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Puzzles… Measuring |Vub| and |Vcb|
* Decays don’t happen at quark level, non-perturbative physics make things
complicated
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* Hadronic transition matrix element needs to be Lorentz covariant

! Function of Lorentz vectors and scalars of the decay ! p
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! On-shell B ! X decay: form factors encode non-perturbative physics

* Form factors unknown functions of q
2 = (pB � pX )2 = (p` + p⌫)2

* E.g. decay rate in the SM for B ! scalar ` ⌫̄` decay: f = single form factor
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… Long-standing discrepancy since 
about a decade

by M. Prim
by M. Prim

Eur. Phys. J. Spec. Top.

Fig. 5 Current status of |Vub| and |Vcb| from inclusive (black marker) and exclusive determinations (red ellipse, colored
bands) is shown. The red ellipse shows the statistical average of the ratio measurements and the exclusive determinations.
All contours correspond to ∆χ2 = 1 CL. The dashed line shows the 68% CL for the exclusive world average of |Vub| and
|Vcb|. The tension of the world averages of inclusive and exclusive values is at the 2.85 σ level

electron and muon final states as well as for charged and neutral B decays were reported for the first time. Ref. [58]
analyzed both sets of experimental information and find using the BGL parameterization

|Vcb|BGL,B→D= (40.49± 0.97) · 10−3 (36)

using LQCD beyond zero recoil information from HPQCD [59] and FNAL/MILC [55], and compatible with Eq. 34.

6 Exclusive |Vcb| from Bs → D(∗)
s !ν̄!

The LHCb collaboration also extracted the first |Vcb| determination from Bs decays. Implementing a novel analysis
method, the decays to B0

s → D(∗)
s !ν̄! can be identified from the inclusive sample of D−

s µ
+ candidates [4]. For the

form factors, the LQCD calculations of Ref. [30] are used by converting their BCL parameterization to the CLN
and BGL parametrization. LHCb then reports

|Vcb|CLN=(41.4± 1.6) × 10−3 ,
|Vcb|BGL=(42.3± 1.7) × 10−3 . (37)

The two results are compatible when accounting for their experimental correlation (Fig. 5).

7 Summary

Determinations of |Vcb| with exclusive decays have reached % level precision, due to recent progress in LQCD
and experimental determinations. Furthermore, more generalized parameterizations of the form factors describing
the non-perturbative transition matrix elements, result in an upward shift of its central value, which are more
compatible with determinations using inclusive decays. Averaging the determined values of |Vcb| using the BGL
parameterization from B → D!ν̄!, B → D∗!ν̄! and Bs → D(∗)

s !ν̄! results in a value of

|Vcb|excl = (40.64± 0.50) × 10−3 . (38)
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Flavor Constraints on New Physics Zoltan Ligeti

Figure 3: Some recent measurements in tension with the SM. The horizontal axis shows the nominal sig-
nificance. The vertical axis shows (monotonically, in my opinion) an undefined function of an ill-defined
variable: the theoretical cleanliness. That is, the level of plausibility that a really conservative estimate of
the theory uncertainty of each observable may affect the significance of its deviation from the SM by 1s .
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Figure 4: Left: measurements of R(D(⇤)) [8, 10, 11, 12, 13], their averages [14], the SM predictions [15,
16, 17, 18], and future sensitivity [19]. Right: the measurements, world average (red), and SM prediction.

It is somewhat surprising to find so large deviations from the SM in processes which occur at
tree level. The central values of the current world averages would imply that there has to be new
physics at or below the TeV scale. Some scenarios are excluded by LHC Run 1 bounds already, and
more will soon be constrained by the Run 2 data. To fit the current central values, mediators with
leptoquark or W 0 quantum numbers are preferred, compared to scalars. Leptoquarks are favored if
one requires the NP to be minimally flavor violating (MFV), which helps explain the absence of
other flavor signals and suppress direct production of the new particles at the LHC from partons
abundant in protons [20]. Currently the “simplest" models that fit the data modify the SM four-
fermion operator (after Fierzing), and then the t polarization is not affected, in agreement with its
first measurement [13]. There are even viable scenarios in which B ! D(⇤)tn̄ are SM-like, but
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Fig. 5 Current status of |Vub| and |Vcb| from inclusive (black marker) and exclusive determinations (red ellipse, colored
bands) is shown. The red ellipse shows the statistical average of the ratio measurements and the exclusive determinations.
All contours correspond to ∆χ2 = 1 CL. The dashed line shows the 68% CL for the exclusive world average of |Vub| and
|Vcb|. The tension of the world averages of inclusive and exclusive values is at the 2.85 σ level
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2 Chapter 1. Introduction
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Figure 1.1: Lepton energy spectrum in B̄ ! Xcl�⌫̄l decays. The red curves are the
parton model b! cl�⌫̄l, and the green curves include 1/m2

b corrections.

1.2 The Lepton Energy Spectrum and Its Endpoint

1.2.1 Overview and Present Status

The decay rates and di↵erential decay distributions in inclusive semileptonic B̄ ! Xql�⌫̄l

decays (with q = u, c) are directly proportional to the CKM-matrix elements |Vub|2 and
|Vcb|2, and can therefore serve to determine them. The theoretical tools for calculating these
rates have been developed some time ago [5, 6, 7, 8, 9, 10, 11, 12, 13, 14], and are by now
standard techniques in heavy quark physics.

The first ingredient is the heavy quark e↵ective theory (HQET), which is an e↵ective field
theory to describe the dynamics of heavy quarks inside heavy mesons, like that of the b quark
inside a B̄ meson. The second ingredient is the inclusiveness of the decays, which means one
is not interested in the specifics of the hadronic final states Xq, but instead sums over all of
them. In this case it is possible to compute the relevant transition operator that mediates
the decay via a so-called operator product expansion (OPE). The combination of OPE and
HQET allows to compute in principle any di↵erential decay rate in inclusive B̄ decays in a
systematic expansion in the QCD coupling constant ↵s and the small parameter 1/mb.

