We propose a new data-driven approach, based on a K matrix description of the $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{c} \overline{\mathrm{c}}$ and $\mathrm{b} \rightarrow \mathrm{sc} \overline{\mathrm{c}}$ experimental observables to infer predict these contributions in the region of broad charmonium.

Back-up

Future work

q^{2} parametrization

- Simple \mathbf{q}^{2} expansion [Jäger, Camalich '12; Ciuchini et al. '15]

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=\mathcal{H}_{\lambda}^{\mathrm{QCDF}}\left(q^{2}\right)+h_{\lambda}(0)+\frac{q^{2}}{m_{B}^{2}} h_{\lambda}^{\prime}(0)+\ldots
$$

Computed in [Beneke, Feldman, Seidel '01]

- The h_{λ} terms can be fitted or varied

- Fitting the h_{λ} terms on data gives a satisfactory fit but lacks predictive power
- This parametrization cannot account for the analyticity properties of \mathcal{H}_{λ}

Anatomy of H_{μ} in the SM

$C_{1}\left(\mu_{b}\right)$	$C_{2}\left(\mu_{b}\right)$	$C_{3}\left(\mu_{b}\right)$	$C_{4}\left(\mu_{b}\right)$	$C_{5}\left(\mu_{b}\right)$	$C_{6}\left(\mu_{b}\right)$	$C_{7}\left(\mu_{b}\right)$	$C_{8}\left(\mu_{b}\right)$	$C_{9}\left(\mu_{b}\right)$	$C_{10}\left(\mu_{b}\right)$
-0.2906	1.010	-0.0062	-0.0873	0.0004	0.0011	-0.3373	-0.1829	4.2734	-4.1661

- The contribution of O_{8} is negligible [Khodjamirian, Mannel, Wang, '12; Dimou, Lyon, Zwicky '12]

Anatomy of H_{μ} in the SM

$C_{1}\left(\mu_{b}\right)$	$C_{2}\left(\mu_{b}\right)$	$C_{3}\left(\mu_{b}\right)$	$C_{4}\left(\mu_{b}\right)$	$C_{5}\left(\mu_{b}\right)$	$C_{6}\left(\mu_{b}\right)$	$C_{7}\left(\mu_{b}\right)$	$C_{8}\left(\mu_{b}\right)$	$C_{9}\left(\mu_{b}\right)$	$C_{10}\left(\mu_{b}\right)$
-0.2906	1.010	-0.0062	-0.0873	0.0004	0.0011	-0.3373	-0.1829	4.2734	-4.1661

- The contribution of O_{8} is negligible [Khodjamirian, Mannel, Wang, '12]
- The contributions of $\mathrm{O}_{3,4,5,6}$ are suppressed by small Wilson coefficients
$\mathcal{O}_{3}=\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum_{p}\left(\bar{p} \gamma^{\mu} p\right)$,
$\mathcal{O}_{4}=\left(\bar{s}_{L} \gamma_{\mu} T^{a} b_{L}\right) \sum_{p}\left(\bar{p} \gamma^{\mu} T^{a} p\right)$,
$\mathcal{O}_{5}=\left(\bar{s}_{L} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} b_{L}\right) \sum_{p}\left(\bar{p} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} p\right)$,
$\mathcal{O}_{6}=\left(\bar{s}_{L} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} T^{a} b_{L}\right) \sum_{p}\left(\bar{p} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} T^{a} p\right)$,

Anatomy of H_{μ} in the SM

$$
\mathcal{O}_{1}^{q}=\left(\bar{s}_{L} \gamma_{\mu} T^{a} q_{L}\right)\left(\bar{q}_{L} \gamma^{\mu} T^{a} b_{L}\right), \quad \mathcal{O}_{2}^{q}=\left(\bar{s}_{L} \gamma_{\mu} q_{L}\right)\left(\bar{q}_{L} \gamma^{\mu} b_{L}\right)
$$

- Light-quark loops are CKM suppressed \rightarrow small contributions even at the resonances [Khodjamirian, Mannel, Wang, '12]

Vector meson	ρ	ω	ϕ	J / ψ	$\psi(2 S)$
f_{V}	221_{-1}^{+1}	195_{-4}^{+3}	228_{-2}^{+2}	416_{-6}^{+5}	297_{-2}^{+3}
$\left\|A_{\bar{B}^{0} V \bar{K}^{0}}\right\|$	$1.3_{-0.1}^{+0.1}$	$1.4_{-0.1}^{+0.1}$	$1.8_{-0.1}^{+0.1}$	$33.9_{-0.7}^{+0.7}$	$44.4_{-2.2}^{+2.2}$
$\left\|A_{B^{-} V K^{-}}\right\|$	$1.2_{-0.1}^{+0.1}$	$1.5_{-0.1}^{+0.1}$	$1.8_{-0.1}^{+0.1}$	$35.6_{-0.6}^{+0.6}$	$42.0_{-1.2}^{+1.2}$

\rightarrow The main contribution comes from $\mathbf{O}_{1}{ }^{\mathrm{c}}$ and $\mathrm{O}_{2}{ }^{\mathrm{c}}$: "charm loop"

Analyticity properties of H_{μ}

- Poles due to the narrow charmonium resonances
- Branch-cut starting at $4 \mathrm{~m}_{\mathrm{D}}{ }^{2}$
- Branch-cut starting at $4 \mathrm{~m}_{\pi}^{2} \rightarrow$ negligible (OZI suppressed)

More involved analytic structure?

