The non-leptonic $\bar{B}_{(s)}^{0} \rightarrow D_{(s)}^{(*)+}\left(\pi^{-}, K^{-}\right)$decays: experiment and theory

Maria Laura Piscopo
CPPS, Theoretische Physik 1, Universität Siegen

Nicole Skidmore
University of Warwick

"Beyond the Flavour Anomalies V" Siegen, 10 April 2024

CPPS
Center for Particle
Physics Siegen
UNIVERSITÄT
SIEGEN
鲛

A new anomaly?

$$
\text { The decays } \bar{B}^{0} \rightarrow D^{(*)+} K^{-} \text {and } \bar{B}_{s}^{0} \rightarrow D_{s}^{(*)+} \pi^{-}
$$

\diamond Tree-level decays induced by $b \rightarrow c \bar{u} d(s)$ transitions
\diamond Theoretically "clean" channels
No pollution due to penguin and annihilation topologies
\diamond Golden modes for QCD factorisation (QCDF) framework
[Beneke, Buchalla, Neubert, Sachrajda '99-'01]

A puzzling pattern

\diamond Tensions between QCDF predictions and data ranging (2-7) σ
[Bordone, Gubernari, Huber, Jung, van Dyk '20; Cai, Deng, Li, Yang '21]

New Belle data [2207.00134] not yet included in the average

Could this be an experimental issue?

\diamond Unlikely, results consistent across multiple experiments

$$
\text { Also in different collision environments (} p p, e^{+} e^{-} \text {) }
$$

* Would represent a systematic $\approx 30 \%$ downward shift in the data

In channels which are experimentally well accessible

Closer look at QCDF predictions

\diamond Starting from the factorisatrion formula

$$
\begin{aligned}
& \left.\left\langle O_{i}^{q}\right\rangle\right|_{\mathrm{QCDF}}=\sum_{j} f_{j}^{B_{(s)} D_{(s)}}\left(m_{L}^{2}\right) \int_{0}^{1} d u T_{i j}(u) \varphi_{L}(u)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right) \\
& O_{1}=\left(\bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) b\right)\left(\bar{d} \gamma^{\mu}\left(1-\gamma_{5}\right) u\right)
\end{aligned} O_{2}=\left(\bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) t^{a} b\right)\left(\bar{d} \gamma^{\mu}\left(1-\gamma_{5}\right) t^{a} u\right) .
$$

* $T_{i j}(u)$ known up to NNLO-QCD corrections [Huber, Kränkl, Li ${ }^{16]}$
* Form factors obtained from combination of QCD sum rules and Lattice results
[Bordone, Gubernari, Jung, van Dyk '19]

See also yesterday afternoon session

Status of power corrections

\diamond Systematic study of power corrections challenging in QCDF
\diamond First estimates of $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$ contributions
[Bordone, Gubernari, Huber, Jung, van Dyk '20]

* Computed non-factorisable soft-gluon exchange within LCSR*
* Found very small effect

$$
\frac{\mathcal{A}\left(\bar{B}_{(s)}^{0} \rightarrow D_{(s)}^{+} L^{-}\right)_{\mathrm{NLP}}}{\mathcal{A}\left(\bar{B}_{(s)}^{0} \rightarrow D_{(s)}^{+} L^{-}\right)_{\mathrm{LP}}} \simeq-[0.06,0.6] \%
$$

* Light-cone sum rules [Balitsky, Braun, Kolesnischenko '89]

Clear theory interpretation still missing

\diamond Studied QED corrections, rescattering effects, but not sufficient
\diamond Power corrections may be underestimated [MLP, Rusov '23]
\diamond Data well described with $\mathrm{SU}(3)_{F}$ breaking effects of $\sim 20 \%$
\diamond Investigated possible BSM contributions in tree-level b-decays

* Potential sizeable effects in γ, lifetime and mixing observables
[Lenz, Tetlalmatzi-Xolocotzi '19; Lenz, Müller, MLP, Rusov '22]
* Also strong interplay with collider constraints

Experimental status and future prospects

LHCb prospects for branching fraction precision

\diamond Measurements of \mathcal{B} depend on fragmentation fractions $f_{q}{ }_{q=d, s}$
\diamond Observed dependency between particle multiplicity and f_{q}
LHCb [2204.13042]; ALICE [2105.06335]

* Quark coalescence as possible hadronisation mechanism
* f_{q} not universal among collision environments

Conservative assumptions must be -and have been- made to form global analyses
\diamond Multiple data on $\bar{B}_{(s)}^{0} \rightarrow D_{(s)}^{(*)+} h^{-}$from single experiment needed
To reduce sensitivity to $B_{(s)}$-meson production

LHCb prospects for branching fraction precision

$\diamond \mathcal{B}$ measured relative to $\bar{B}^{0} \rightarrow D^{+} \pi^{-}$normalisation channel
To cancel luminosity/cross-sections dependence