The lepton energy spectrum in B̄ ! Xql�⌫̄l decays is of great importance for a precise
determination of the CKM-matrix element |Vcb|, as it can be measured very precisely and
also contains much more information than the total decay rate. It turns out that the leading
term in the above expansion corresponds to the decay b ! ql�⌫̄l, which is called the parton

model, and that 1/mb corrections are absent [7]. The corrections of order 1/m2

b
to the lepton

energy spectrum were first calculated in Refs. [10, 11, 12, 13]. Both results are shown in
Figs. 1.1.

The result obviously behaves unphysically in the region near the kinematical endpoint of
the spectrum. In fact, the endpoint itself is wrong, because in the above expansion it is given
by the decay kinematics of the parton model b ! ql�⌫̄l, whereas the true physical endpoint
is determined by meson kinematics and lies, depending on the actual quark masses, around
150 MeV higher.

In the original works [10, 11, 12, 13] this unphysical behavior was already identified as a
breakdown of the OPE close to the kinematical endpoint El ' mb/2. This happens because
the true expansion parameter in the OPE for the lepton energy spectrum is not the inverse of
the b-quark mass mb, but the inverse of the so-called energy release mb�2El = mb(1�y). For

Other complication: OPE does 
not allow point-by-point 
predictions

OPE breaks down
dΓ
dEℓ

Eℓ

How to inclusive Vcb
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not allow point-by-point 
predictions

But converges if integrated 
over large parts of phase 
space

∫ wn(v, pℓ, pν)
dΓ
dΦ

dΦ

weight function

w = (pℓ + pν)2 = q2

w = (mBv − q)2 = M2
X

w = (v ⋅ pℓ) = EB
ℓ

Example weight functions

four-momentum 
transfer squared

invariant mass 
squared

Lepton Energy

Inclusive  |Vcb |

Operator Product Expansion (OPE)

v = pB /mB
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Established approach: Use spectral moments (hadronic mass moments, lepton energy 
moments etc.) to determine non-perturbative matrix elements (ME) of OPE and extract |Vcb| 

Bad news: # of matrix elements significantly increases if one increases expansion in 1/mb,c

Inclusive 𝐵 → 𝑋𝑐ℓ ҧ𝜈ℓ

9/19/2023 Markus Prim 3

ℓ−

ҧ𝜈ℓ
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𝑏

𝑐ത𝑢

ത𝑢

𝑉𝑐𝑏

𝐵− Agnostic with respect 
to the hadronic system

𝑋𝑐

HQE parameters must 
be extracted from data

The theoretical framework is Operator Product Expansion (OPE)
and Heavy Quark Expansion (HQE)

𝑑Γ = 𝑑Γ0 + 𝑑Γ𝜇𝜋
𝜇𝜋2

𝑚𝑏
2 + 𝑑Γ𝜇𝐺

𝜇𝐺2

𝑚𝑏
2 + 𝑑Γ𝜌𝐷

𝜌𝐷3

𝑚𝑏
3 + 𝑑Γ𝜌LS

𝜌LS3

𝑚𝑏
3 + 𝒪( Τ1 𝑚𝑏

4)

𝑑Γ are calculated 
perturbatively

𝜇𝜋, 𝜇𝐺, 𝜌𝐷, 𝜌𝐿𝑆 encapsulate 
non-perturbative dynamics

Fael, Schönwald, Steinhauser
Phys. Rev. D 104, 016003 (2021)

requires the spectral 
moments of 𝐵 → 𝑋𝑐ℓ𝜈 

Available at 𝒪(𝛼𝑠3)

Challenge: Proliferation of 
HQE parameters at higher order

Talk by Keri Vos
“HQE in inclusive SL decays”
Talk by Keri Vos
“HQE in inclusive SL decays”

Inclusive  |Vcb |

Operator Product Expansion (OPE)

How to inclusive Vcb

(currently! more about that later)
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First raw moment: Mean
Measures the location

Second central moment: Variance
Measures the spread

Third central moment: Skewness
Measures asymmetry

Fourth central moment: Kurtosis
Measures “tailedness”

𝜇𝑛 = න
−∞

−∞
𝑥 − 𝑐 𝑛𝑓 𝑥 𝑑𝑥

Raw moment: 𝑐 = 0
Central moment: 𝑐 = Mean

• The moments are 
measured with cut-offs 
in the distribution

• Data points are highly-
correlated
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Illustrations by Markus Prim

Moments are measured with progressive cuts in the distribution 

→ highly correlated measurements
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How to measure spectral moments
Key-technique: hadronic tagging

Can identify Xc 
constituents

q2 = (psig − pXc)
2

MX = (pXc
)μ(pXc

)μ

7

FIG. 4. MX and q2 spectra with B ! Xc ` ⌫̄` and background
components normalized to the results of the MX fits.

The event-wise signal probability w is obtained by con-
structing a binned probability as a function of q2 via

wi(q
2) = (ni � ⌘̃BB f̃BB

i � ⌘̃qq̄ f̃
qq̄
i )/ni , (15)

where f̃i is the estimated fraction of events reconstructed
in bin i of q2 for a given background category estimated
from the simulation and ⌘̃ denote the sum of the esti-
mated number of background events from the MX fits.

We calculate a continuous signal probability w(q2) by
interpolating the binned distribution with smoothed cu-
bic splines [52]. Negative probabilities are set to zero.
The cubic-spline fit and statistical uncertainties of the
signal probability are shown in Fig. 5. The statistical
uncertainty on hq2ni is evaluated by a bootstrapping pro-
cedure [53] and a selection of spline fits from replicas is
shown in Fig. 5. The statistical uncertainty of w(q2) in-
creases towards large q2.

B. q2
Calibration

The q2 distribution from the kinematic fit is calibrated
exploiting the linear relationship between reconstructed
and generated moments. Figure 6 shows the linear rela-
tionship for simulated events for the first moment and as

FIG. 5. Binned signal probability wi together with a
smoothed cubic-spline fit (dark red). In addition, variations
of the signal spline fit (light red) determined with bootstrap
replicas are shown.

functions of q2 threshold between the reconstructed and
true q2 distribution. We calibrate each event with

q2ncalib = (q2nreco � cn)/mn, (16)

with cn and mn the intercept and slope of the linear
relationship for a given moment of order n. More details
on the linear calibration for the higher moments can be
found in Appendix B.