- $M_{B}>M_{D^{*}}+M_{D s} \rightarrow$ The function $H_{\lambda}\left(p^{2}, q^{2}\right)$ has a branch cut in p^{2} and the physical decay takes place on this branch cut: H_{λ} is complex-valued!
- Triangle diagrams are known to create anomalous branch cuts in q^{2} [e.g. Lucha, Melikhov, Simula '06] \rightarrow Does this also apply here? We have no Lagrangian nor power counting!
- The presence and the impact of such a branch cut in our approach is under investigation

Theory inputs

\mathcal{H}_{λ} can be calculated in two kinematics regions:

- Local OPE $|q|^{2} \gtrsim m_{b}{ }^{2}$ [Grinstein, Piryol '04; Beylich, Buchalla, Feldmann '11]
- Light Cone OPE $q^{2} \ll 4 m_{c}^{2}$ [Khodjamirian, Mannel, Pivovarov, Wang '10]

Dispersive bound

- Main idea: Compute the charm-loop induced, inclusive $e^{+} e^{-} \rightarrow \bar{b} s$ cross-section and relate it to \mathcal{H}_{λ} [Gubernari, van Dyk, Virto '20]

+ other diagrams...
- The optical theorem gives a shared bound for all the $\mathbf{b} \rightarrow \boldsymbol{s}$ processes:

Numerical analysis

- The parametrization is fitted to

$$
\mathrm{B} \rightarrow \mathrm{~K}, \mathrm{~B} \rightarrow \mathrm{~K}^{*}, \mathrm{~B}_{\mathrm{s}} \rightarrow \varphi
$$

using:

- 4 theory point at negative q^{2} from the light cone OPE
- Experimental results at the J/ Ψ
- Use an under-constrained fit and allow for saturation of the dispersive bound
\rightarrow The uncertainties are truncation orderindependent, i.e., increasing the expansion order does not change their size
\rightarrow All p-values are larger than 11\%
[Gubernari, MR, van Dyk, Virto '22]

SM predictions

- Good overall agreement with previous theoretical approaches
- Small deviation in the slope of $B_{s} \rightarrow \phi \mu \mu$
- Larger but controlled uncertainties especially near the J/ Ψ
- The approach is systematically improvable (new channels, $\psi(2 S)$ data...)

Confrontation with data

- This approach of the non-local form factors does not solve the "B anomalies".
- In this approach, the greatest source of theoretical uncertainty now comes from local form factors.

Experimental results:
[Babar: 1204.3933; Belle: 1908.01848, 1904.02440; ATLAS: 1805.04000, CMS: 1308.3409, 1507.08126, 2010.13968, LHCb: 1403.8044, 2012.13241,
2003.04831, 1606.04731, 2107.13428]

Local form factors fit

- With this framework we perform a combined fit of $B \rightarrow K, B \rightarrow K^{*}$ and $B_{s} \rightarrow \varphi$ LCSR and lattice QCD inputs:
- B \rightarrow K:
- [HPQCD '13 and '22; FNAL/MILC '17]
- ([Khodjamiriam, Rusov '17]) \rightarrow large uncertainties, not used in the fit
- $B \rightarrow K^{*}$:
- [Horgan, Liu, Meinel, Wingate '15]
- [Gubernari, Kokulu, van Dyk '18] (B-meson LCSRs)
$-\mathrm{B}_{\mathrm{s}} \rightarrow \varphi$:
- [Horgan, Liu, Meinel, Wingate '15]
- [Gubernari, van Dyk, Virto '20] (B-meson LCSRs)
- Adding $\Lambda_{b} \rightarrow \Lambda^{(*)}$ form factors is possible and desirable

Details on the fit procedure

- The fit is performed in two steps...
- Preliminary fits:
- Local form factors:
- BSZ parametrization (8+19+19 parameters)
- Constrained on LCSR and LQCD calcultations
- Non-local form factors:
- order 5 GRvDV parametrization (12 + $36+36$ parameters)
-4 points at negative $q^{2}+B \rightarrow M J / \psi$ data
$\rightarrow 130$ nuisance parameters
- 'Proof of concept' fit to the WET's Wilson coefficients
- ... using EOS: eos.github.io

BSM analysis

- A combined BSM analysis would be very CPU expensive (130 correlated, non-Gaussian, nuisance parameters!)
- Fit separately C_{9} and C_{10} for the three channels:

$$
\begin{aligned}
& -\mathrm{B} \rightarrow \mathrm{~K} \mu^{+} \mu^{-}+\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-} \\
& -\mathrm{B} \rightarrow \mathrm{~K}^{*} \mu^{+} \mu^{-} \\
& -\quad \mathrm{B}_{\mathrm{s}} \rightarrow \varphi \mu^{+} \mu^{-}
\end{aligned}
$$