* Uncertainty on this mode leads to limiting external systematic
\diamond Previously at LHCb hadronic normalisation channel necessary
Poor knowledge of L0 trigger efficiency
* Leading to dominant systematic uncertainty

LHCb prospects for branching fraction precision

\diamond With U1's fully software trigger, able to use leptonic channels
With better known branching fraction

* $\mathcal{B}\left(\bar{B}^{+} \rightarrow J / \Psi K^{+}\right)$has 1.9% uncertainty
* With Run 3 data achievable factor 4 increase in sensitivity for $\bar{B}^{0} \rightarrow D^{(*)+} h^{-}$

* Run 3 data at $14 \mathrm{fb}^{-1}$ will be $2-3 \times$ more efficient for hadronic decays than Run 2
\leftarrow Mass distribution for $\bar{B}^{0} \rightarrow D^{+} \pi^{-}$using $47 \mathrm{pb}^{-1}$ of data taken in 2023 with VELO open

LHCb prospects for branching fraction precision

\diamond Hints of tension also in modes with associated vector meson

* Reconstructed decay has a neutral particle

Harder to measure at LHCb

* LHCb U2 (2035) will operate at $10 \times$ instantaneous luminosities
* Minimum dataset of $300 \mathrm{fb}^{-1}$
* Improvements to the ECAL granularity and energy resolution, as well as unprecedented sensitivity to these modes LHCb [1808.08865]

LHCb prospects for BSM searches in tree-level decays

\diamond Consider the CP asymmetry, defined as

$$
A_{\mathrm{fs}}^{q}=\frac{\Gamma\left(\bar{B}_{q}(t) \rightarrow f\right)-\Gamma\left(B_{q}(t) \rightarrow \bar{f}\right)}{\Gamma\left(\bar{B}_{q}(t) \rightarrow f\right)+\Gamma\left(B_{q}(t) \rightarrow \bar{f}\right)}
$$

$\diamond A_{\mathrm{fs}}^{q}$ can provide clear test of BSM effects in tree-level NL decays

* In the SM, for $\bar{B}^{0} \rightarrow D^{+} K^{-}$and $\bar{B}_{s} \rightarrow D_{s}^{+} \pi^{-}, A_{\mathrm{fs}}^{q}=a_{\mathrm{fs}}^{q}$

Asymmetry only due to CPV in mixing

$$
a_{\mathrm{sl}}^{d}=a_{\mathrm{fs}}^{d} \stackrel{\exp }{=}(-21 \pm 17) \cdot 10^{-4} \quad a_{\mathrm{sl}}^{s}=a_{\mathrm{fs}}^{s} \stackrel{\exp }{=}(-60 \pm 280) \cdot 10^{-5}
$$

* In generic BSM scenarios, contribution from direct CPV, $A_{\mathrm{fs}}^{q} \neq a_{\mathrm{fs}}^{q}$
* The CP asymmetry may be enhanced up to $\mathcal{O}\left(10^{-2}\right)$
[Gershon, Lenz, Rusov, NS '21; Fleischer, Vos '17]
$\star A_{\mathrm{fs}}^{q}$ has never been measured for these modes

$L H C b$ prospects for BSM searches in tree-level decays

\diamond Exp. favourable to measure untagged, time integrated asymmetry

$$
\left\langle A_{\mathrm{untagged}}^{q}\right\rangle \approx A_{\mathrm{dir}}^{q}-\frac{a_{\mathrm{fs}}^{q}}{2}\left(1-\rho_{q}\right) \quad\left(\rho_{d} \approx 0.63 \text { and } \rho_{s} \approx 0.001\right)
$$

* Flavour tagging efficiency at $\mathrm{LHCb} \approx 6 \%$

Untagged method provides greater sensitivity

* Better sensitivity and experimental prospects for $\bar{B}_{s} \rightarrow D_{s}^{+} \pi^{-}$

Compared to $\bar{B}^{0} \rightarrow D^{+} K^{-}$due to higher mixing frequency

$$
\left\langle A_{\text {untagged }}^{s}\right\rangle \approx A_{\mathrm{dir}}^{s}-\frac{a_{\mathrm{fs}}^{s}}{2}
$$

* Run 2 measurement ongoing with predicted sensitivity of 2×10^{-3}
* Run 3 will provide sensitivity of 6×10^{-4}

With unprecedented samples of B_{s} decays
Possibility to clearly identify BSM effects or severely constrain them in these decays