Due to the linearity of the calibration, a small bias
remains, which we corrected with an additional multi-
plicative calibration factor in Eq. (13) calculated from
simulated events by comparing the calibrated hq2ncalibi and
true generated hq2ngen,seli moments,

Ccalib = hq2ngen,seli/hq
2n
calibi . (17)

The Btag reconstruction and the Belle II detector accep-
tance and performance result in an additional bias. To
account for these effects we apply a second multiplica-
tive calibration factor Cgen by comparing the generated
moments with all selection criteria applied (hq2ngen,seli) to
their value without any selection applied (hq2ngeni),

Cgen = hq2ngeni/hq
2n
gen,seli . (18)

The hq2ngeni are determined from an MC sample without
Photos simulation and also corrects for FSR.

Both Ccalib and Cgen are determined for each q2 thresh-
old and from independent samples from those used to
determine the linear calibration function. The Ccalib fac-
tors range between 0.98 and 1.02 depending on the lower
q2 threshold. The Cgen factors vary between 0.90 and
1.00 with lower selection threshold values tending to have
higher corrections. More details on the event-wise cali-
bration can be found in Appendix C.

Hadronic Tagging

with Belle II algorithm (FEI)

[Full Event Interpretation, T. Keck et al,

Comp. Soft. Big. Sci 3 (2019), 
arXiv:1807.08680]

Signal

Continuum
B Bkg.

Signal
B Bkg.

Continuum

[PRD 107, 072002 (2023), arXiv:2205.06372]
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FIG. 3. Comparison of reconstructed, fitted and generated q2

for B ! Xc ` ⌫̄`. The residuals are the difference of generated
(’gen’) and estimated (’reco’) values.

constraints,

bp 2
X > 0 , bp 2

Btag
= m2

B , (bp` + bpX + bp⌫)
2 = m2

B , (11)

and
⇣
bp
e
+
e
� � bpBtag

� bp` � bpX � bp⌫
⌘
= 0 (12)

using Lagrange multipliers. For each event the �2 func-
tion is numerically minimized with the constraints, fol-
lowing the algorithm described in Ref. [48] implemented
in SciPy [49].

Figure 3 show the distribution of the residuals of q2

before and after the kinematic fit with simulated signal
events. Here the residual is calculated from the recon-
structed and generated values. The kinematic fit results
in more symmetric residuals and a reduction in the tails
of the residuals. The RMS improves from 5.76GeV2/c4

to 2.65GeV2/c4 and the bias reduces from 3.43GeV2/c4

to 1.20GeV2/c4.

IV. MEASUREMENT OF LEPTON MASS

SQUARED MOMENTS

To measure the lepton mass squared moments, back-
ground contributions from other processes must be sub-
tracted from the q2 distribution. Binned likelihood fits
are applied to the MX distribution to determine the num-
ber of signal and background events. With this infor-
mation and the shapes of backgrounds from simulation,
an event-wise signal probability w is constructed as a
function of q2. We correct for acceptance and recon-
struction effects by applying an event-wise calibration
q2reco ! q2calib and two additional calibration factors Ccalib
and Cgen, discussed in Section IV B. The background-
subtracted q2 moment of order n is calculated as a

weighted mean

hq2ni =

PNdata
i w(q2i )⇥ q2ncalib,iPNdata

j w(q2j )
⇥ Ccalib ⇥ Cgen ,

(13)

with sums over all events. For each q2 threshold, the
binned likelihood fit to MX is repeated to update the
event-wise signal probability weights. We use thresholds
in the range [1.5, 8.5]GeV2/c4 in steps of 0.5GeV2/c4.

A. Background Subtraction

The likelihood fit to the binned MX distribution is
carried out separately in the B+`�, B0`�, and B0`+

channels to account for efficiency differences in the FEI
algorithm. Electron and muon channels are not sep-
arated. Contributions from B ! Xu ` ⌫̄` decays are
treated as background and have on average high q2.
We suppress this background by fitting the range with
MX > 0.5GeV/c2. To determine the number of back-
ground events in each of these channels as well as for each
q2 threshold, we distinguish the following three event cat-
egories:

1. B ! Xc ` ⌫̄` signal (with yield ⌘sig),

2. e+e� ! qq̄ continuum processes (⌘qq̄), and

3. BB background dominated by secondary leptons
and hadronic B decays misidentified as signal lep-
ton candidates (⌘BB).

The likelihood is the product of Poisson likelihoods for
each bin i with ni observed events and ⌫i expected events,
with

⌫i =
X

k

⌘k fki , (14)

where fki is the fraction of events of category k recon-
structed in bin i as determined with simulated events.
The yield ⌘qq̄ is constrained to its expectation as deter-
mined from off-resonance data. To reduce the depen-
dence on the modeling of signal and backgrounds, the fit
is carried out in five MX bins. For each channel and q2

threshold, an adaptive binning is chosen. The likelihood
is numerically maximized using the Minuit algorithm [50]
in scikit-hep/iminuit [51].

The sample composition projections for q2 >
1.5GeV2/c4 are shown in Appendix A. The MX and
q2 distributions with the fitted MC yields are shown in
Fig. 4 for q2 > 1.5GeV2/c4 with finer granularity than
used in the fit. The agreement is fair and the p value
from a �2 test for the q2 distribution in the range of
1.5� 15GeV2/c4 is 30%.

