The non-leptonic $\bar{B}^0_{(s)} \to D^{(*)+}_{(s)}(\pi^-, K^-)$ decays:

experiment and theory

Maria Laura Piscopo

CPPS, Theoretische Physik 1, Universität Siegen

Nicole Skidmore

University of Warwick

"Beyond the Flavour Anomalies V" Siegen, 10 April 2024

S Center for Particle Physics Siegen

A new anomaly?

The decays $\bar{B}^0 \to D^{(*)+}K^-$ and $\bar{B}^0_s \to D^{(*)+}_s \pi^-$

- ♦ Tree-level decays induced by $b \to c\bar{u}d(s)$ transitions
- ♦ Theoretically "clean" channels

No pollution due to penguin and annihilation topologies

 $\diamond~$ Golden modes for QCD factorisation (QCDF) framework

[Beneke, Buchalla, Neubert, Sachrajda '99 -'01]

Piscopo, Skidmore

A puzzling pattern

♦ Tensions between QCDF predictions and data ranging $(2-7)\sigma$

[Bordone, Gubernari, Huber, Jung, van Dyk '20; Cai, Deng, Li, Yang '21]

New Belle data [2207.00134] not yet included in the average

Piscopo, Skidmore

Could this be an experimental issue?

 $\diamond\,$ Unlikely, results consistent across multiple experiments

Also in different collision environments (pp, e^+e^-)

* Would represent a systematic $\approx 30\%$ downward shift in the data

In channels which are experimentally well accessible

Piscopo, Skidmore

Closer look at QCDF predictions

 $\diamond~$ Starting from the factorisatrion formula

$$\left\langle O_i^q \right\rangle \Big|_{\text{QCDF}} = \sum_j f_j^{B_{(s)}D_{(s)}} \left(m_L^2\right) \int_0^1 du \, T_{ij}(u) \varphi_L(u) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)$$

$$O_1 = (\bar{c}\gamma_\mu (1-\gamma_5)b) (\bar{d}\gamma^\mu (1-\gamma_5)u) \qquad O_2 = (\bar{c}\gamma_\mu (1-\gamma_5)t^a b) (\bar{d}\gamma^\mu (1-\gamma_5)t^a u)$$

- * $T_{ij}(u)$ known up to NNLO-QCD corrections [Huber, Kränkl, Li '16]
- * Form factors obtained from combination of QCD sum rules and Lattice results

[Bordone, Gubernari, Jung, van Dyk '19]

Piscopo, Skidmore

Status of power corrections

- $\diamond~$ Systematic study of power corrections challenging in QCDF
- \diamond First estimates of $\mathcal{O}(\Lambda_{\rm QCD}/m_b)$ contributions

[Bordone, Gubernari, Huber, Jung, van Dyk '20]

- * Computed non-factorisable soft-gluon exchange within LCSR*
- * Found very small effect

$$\frac{\mathcal{A}(\bar{B}^{0}_{(s)} \to D^{+}_{(s)}L^{-})_{\rm NLP}}{\mathcal{A}(\bar{B}^{0}_{(s)} \to D^{+}_{(s)}L^{-})_{\rm LP}} \simeq -[0.06, 0.6]\%$$

*Light-cone sum rules [Balitsky, Braun, Kolesnischenko '89]

Piscopo, Skidmore

Clear theory interpretation still missing

- Studied QED corrections, rescattering effects, but not sufficient
 [Beneke, Böer, Finauri, Vos '21; Endo, Iguro, Mishima '21]
- ♦ Power corrections may be underestimated [MLP, Rusov '23]
- ♦ Data well described with $SU(3)_F$ breaking effects of ~ 20% [Davies, Schacht, NS, Soni '24]
- Investigated possible BSM contributions in tree-level b-decays
 e.g. [Iguro, Kithara '20; Cai, Deng, Li, Yang '21; Fleischer, Malami '21]
 - * Potential sizeable effects in γ , lifetime and mixing observables [Lenz, Tetlalmatzi-Xolocotzi '19; Lenz, Müller, MLP, Rusov '22]
 - * Also strong interplay with collider constraints

[Bordone, Greljo, Marzocca '21]

Piscopo, Skidmore

Experimental status and future prospects

- ♦ Measurements of \mathcal{B} depend on fragmentation fractions $f_q = d, s$
- $\diamond\,$ Observed dependency between particle multiplicity and f_q $$_{\rm LHCb}\ [2204.13042];\ ALICE\ [2105.06335]$}$
 - * Quark coalescence as possible hadronisation mechanism Alternative to fragmentation at low *pT* and high multiplicity
 - * f_q not universal among collision environments Conservative assumptions must be -and have been- made to form global analyses
- ♦ Multiple data on $\bar{B}^0_{(s)} \to D^{(*)+}_{(s)}h^-$ from single experiment needed