Hadronic B-meson decays from $L C S R$

Based on arXiv:2307.07594

in collaboration with A. Rusov

The decay amplitude

\diamond Use the weak effective Hamiltonian

$$
\begin{gathered}
\mathcal{A}\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} \pi^{-}\right)=-\frac{G_{F}}{\sqrt{2}} V_{c b}^{*} V_{u d}\left[C_{1}\left\langle O_{1}\right\rangle+C_{2}\left\langle O_{2}\right\rangle\right] \\
O_{1}=\left(\bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) b\right)\left(\bar{d} \gamma^{\mu}\left(1-\gamma_{5}\right) u\right) \quad O_{2}=\left(\bar{c} \gamma_{\mu}\left(1-\gamma_{5}\right) t^{a} b\right)\left(\bar{d} \gamma^{\mu}\left(1-\gamma_{5}\right) t^{a} u\right)
\end{gathered}
$$

\diamond In naive QCDF

$$
\left\langle O_{1}\right\rangle \stackrel{\mathrm{NQCDF}}{=} i f_{\pi}\left(m_{B_{s}}^{2}-m_{D_{s}}^{2}\right) f_{0}^{B_{s} D_{s}}\left(m_{\pi}^{2}\right) \quad\left\langle O_{2}\right\rangle \stackrel{\mathrm{NQCDF}}{=} 0
$$

\diamond First estimate of $\left\langle O_{2}\right\rangle$ beyond NQCDF using two-point sum rule

$$
C_{2}\left\langle O_{2}\right\rangle / C_{1}\left\langle O_{1}\right\rangle \sim 8 \%
$$

New estimate of decay amplitude using LCSR

\diamond Start from three-point correlation function see e.g. [Khodjamirian '00]

$$
\begin{gathered}
\mathcal{F}_{\mu}^{O_{i}}(p, q)=i^{2} \int d^{4} x \int d^{4} y e^{i p \cdot x} e^{i q \cdot y}\langle 0| T\left\{j_{5}^{D}(x), O_{i}(0), j_{\mu}^{\pi}(y)\right\}|\bar{B}(p+q)\rangle \\
j_{5}^{D}(x)=i m_{c}\left(\bar{s} \gamma_{5} c\right)(x) \quad j_{\mu}^{\pi}(y)=\left(\bar{u} \gamma_{\mu} \gamma_{5} d\right)(y)
\end{gathered}
$$

Light-cone OPE for the correlation functions

\bullet Consider kinematical region of p^{2}, q^{2} large and negative
\diamond Dominant contribution to correlator from

$$
x^{2} \sim 0 \quad y^{2} \sim 0 \quad(x-y)^{2} \nprec 0
$$

x and y are aligned along different light-cone directions!
\diamond Double LC expansion of correlator $\mathcal{F}_{\mu}^{O_{2}}$ requires *

$$
\begin{gathered}
\langle 0| \bar{q}\left(z_{1} n\right) G_{\mu \nu}\left(z_{2} \bar{n}\right) h_{v}(0)|\bar{B}(v)\rangle=? \\
\text { e.g. [Belov, Berezhnoy, Melikhov '23; Qin, Shen, Wang, Wang '22] } \\
v^{\mu}=\left(n^{\mu}+\bar{n}^{\mu}\right) / 2 \quad n^{\mu}=(1,0,0,1) \quad \bar{n}^{\mu}=(1,0,0,-1)
\end{gathered}
$$

* Expand instead around $x^{2} \sim 0$ but $y^{\mu} \sim 0$

Light-cone OPE for the correlation functions

\diamond For light-quark loop use local expansion of propagator up to $G_{\mu \nu}$ e.g. [Balitsky, Braun '89]

$$
S_{i j}^{(q)}(x, y)=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{-i k(x-y)}\left[\frac{\delta_{i j} \nmid k}{k^{2}+i \varepsilon}-\frac{G_{\alpha \beta}^{a} t_{i j}^{a}}{4} \frac{\left(\not k \sigma^{\alpha \beta}+\sigma^{\alpha \beta} \nmid k\right)}{\left(k^{2}+i \varepsilon\right)^{2}}\right]+\ldots
$$

\diamond Use 2- and 3-particle B-meson LCDAs up to twist-six
[Braun, Ji, Manashov '17]

$$
\begin{aligned}
\langle 0| \bar{q}(x) G_{\mu \nu}(0) h_{v}(0)|\bar{B}(v)\rangle & \sim \int_{0}^{\infty} d \omega_{1} e^{-i \omega_{1} v \cdot x} f_{\mu \nu}\left(\left\{\phi_{3}, \phi_{4}, \ldots, \phi_{6}\right\}\left(\omega_{1}\right)\right) \\
\langle 0| \bar{q}(x) h_{v}(0)|\bar{B}(v)\rangle & \sim \int_{0}^{\infty} d \omega e^{-i \omega v \cdot x} f\left(\left\{\phi_{+}, \phi_{-}, g_{+}, g_{-}\right\}(\omega)\right)
\end{aligned}
$$