Use kinematic fit 
to improve 
resolution on q2

[PRD 107, 072002 (2023), arXiv:2205.06372]
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The lepton mass squared is reconstructed as

q2reco = (p⇤Bsig
� p⇤X)2 , (9)

with p⇤Bsig
= (

p
s/2,�p⇤

Btag
). To improve the resolution

of q2reco, we exploit the known kinematics of the e+ e�

collision and fit for the four-momenta of Btag, X, `, and
⌫`. We construct a �2 function for each candidate of the
form

�2 =
X

i2{Btag,X,`}

(bpi � pi)C
�1
i (bpi � pi) , (10)

where bpi is the fitted four-momentum, and Ci is the co-
variance matrix of the four-momentum of a given final-
state particle. C` is given by the track fit result, while
CBtag

and CX are estimated using the corresponding
four-momentum residuals.

Overall, we fit 14 parameters: the four-momenta com-
ponents of the Btag and X candidates and the momenta
components of the signal lepton and neutrino. The en-
ergies of the lepton and neutrino are calculated from the
momenta assuming p2` = m2

` and p2⌫ = 0. The kine-
matic fit is then performed by imposing the following
constraints,

bp 2
X > 0 , bp 2

Btag
= m2

B , (bp` + bpX + bp⌫)
2 = m2

B , (11)

and
⇣
bp
e
+
e
� � bpBtag

� bp` � bpX � bp⌫
⌘
= 0 (12)

using Lagrange multipliers. For each event the �2 func-
tion is numerically minimized with the constraints, fol-
lowing the algorithm described in Ref. [48] implemented
in SciPy [49].

Figure 3 show the distribution of the residuals of q2

before and after the kinematic fit with simulated signal
events. Here the residual is calculated from the recon-
structed and generated values. The kinematic fit results
in more symmetric residuals and a reduction in the tails
of the residuals. The RMS improves from 5.76GeV2/c40
to 2.65GeV2/c40 and the bias reduces from 3.43GeV2/c40
to 1.20GeV2/c40.

IV. MEASUREMENT OF LEPTON MASS

SQUARED MOMENTS

To measure the lepton mass squared moments, back-
ground contributions from other processes must be sub-
tracted from the q2 distribution. Binned likelihood fits
are applied to the MX distribution to determine the num-
ber of signal and background events. With this informa-
tion and the shapes of backgrounds from simulation, an
event-wise signal probability w is constructed as a func-
tion of q2reco. Both steps are discussed in Section IVA.
We correct for acceptance and reconstruction effects by

applying an event-wise calibration q2reco ! q2calib and two
additional calibration factors Ccalib and Cgen, discussed in
Section IV B. The background-subtracted q2 moment of
order n is calculated as a weighted mean

hq2ni =

PNdata
i w(q2reco,i)⇥ q2ncalib,iPNdata

j w(q2reco,j)
⇥ Ccalib ⇥ Cgen ,

(13)

with sums over all events. For each reconstructed q2

threshold, the binned likelihood fit to MX is repeated
to update the event-wise signal probability weights. We
use thresholds in the range [1.5, 8.5]GeV2/4 in steps of
0.5GeV2/c40.

A. Background Subtraction

The likelihood fit to the binned MX distribution is
carried out separately in the B+`�, B0`�, and B0`+

channels to account for efficiency differences in the FEI
algorithm. Electron and muon channels are not sep-
arated. Contributions from B ! Xu ` ⌫̄` decays are
treated as background and have on average high q2reco.
We suppress this background by fitting the range with
MX > 0.5GeV/c20. To determine the number of back-
ground events in each of these channels as well as for
each reconstructed q2 threshold, we distinguish the fol-
lowing three event categories:

1. B ! Xc ` ⌫̄` signal (with yield ⌘sig),

2. e+e� ! qq̄ continuum processes (⌘qq̄), and

3. BB background dominated by secondary leptons
and hadronic B decays misidentified as signal lep-
ton candidates (⌘BB).

The likelihood is the product of Poisson likelihoods for
each bin i with ni observed events and ⌫i expected events,
with

⌫i =
X

k

⌘k fki , (14)

where fki is the fraction of events of category k recon-
structed in bin i as determined with simulated events.
The yield ⌘qq̄ is constrained to its expectation as deter-
mined from off-resonance data. To reduce the depen-
dence on the modeling of signal and backgrounds, the
fit is carried out in five MX bins. For each channel and
reconstructed q2 threshold, an adaptive binning is cho-
sen. The likelihood is numerically maximized using the
Minuit algorithm [50] in scikit-hep/iminuit [51].

The sample composition projections for
q2reco > 1.5GeV2/c40 are shown in Appendix A. The
MX and q2reco distributions with the fitted MC yields
are shown in Fig. 4 for q2reco > 1.5GeV2/c40 with finer
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FIG. 4. MX and q2reco spectra with B ! Xc ` ⌫̄` and back-
ground components normalized to the results of the MX fits
are shown for q2reco > 1.5GeV2/c40.

granularity than used in the fit. The agreement is fair
and the p value from a �2 test for the q2reco distribution
in the range of 1.5� 15GeV2/4 is 30%.

The event-wise signal probability w is obtained by con-
structing a binned probability as a function of q2reco via

wi(q
2
reco) = (ni � ⌘̃BB f̃BB

i � ⌘̃qq̄ f̃
qq̄
i )/ni , (15)

with ni the observed events in bin i of q2reco. Further, f̃i
are the fractions of events for a given background cat-
egory estimated from the simulation, and ⌘̃ denote the
sum of the number of background events from the MX

fits.
We calculate a continuous signal probability w(q2reco)

by interpolating the binned distribution with smoothed
cubic splines [52]. Negative probabilities are set to zero.
The cubic-spline fit and statistical uncertainties of the
signal probability are shown in Fig. 5. The statistical
uncertainty on hq2ni is evaluated by a bootstrapping pro-
cedure [53] and a selection of spline fits from replicas is
shown in Fig. 5. The statistical uncertainty of w(q2reco)
increases towards large q2reco.

FIG. 5. Binned signal probability wi for q2reco > 1.5GeV2/c40
together with a smoothed cubic-spline fit (dark red). In addi-
tion, variations of the signal spline fit (light red) determined
with bootstrap replicas are shown.