To reduce sensitivity to $B_{(s)}$ -meson production

Piscopo, Skidmore

 $\diamond~\mathcal{B}$ measured relative to $\bar{B}^0 \to D^+\pi^-$ normalisation channel

To cancel luminosity/cross-sections dependence

- * Uncertainty on this mode leads to limiting external systematic Also affected by tension
- Previously at LHCb hadronic normalisation channel necessary
 Poor knowledge of L0 trigger efficiency

* Leading to dominant systematic uncertainty

- ♦ With U1's fully software trigger, able to use leptonic channels With better known branching fraction
- * $\mathcal{B}(\bar{B}^+ \to J/\Psi K^+)$ has 1.9% uncertainty
- * With Run 3 data achievable factor 4 increase in sensitivity for $\bar{B}^0 \rightarrow D^{(*)+}h^-$

* Run 3 data at 14fb^{-1} will be 2 - 3 × more efficient for hadronic decays than Run 2

 \leftarrow Mass distribution for $\bar{B}^0\to D^+\pi^-$ using $47{\rm pb}^{-1}$ of data taken in 2023 with VELO open

- $\diamond~$ Hints of tension also in modes with associated vector meson
- * Reconstructed decay has a neutral particle

Harder to measure at LHCb

- * LHCb U2 (2035) will operate at 10× instantaneous luminosities
- * Minimum dataset of 300 fb^{-1}
- * Improvements to the ECAL granularity and energy resolution, as well as unprecedented sensitivity to these modes

LHCb [1808.08865]

LHCb prospects for BSM searches in tree-level decays

♦ Consider the CP asymmetry, defined as

$$A_{\rm fs}^q = \frac{\Gamma\left(\bar{B}_q(t) \to f\right) - \Gamma\left(B_q(t) \to \bar{f}\right)}{\Gamma\left(\bar{B}_q(t) \to f\right) + \Gamma\left(B_q(t) \to \bar{f}\right)}$$

 $\diamond A_{fs}^q$ can provide clear test of BSM effects in tree-level NL decays

• In the SM, for
$$\bar{B}^0 \to D^+ K^-$$
 and $\bar{B}_s \to D_s^+ \pi^-$, $A_{\rm fs}^q = a_{\rm fs}^q$

Asymmetry only due to CPV in mixing

$$a_{\rm sl}^d = a_{\rm fs}^d \stackrel{\rm exp}{=} (-21 \pm 17) \cdot 10^{-4} \qquad a_{\rm sl}^s = a_{\rm fs}^s \stackrel{\rm exp}{=} (-60 \pm 280) \cdot 10^{-5} \qquad \text{[PDG '23]}$$

* In generic BSM scenarios, contribution from direct CPV, $A_{fs}^q \neq a_{fs}^q$

* The CP asymmetry may be enhanced up to $\mathcal{O}(10^{-2})$

[Gershon, Lenz, Rusov, NS '21; Fleischer, Vos '17]

 $\star~A^q_{\rm fs}$ has never been measured for these modes

Piscopo, Skidmore

5

LHCb prospects for BSM searches in tree-level decays

 $\diamond~$ Exp. favourable to measure untagged, time integrated asymmetry

$$\langle A_{\text{untagged}}^q \rangle \approx A_{\text{dir}}^q - \frac{a_{\text{fs}}^q}{2} (1 - \rho_q) \qquad (\rho_d \approx 0.63 \text{ and } \rho_s \approx 0.001)$$

* Flavour tagging efficiency at LHCb $\approx 6\%$

Untagged method provides greater sensitivity

* Better sensitivity and experimental prospects for $\bar{B}_s \to D_s^+ \pi^-$ Compared to $\bar{B}^0 \to D^+ K^-$ due to higher mixing frequency

$$\langle A_{\text{untagged}}^s \rangle \approx A_{\text{dir}}^s - \frac{a_{\text{fs}}^s}{2}$$

- * Run 2 measurement ongoing with predicted sensitivity of 2×10^{-3}
- * Run 3 will provide sensitivity of 6×10^{-4}

With unprecedented samples of ${\cal B}_s$ decays

Possibility to clearly identify BSM effects or severely constrain them in these decays