The OPE results

\diamond Both correlators take the form

$$
\mathcal{F}_{\mu}^{O_{i}}=\left(q_{\mu}(p \cdot q)-p_{\mu} q^{2}\right) \mathcal{F}^{O_{i}}\left(p^{2}, q^{2}\right)
$$

* Result transversal with respect to q^{μ}
\diamond Arrive at final OPE for the invariant amplitudes

$$
\left[\mathcal{F}_{q}^{O_{2}}\left(p^{2}, q^{2}\right)\right]_{\mathrm{OPE}} \sim \int_{0}^{\infty} d \omega_{1} \sum_{\hat{\psi}} \psi\left(\omega_{1}\right) \sum_{n=1}^{3} \frac{c_{n}^{\hat{\psi}}\left(\omega_{1}, q^{2}\right)}{\left(q^{2}+i \varepsilon\right)\left[\tilde{s}\left(\omega_{1}, q^{2}\right)-p^{2}-i \varepsilon\right]^{n}}
$$

* Similarly for $\mathcal{F}_{q}^{O_{1}}$ - including both 2- and 3-particle contributions

Link OPE to hadronic matrix element

\diamond Derive double dispersion relations in p^{2} - and q^{2}-channels
\diamond Approximate continuum using quark-hadron duality
\diamond Obtain final sum-rule for matrix element
$i\left\langle O_{2}\right\rangle=\frac{1}{f_{\pi} f_{D} m_{D}^{2} \pi^{2}} \int_{0}^{s_{0}^{\pi}} d s^{\prime} \int_{m_{c}^{2}}^{s_{0}^{D}} d s \operatorname{Im}_{s^{\prime}} \operatorname{Im}_{s}\left[\mathcal{F}_{q}^{O_{2}}\left(s, s^{\prime}\right)\right]_{\mathrm{OPE}} e^{\left(m_{\pi}^{2}-s^{\prime}\right) / M^{\prime 2}} e^{\left(m_{D}^{2}-s\right) / M^{2}}$

* Sum-rule parameters $s_{0}^{\pi}, s_{0}^{D}, M^{2}, M^{\prime 2}$ to be determined

Input parameters

\diamond Use exponential model for LCDAs

* For $\phi_{+}, \phi_{-}, g_{+}, \phi_{3}, \phi_{4}, \tilde{\psi}_{4}, \psi_{4}$ use models from [Braun, Ji, Manashov '17]
* For $g_{-}, \tilde{\phi}_{5}, \psi_{5}, \tilde{\psi}_{5}, \phi_{6}$ use models from [Lü, Shen, Wang, Wei '18]
* Inclusion of $\tilde{\phi}_{5}, \ldots \psi_{6}$ necessary to preserve local limit of 3 p ME

Also lift of some cancellations between LCDAs!
\diamond Main limitations due to poorly known input parameters

* Dominant uncertainty coming from $\lambda_{H}^{2}, \lambda_{B}$

Results

\diamond For the ratios of non-factorisable over factorisable contributions

$$
\frac{C_{2}\left\langle O_{2}^{d}\right\rangle}{C_{1}\left\langle O_{1}^{d}\right\rangle}=0.051_{-0.052}^{+0.059} \quad \frac{C_{2}\left\langle O_{2}^{s}\right\rangle}{C_{1}\left\langle O_{1}^{s}\right\rangle}=0.039_{-0.034}^{+0.042}
$$

* Non-factorisable corrections found large but positive!
\diamond For the branching ratios

$$
\mathcal{B}\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} \pi^{-}\right)=\left(2.15_{-1.35}^{+2.14}\right) \times 10^{-3} \quad \mathcal{B}\left(\bar{B}^{0} \rightarrow D^{+} K^{-}\right)=\left(2.04_{-1.20}^{+2.39}\right) \times 10^{-4}
$$

$$
\left.\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}\right)\right|_{\text {exp. }}=(2.98 \pm 0.14) \times 10^{-3}
$$

$$
\left.\mathcal{B}\left(B^{0} \rightarrow D^{-} K^{+}\right)\right|_{\text {exp. }}=(2.05 \pm 0.08) \times 10^{-4}
$$

Conclusions

\diamond With U1 LHCb can significantly improve precision for \mathcal{B}
And make measurements to clearly identify/constrain BSM effects
\diamond New estimate of fact. and non-fact. contributions with LCSR
Alternative to QCDF, currently still larger uncertainties
\diamond Non-factorisable effects found to be large (but positive)

* Many inputs for the B-meson still poorly constrained!

Recent progress on determination of $\lambda_{B_{d}}, \lambda_{B_{s}}$ using Lattice inputs [Mandal, Nandi, Ray '23; Mandal, Patil, Ray '24]

* New insights might come using the light-meson LCDAs

Which are more precisely known

Thanks for the attention