B. q2
Calibration

The q2reco distribution is calibrated exploiting the linear
relationship between reconstructed and generated mo-
ments. Figure 6 shows the linear relationship for sim-
ulated events for the first moment and as functions of q2
threshold between the reconstructed and true q2 distri-
bution. We calibrate each event with

q2ncalib = (q2nreco � cn)/mn, (16)

with cn and mn the intercept and slope of the linear
relationship for a given moment of order n. More details
on the linear calibration for the higher moments can be
found in Appendix B.

Due to the linearity of the calibration, a small bias
remains, which we corrected with an additional multi-
plicative calibration factor in Eq. (13) calculated from
simulated events by comparing the calibrated hq2ncalibi and
true generated hq2ngen,seli moments,

Ccalib = hq2ngen,seli/hq
2n
calibi . (17)

The Btag reconstruction and the Belle II detector accep-
tance and performance result in an additional bias. To
account for these effects we apply a second multiplica-
tive calibration factor Cgen by comparing the generated
moments with all selection criteria applied (hq2ngen,seli) to
their value without any selection applied (hq2ngeni),

Cgen = hq2ngeni/hq
2n
gen,seli . (18)

The hq2ngeni are determined from an MC sample without
Photos simulation and also corrects for FSR.

Both Ccalib and Cgen are determined for each q2 thresh-
old and from independent samples from those used to
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FIG. 4. MX and q2 spectra with B ! Xc ` ⌫̄` and background
components normalized to the results of the MX fits.

The event-wise signal probability w is obtained by con-
structing a binned probability as a function of q2 via

wi(q
2) = (ni � ⌘̃BB f̃BB

i � ⌘̃qq̄ f̃
qq̄
i )/ni , (15)

where f̃i is the estimated fraction of events reconstructed
in bin i of q2 for a given background category estimated
from the simulation and ⌘̃ denote the sum of the esti-
mated number of background events from the MX fits.

We calculate a continuous signal probability w(q2) by
interpolating the binned distribution with smoothed cu-
bic splines [52]. Negative probabilities are set to zero.
The cubic-spline fit and statistical uncertainties of the
signal probability are shown in Fig. 5. The statistical
uncertainty on hq2ni is evaluated by a bootstrapping pro-
cedure [53] and a selection of spline fits from replicas is
shown in Fig. 5. The statistical uncertainty of w(q2) in-
creases towards large q2.

B. q2
Calibration

The q2 distribution from the kinematic fit is calibrated
exploiting the linear relationship between reconstructed
and generated moments. Figure 6 shows the linear rela-
tionship for simulated events for the first moment and as

FIG. 5. Binned signal probability wi together with a
smoothed cubic-spline fit (dark red). In addition, variations
of the signal spline fit (light red) determined with bootstrap
replicas are shown.

functions of q2 threshold between the reconstructed and
true q2 distribution. We calibrate each event with

q2ncalib = (q2nreco � cn)/mn, (16)

with cn and mn the intercept and slope of the linear
relationship for a given moment of order n. More details
on the linear calibration for the higher moments can be
found in Appendix B.

Due to the linearity of the calibration, a small bias
remains, which we corrected with an additional multi-
plicative calibration factor in Eq. (13) calculated from
simulated events by comparing the calibrated hq2ncalibi and
true generated hq2ngen,seli moments,

Ccalib = hq2ngen,seli/hq
2n
calibi . (17)

The Btag reconstruction and the Belle II detector accep-
tance and performance result in an additional bias. To
account for these effects we apply a second multiplica-
tive calibration factor Cgen by comparing the generated
moments with all selection criteria applied (hq2ngen,seli) to
their value without any selection applied (hq2ngeni),

Cgen = hq2ngeni/hq
2n
gen,seli . (18)

The hq2ngeni are determined from an MC sample without
Photos simulation and also corrects for FSR.

Both Ccalib and Cgen are determined for each q2 thresh-
old and from independent samples from those used to
determine the linear calibration function. The Ccalib fac-
tors range between 0.98 and 1.02 depending on the lower
q2 threshold. The Cgen factors vary between 0.90 and
1.00 with lower selection threshold values tending to have
higher corrections. More details on the event-wise cali-
bration can be found in Appendix C.
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The lepton mass squared is reconstructed as

q2reco = (p⇤Bsig
� p⇤X)2 , (9)

with p⇤Bsig
= (

p
s/2,�p⇤

Btag
). To improve the resolution

of q2reco, we exploit the known kinematics of the e+ e�

collision and fit for the four-momenta of Btag, X, `, and
⌫`. We construct a �2 function for each candidate of the
form

�2 =
X

i2{Btag,X,`}

(bpi � pi)C
�1
i (bpi � pi) , (10)

where bpi is the fitted four-momentum, and Ci is the co-
variance matrix of the four-momentum of a given final-
state particle. C` is given by the track fit result, while
CBtag

and CX are estimated using the corresponding
four-momentum residuals.

Overall, we fit 14 parameters: the four-momenta com-
ponents of the Btag and X candidates and the momenta
components of the signal lepton and neutrino. The en-
ergies of the lepton and neutrino are calculated from the
momenta assuming p2` = m2

` and p2⌫ = 0. The kine-
matic fit is then performed by imposing the following
constraints,

bp 2
X > 0 , bp 2

Btag
= m2

B , (bp` + bpX + bp⌫)
2 = m2

B , (11)

and
⇣
bp
e
+
e
� � bpBtag

� bp` � bpX � bp⌫
⌘
= 0 (12)

using Lagrange multipliers. For each event the �2 func-
tion is numerically minimized with the constraints, fol-
lowing the algorithm described in Ref. [48] implemented
in SciPy [49].

Figure 3 show the distribution of the residuals of q2

before and after the kinematic fit with simulated signal
events. Here the residual is calculated from the recon-
structed and generated values. The kinematic fit results
in more symmetric residuals and a reduction in the tails
of the residuals. The RMS improves from 5.76GeV2/c40
to 2.65GeV2/c40 and the bias reduces from 3.43GeV2/c40
to 1.20GeV2/c40.