Piscopo, Skidmore

Hadronic B-meson decays from LCSR

Based on arXiv:2307.07594 in collaboration with A. Rusov

The decay amplitude

 $\diamond~$ Use the weak effective Hamiltonian

$$\mathcal{A}(\bar{B}_s^0 \to D_s^+ \pi^-) = -\frac{G_F}{\sqrt{2}} V_{cb}^* V_{ud} \left[C_1 \langle O_1 \rangle + C_2 \langle O_2 \rangle \right]$$

$$O_1 = \left(\bar{c}\gamma_\mu (1-\gamma_5)b\right) \left(\bar{d}\gamma^\mu (1-\gamma_5)u\right) \quad O_2 = \left(\bar{c}\gamma_\mu (1-\gamma_5)t^a b\right) \left(\bar{d}\gamma^\mu (1-\gamma_5)t^a u\right)$$

 $\diamond~$ In naive QCDF

$$\langle O_1 \rangle \stackrel{\text{NQCDF}}{=} i f_\pi (m_{B_s}^2 - m_{D_s}^2) f_0^{B_s D_s} (m_\pi^2) \qquad \langle O_2 \rangle \stackrel{\text{NQCDF}}{=} 0$$

♦ First estimate of $\langle O_2 \rangle$ beyond NQCDF using two-point sum rule [Blok, Shifman '93]

$$C_2 \langle O_2 \rangle / C_1 \langle O_1 \rangle \sim 8\%$$

Piscopo, Skidmore

New estimate of decay amplitude using LCSR

♦ Start from three-point correlation function see e.g. [Khodjamirian '00]

$$\mathcal{F}^{O_i}_{\mu}(p,q) = i^2 \int d^4x \int d^4y \; e^{ip \cdot x} e^{iq \cdot y} \langle 0|T\{j_5^D(x), O_i(0), j_{\mu}^{\pi}(y)\} |\bar{B}(p+q)\rangle$$

$$j_5^D(x) = im_c(\bar{s}\gamma_5 c)(x) \qquad j_\mu^\pi(y) = (\bar{u}\gamma_\mu\gamma_5 d)(y)$$

Piscopo, Skidmore

Light-cone OPE for the correlation functions

- $\diamond~$ Consider kinematical region of $p^2,\,q^2$ large and negative
- ◊ Dominant contribution to correlator from

$$x^2 \sim 0 \qquad y^2 \sim 0 \qquad (x-y)^2 \neq 0$$

x and y are aligned along different light-cone directions!

♦ Double LC expansion of correlator $\mathcal{F}^{O_2}_{\mu}$ requires^{*}

$$\langle 0|\bar{q}(z_1n)G_{\mu\nu}(z_2\bar{n})h_{\nu}(0)|\bar{B}(v)\rangle = ?$$

e.g. [Belov, Berezhnoy, Melikhov '23; Qin, Shen, Wang, Wang '22]

$$v^{\mu} = (n^{\mu} + \bar{n}^{\mu})/2$$
 $n^{\mu} = (1, 0, 0, 1)$ $\bar{n}^{\mu} = (1, 0, 0, -1)$

* Expand instead around $x^2 \sim 0$ but $y^{\mu} \sim 0$

* see also [Feldmann, Gubernari '23]

Piscopo, Skidmore

Light-cone OPE for the correlation functions

♦ For light-quark loop use local expansion of propagator up to $G_{\mu\nu}$ e.g. [Balitsky, Braun '89]

$$S_{ij}^{(q)}(x,y) = \int \frac{d^4k}{(2\pi)^4} e^{-ik(x-y)} \left[\frac{\delta_{ij} k}{k^2 + i\varepsilon} - \frac{G_{\alpha\beta}^a t_{ij}^a}{4} \frac{(k \sigma^{\alpha\beta} + \sigma^{\alpha\beta} k)}{(k^2 + i\varepsilon)^2} \right] + \dots$$

◊ Use 2- and 3-particle B-meson LCDAs up to twist-six [Braun, Ji, Manashov '17]

$$\langle 0|\bar{q}(x)G_{\mu\nu}(0)h_{\nu}(0)|\bar{B}(v)\rangle \sim \int_{0}^{\infty} d\omega_{1} e^{-i\omega_{1}v\cdot x} f_{\mu\nu}\big(\{\phi_{3},\phi_{4},\ldots,\phi_{6}\}(\omega_{1})\big)$$

$$\langle 0|\bar{q}(x)h_v(0)|\bar{B}(v)\rangle \sim \int_0^\infty d\omega \, e^{-i\omega v \cdot x} f(\{\phi_+,\phi_-,g_+,g_-\}(\omega))$$