IV. MEASUREMENT OF LEPTON MASS

SQUARED MOMENTS

To measure the lepton mass squared moments, back-
ground contributions from other processes must be sub-
tracted from the q2 distribution. Binned likelihood fits
are applied to the MX distribution to determine the num-
ber of signal and background events. With this informa-
tion and the shapes of backgrounds from simulation, an
event-wise signal probability w is constructed as a func-
tion of q2reco. Both steps are discussed in Section IVA.
We correct for acceptance and reconstruction effects by

applying an event-wise calibration q2reco ! q2calib and two
additional calibration factors Ccalib and Cgen, discussed in
Section IV B. The background-subtracted q2 moment of
order n is calculated as a weighted mean

hq2ni =

PNdata
i w(q2reco,i)⇥ q2ncalib,iPNdata

j w(q2reco,j)
⇥ Ccalib ⇥ Cgen ,

(13)

with sums over all events. For each reconstructed q2

threshold, the binned likelihood fit to MX is repeated
to update the event-wise signal probability weights. We
use thresholds in the range [1.5, 8.5]GeV2/4 in steps of
0.5GeV2/c40.

A. Background Subtraction

The likelihood fit to the binned MX distribution is
carried out separately in the B+`�, B0`�, and B0`+

channels to account for efficiency differences in the FEI
algorithm. Electron and muon channels are not sep-
arated. Contributions from B ! Xu ` ⌫̄` decays are
treated as background and have on average high q2reco.
We suppress this background by fitting the range with
MX > 0.5GeV/c20. To determine the number of back-
ground events in each of these channels as well as for
each reconstructed q2 threshold, we distinguish the fol-
lowing three event categories:

1. B ! Xc ` ⌫̄` signal (with yield ⌘sig),

2. e+e� ! qq̄ continuum processes (⌘qq̄), and

3. BB background dominated by secondary leptons
and hadronic B decays misidentified as signal lep-
ton candidates (⌘BB).

The likelihood is the product of Poisson likelihoods for
each bin i with ni observed events and ⌫i expected events,
with

⌫i =
X

k

⌘k fki , (14)

where fki is the fraction of events of category k recon-
structed in bin i as determined with simulated events.
The yield ⌘qq̄ is constrained to its expectation as deter-
mined from off-resonance data. To reduce the depen-
dence on the modeling of signal and backgrounds, the
fit is carried out in five MX bins. For each channel and
reconstructed q2 threshold, an adaptive binning is cho-
sen. The likelihood is numerically maximized using the
Minuit algorithm [50] in scikit-hep/iminuit [51].

The sample composition projections for
q2reco > 1.5GeV2/c40 are shown in Appendix A. The
MX and q2reco distributions with the fitted MC yields
are shown in Fig. 4 for q2reco > 1.5GeV2/c40 with finer

15

Measurement in a nutshell

Event-wise Master-formula

Step #1: Subtract Background Step #2: Calibrate moment

Exploit linear dependence 
between rec. & true moments

q2m
cal i = (q2m

reco i − c)/m

8

FIG. 6. The linear calibration function for the first moment.
The first moments are shown as a function of the minimum
q2 requirement on the reconstructed and true underlying q2

distributions.

determine the linear calibration function. The Ccalib fac-
tors range between 0.98 and 1.02 depending on the re-
constructed and generated q2 threshold. The Cgen fac-
tors vary between 0.90 and 1.00 with lower q2 selection
threshold values tending to have more sizeable correc-
tions. More details on the event-wise calibration can be
found in Appendix C.

C. Closure Tests & Stability Checks

We use simulated samples to test the robustness of
measurement method and the background subtraction.
Closure tests are carried out with ensembles built from
independent simulated samples. We observe small devi-
ations of 0.01% to 0.66% caused by imperfections in the
interpolation of w(q2reco) in the extracted q2 moments.
This deviation is treated as a systematic uncertainty, see
Section V.

We also test the impact of systematically altered gen-
erated q2 shapes for B ! Xc ` ⌫̄`. The altered shapes
are obtained by completely removing the non-resonant
B ! Xc ` ⌫̄` contributions or by applying scaling factors
of 2 or 0.5 to the dominant B ! D ` ⌫̄` or B ! D⇤ ` ⌫̄`
contributions. These variations are significantly outside
of the quoted uncertainties of Table I. The moments of
the samples with the altered generated q2 shapes are mea-
sured with the nominal B ! Xc ` ⌫̄` composition and the
observed biases are well within the assigned uncertain-
ties.

The consistency of the measurement for electron and
muon final states is checked by separately determining
the moments; we find good agreement.

V. SYSTEMATIC UNCERTAINTIES

Several systematic uncertainties affect the q2 moments.
Their sources can be grouped into two categories. The
first consists of systematic uncertainties originating from
background subtraction. The fit to the MX distribu-
tion assumes the composition of B ! Xc ` ⌫̄` and relies
on data-driven corrections. These and other uncertain-
ties affect w(q2reco) and must be propagated to the mo-
ments. The second category of uncertainties is related
to assumptions when calibrating the moments. Model-
ing of B ! Xc ` ⌫̄` and of the Belle II detector affects
the calibration function and the calibration factors. To
assess the effect of each uncertainty source, we derive al-
ternative sets of moments based on either a varied signal
probability function or modified calibration. The devi-
ation from the nominal result is used to estimate the
systematic uncertainty.

A. MX Fit and Background Subtraction

We include uncertainties from the signal and back-
ground compositions, MC statistics, and the data-driven
correction factors directly into the likelihood function of
the MX fit. This is achieved by introducing nuisance
parameters ✓ki for event category k and bin i, which are
constrained with multivariate gaussians in the likelihood.
The fraction of events is replaced in Eq. (14) by

fki + �ki✓kiP
j(fkj + �kj✓kj)

(19)

and �ki denotes the uncertainty on the fraction for event
category k and bin i.

The composition uncertainties of B ! Xc ` ⌫̄` are de-
termined with the branching fraction uncertainties listed
in Table I. We evaluate the uncertainties of the BGL
form-factor parameters for B ! D ` ⌫̄`, B ! D⇤ ` ⌫̄`
using a set of orthogonal parameter variations for each
decay. We include the uncertainty of the B ! Xu ` ⌫̄`
branching fraction from Ref. [35]. The efficiencies for
identifying or misidentifying leptons and hadrons are es-
timated from ancillary measurements. We assign a track
selection efficiency uncertainty of 0.69% per track on the
signal side.

We propagate uncertainties on PID and tracking ef-
ficiencies, the B ! Xu ` ⌫̄` branching fraction, and the
background yield obtained from the MX fit to wi(q

2
reco)

with all uncertainties varied according to a multivariate
Gaussian distribution. We repeat the analysis with var-
ied histograms and take the variation of the resulting
moments as the systematic uncertainties due to these
sources.

We study the impact of the choice of the smoothing
factor for the interpolation of the cubic splines used to
derive w(q2reco) and find it to be negligible.
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Appendix C: Calibration Factors Ccalib and Cgen

Figs. 12 and 13 show the calibration factors Ccalib and Cgen as functions of q2 threshold. The factors are determined
using independent simulated samples of signal B ! Xc ` ⌫̄` decays. The corrections from Ccalib are small, typically
below 2%, and correct deviations from the linear relationships between reconstructed and generated moments. The
corrections from Cgen decrease with the q2 threshold.

FIG. 12. Calibration factors Ccalib applied in the calculation of the first to fourth q2 moment.
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The lepton mass squared is reconstructed as

q2reco = (p⇤Bsig
� p⇤X)2 , (9)

with p⇤Bsig
= (

p
s/2,�p⇤

Btag
). To improve the resolution

of q2reco, we exploit the known kinematics of the e+ e�

collision and fit for the four-momenta of Btag, X, `, and
⌫`. We construct a �2 function for each candidate of the
form

�2 =
X

i2{Btag,X,`}

(bpi � pi)C
�1
i (bpi � pi) , (10)

where bpi is the fitted four-momentum, and Ci is the co-
variance matrix of the four-momentum of a given final-
state particle. C` is given by the track fit result, while
CBtag

and CX are estimated using the corresponding
four-momentum residuals.

Overall, we fit 14 parameters: the four-momenta com-
ponents of the Btag and X candidates and the momenta
components of the signal lepton and neutrino. The en-
ergies of the lepton and neutrino are calculated from the
momenta assuming p2` = m2

` and p2⌫ = 0. The kine-
matic fit is then performed by imposing the following
constraints,

bp 2
X > 0 , bp 2

Btag
= m2

B , (bp` + bpX + bp⌫)
2 = m2

B , (11)

and
⇣
bp
e
+
e
� � bpBtag

� bp` � bpX � bp⌫
⌘
= 0 (12)

using Lagrange multipliers. For each event the �2 func-
tion is numerically minimized with the constraints, fol-
lowing the algorithm described in Ref. [48] implemented
in SciPy [49].

Figure 3 show the distribution of the residuals of q2

before and after the kinematic fit with simulated signal
events. Here the residual is calculated from the recon-
structed and generated values. The kinematic fit results
in more symmetric residuals and a reduction in the tails
of the residuals. The RMS improves from 5.76GeV2/c40
to 2.65GeV2/c40 and the bias reduces from 3.43GeV2/c40
to 1.20GeV2/c40.

IV. MEASUREMENT OF LEPTON MASS

SQUARED MOMENTS

To measure the lepton mass squared moments, back-
ground contributions from other processes must be sub-
tracted from the q2 distribution. Binned likelihood fits
are applied to the MX distribution to determine the num-
ber of signal and background events. With this informa-
tion and the shapes of backgrounds from simulation, an
event-wise signal probability w is constructed as a func-
tion of q2reco. Both steps are discussed in Section IVA.
We correct for acceptance and reconstruction effects by

applying an event-wise calibration q2reco ! q2calib and two
additional calibration factors Ccalib and Cgen, discussed in
Section IV B. The background-subtracted q2 moment of
order n is calculated as a weighted mean

hq2ni =

PNdata
i w(q2reco,i)⇥ q2ncalib,iPNdata

j w(q2reco,j)
⇥ Ccalib ⇥ Cgen ,

(13)

with sums over all events. For each reconstructed q2

threshold, the binned likelihood fit to MX is repeated
to update the event-wise signal probability weights. We
use thresholds in the range [1.5, 8.5]GeV2/4 in steps of
0.5GeV2/c40.

A. Background Subtraction

The likelihood fit to the binned MX distribution is
carried out separately in the B+`�, B0`�, and B0`+

channels to account for efficiency differences in the FEI
algorithm. Electron and muon channels are not sep-
arated. Contributions from B ! Xu ` ⌫̄` decays are
treated as background and have on average high q2reco.
We suppress this background by fitting the range with
MX > 0.5GeV/c20. To determine the number of back-
ground events in each of these channels as well as for
each reconstructed q2 threshold, we distinguish the fol-
lowing three event categories:

1. B ! Xc ` ⌫̄` signal (with yield ⌘sig),

2. e+e� ! qq̄ continuum processes (⌘qq̄), and

3. BB background dominated by secondary leptons
and hadronic B decays misidentified as signal lep-
ton candidates (⌘BB).

The likelihood is the product of Poisson likelihoods for
each bin i with ni observed events and ⌫i expected events,
with

⌫i =
X

k

⌘k fki , (14)

where fki is the fraction of events of category k recon-
structed in bin i as determined with simulated events.
The yield ⌘qq̄ is constrained to its expectation as deter-
mined from off-resonance data. To reduce the depen-
dence on the modeling of signal and backgrounds, the
fit is carried out in five MX bins. For each channel and
reconstructed q2 threshold, an adaptive binning is cho-
sen. The likelihood is numerically maximized using the
Minuit algorithm [50] in scikit-hep/iminuit [51].