Piscopo, Skidmore

The OPE results

 $\diamond~$ Both correlators take the form

$$\mathcal{F}^{O_i}_{\mu} = \left(q_{\mu}(p \cdot q) - p_{\mu}q^2\right) \mathcal{F}^{O_i}(p^2, q^2)$$

* Result transversal with respect to q^{μ}

♦ Arrive at final OPE for the invariant amplitudes

$$[\mathcal{F}_q^{O_2}(p^2,q^2)]_{\text{OPE}} \sim \int_0^\infty d\omega_1 \sum_{\hat{\psi}} \psi(\omega_1) \sum_{n=1}^3 \frac{c_n^{\hat{\psi}}(\omega_1,q^2)}{(q^2+i\varepsilon) \left[\tilde{s}(\omega_1,q^2)-p^2-i\varepsilon\right]^n}$$

* Similarly for $\mathcal{F}_q^{O_1}$ - including both 2- and 3-particle contributions

Piscopo, Skidmore

Link OPE to hadronic matrix element

- \diamond Derive double dispersion relations in p^2 and q^2 -channels
- ♦ Approximate continuum using quark-hadron duality
- ◊ Obtain final sum-rule for matrix element

$$i\langle O_2 \rangle = \frac{1}{f_\pi f_D m_D^2 \pi^2} \int_0^{s_0^\pi} ds' \int_{m_c^2}^{s_0^D} ds \, \operatorname{Im}_{s'} \operatorname{Im}_s \left[\mathcal{F}_q^{O_2}(s,s') \right]_{\text{OPE}} e^{(m_\pi^2 - s')/{M'}^2} e^{(m_D^2 - s)/{M^2}}$$

* Sum-rule parameters $s_0^{\pi}, s_0^D, M^2, M'^2$ to be determined

Piscopo, Skidmore

Input parameters

- $\diamond~$ Use exponential model for LCDAs
 - * For $\phi_+, \phi_-, g_+, \phi_3, \phi_4, \tilde{\psi}_4, \psi_4$ use models from [Braun, Ji, Manashov '17]
 - * For $g_-, \tilde{\phi}_5, \psi_5, \tilde{\psi}_5, \phi_6$ use models from [Lü, Shen, Wang, Wei '18]
 - * Inclusion of $\tilde{\phi}_5, \dots \psi_6$ necessary to preserve local limit of 3p ME Also lift of some cancellations between LCDAs!
- $\diamond~$ Main limitations due to poorly known input parameters
 - * Dominant uncertainty coming from λ_H^2 , λ_B

Piscopo, Skidmore

Results

 $\diamond~$ For the ratios of non-factorisable over factorisable contributions

$$\frac{C_2 \langle O_2^d \rangle}{C_1 \langle O_1^d \rangle} = 0.051^{+0.059}_{-0.052} \qquad \frac{C_2 \langle O_2^s \rangle}{C_1 \langle O_1^s \rangle} = 0.039^{+0.042}_{-0.034}$$

- * Non-factorisable corrections found large but positive!
- ◊ For the branching ratios

$$\mathcal{B}(\bar{B}^0_s \to D^+_s \pi^-) = (2.15^{+2.14}_{-1.35}) \times 10^{-3} \qquad \mathcal{B}(\bar{B}^0 \to D^+ K^-) = (2.04^{+2.39}_{-1.20}) \times 10^{-4}$$
$$\mathcal{B}^0_s \to D^-_s \pi^+)|_{\text{exp.}} = (2.98 \pm 0.14) \times 10^{-3} \qquad \mathcal{B}(\bar{B}^0 \to D^- K^+)|_{\text{exp.}} = (2.05 \pm 0.08) \times 10^{-4}$$

Piscopo, Skidmore

 $\mathcal{B}(1$

Conclusions

- $\diamond \text{ With U1 LHCb can significantly improve precision for } \mathcal{B}$ And make measurements to clearly identify/constrain BSM effects
- New estimate of fact. and non-fact. contributions with LCSR
 Alternative to QCDF, currently still larger uncertainties
- ◊ Non-factorisable effects found to be large (but positive)
 - * Many inputs for the *B*-meson still poorly constrained!

Recent progress on determination of $\lambda_{B_d}, \lambda_{B_s}$ using Lattice inputs

[Mandal, Nandi, Ray '23; Mandal, Patil, Ray '24]

* New insights might come using the light-meson LCDAs

Which are more precisely known

Piscopo, Skidmore

Thanks for the attention