The sample composition projections for
q2reco > 1.5GeV2/c40 are shown in Appendix A. The
MX and q2reco distributions with the fitted MC yields
are shown in Fig. 4 for q2reco > 1.5GeV2/c40 with finer
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The lepton mass squared is reconstructed as

q2reco = (p⇤Bsig
� p⇤X)2 , (9)

with p⇤Bsig
= (

p
s/2,�p⇤

Btag
). To improve the resolution

of q2reco, we exploit the known kinematics of the e+ e�

collision and fit for the four-momenta of Btag, X, `, and
⌫`. We construct a �2 function for each candidate of the
form

�2 =
X

i2{Btag,X,`}

(bpi � pi)C
�1
i (bpi � pi) , (10)

where bpi is the fitted four-momentum, and Ci is the co-
variance matrix of the four-momentum of a given final-
state particle. C` is given by the track fit result, while
CBtag

and CX are estimated using the corresponding
four-momentum residuals.

Overall, we fit 14 parameters: the four-momenta com-
ponents of the Btag and X candidates and the momenta
components of the signal lepton and neutrino. The en-
ergies of the lepton and neutrino are calculated from the
momenta assuming p2` = m2

` and p2⌫ = 0. The kine-
matic fit is then performed by imposing the following
constraints,

bp 2
X > 0 , bp 2

Btag
= m2

B , (bp` + bpX + bp⌫)
2 = m2

B , (11)

and
⇣
bp
e
+
e
� � bpBtag

� bp` � bpX � bp⌫
⌘
= 0 (12)

using Lagrange multipliers. For each event the �2 func-
tion is numerically minimized with the constraints, fol-
lowing the algorithm described in Ref. [48] implemented
in SciPy [49].

Figure 3 show the distribution of the residuals of q2

before and after the kinematic fit with simulated signal
events. Here the residual is calculated from the recon-
structed and generated values. The kinematic fit results
in more symmetric residuals and a reduction in the tails
of the residuals. The RMS improves from 5.76GeV2/c40
to 2.65GeV2/c40 and the bias reduces from 3.43GeV2/c40
to 1.20GeV2/c40.

IV. MEASUREMENT OF LEPTON MASS

SQUARED MOMENTS

To measure the lepton mass squared moments, back-
ground contributions from other processes must be sub-
tracted from the q2 distribution. Binned likelihood fits
are applied to the MX distribution to determine the num-
ber of signal and background events. With this informa-
tion and the shapes of backgrounds from simulation, an
event-wise signal probability w is constructed as a func-
tion of q2reco. Both steps are discussed in Section IVA.
We correct for acceptance and reconstruction effects by

applying an event-wise calibration q2reco ! q2calib and two
additional calibration factors Ccalib and Cgen, discussed in
Section IV B. The background-subtracted q2 moment of
order n is calculated as a weighted mean

hq2ni =

PNdata
i w(q2reco,i)⇥ q2ncalib,iPNdata

j w(q2reco,j)
⇥ Ccalib ⇥ Cgen ,

(13)

with sums over all events. For each reconstructed q2

threshold, the binned likelihood fit to MX is repeated
to update the event-wise signal probability weights. We
use thresholds in the range [1.5, 8.5]GeV2/4 in steps of
0.5GeV2/c40.

A. Background Subtraction

The likelihood fit to the binned MX distribution is
carried out separately in the B+`�, B0`�, and B0`+

channels to account for efficiency differences in the FEI
algorithm. Electron and muon channels are not sep-
arated. Contributions from B ! Xu ` ⌫̄` decays are
treated as background and have on average high q2reco.
We suppress this background by fitting the range with
MX > 0.5GeV/c20. To determine the number of back-
ground events in each of these channels as well as for
each reconstructed q2 threshold, we distinguish the fol-
lowing three event categories:

1. B ! Xc ` ⌫̄` signal (with yield ⌘sig),

2. e+e� ! qq̄ continuum processes (⌘qq̄), and

3. BB background dominated by secondary leptons
and hadronic B decays misidentified as signal lep-
ton candidates (⌘BB).

The likelihood is the product of Poisson likelihoods for
each bin i with ni observed events and ⌫i expected events,
with

⌫i =
X

k

⌘k fki , (14)

where fki is the fraction of events of category k recon-
structed in bin i as determined with simulated events.
The yield ⌘qq̄ is constrained to its expectation as deter-
mined from off-resonance data. To reduce the depen-
dence on the modeling of signal and backgrounds, the
fit is carried out in five MX bins. For each channel and
reconstructed q2 threshold, an adaptive binning is cho-
sen. The likelihood is numerically maximized using the
Minuit algorithm [50] in scikit-hep/iminuit [51].

The sample composition projections for
q2reco > 1.5GeV2/c40 are shown in Appendix A. The
MX and q2reco distributions with the fitted MC yields
are shown in Fig. 4 for q2reco > 1.5GeV2/c40 with finer
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and CX are estimated using the corresponding
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tion is numerically minimized with the constraints, fol-
lowing the algorithm described in Ref. [48] implemented
in SciPy [49].

Figure 3 show the distribution of the residuals of q2

before and after the kinematic fit with simulated signal
events. Here the residual is calculated from the recon-
structed and generated values. The kinematic fit results
in more symmetric residuals and a reduction in the tails
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to 2.65GeV2/c40 and the bias reduces from 3.43GeV2/c40
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ground contributions from other processes must be sub-
tracted from the q2 distribution. Binned likelihood fits
are applied to the MX distribution to determine the num-
ber of signal and background events. With this informa-
tion and the shapes of backgrounds from simulation, an
event-wise signal probability w is constructed as a func-
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threshold, the binned likelihood fit to MX is repeated
to update the event-wise signal probability weights. We
use thresholds in the range [1.5, 8.5]GeV2/4 in steps of
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2. e+e� ! qq̄ continuum processes (⌘qq̄), and

3. BB background dominated by secondary leptons
and hadronic B decays misidentified as signal lep-
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with
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where fki is the fraction of events of category k recon-
structed in bin i as determined with simulated events.
The yield ⌘qq̄ is constrained to its expectation as deter-
mined from off-resonance data. To reduce the depen-
dence on the modeling of signal and backgrounds, the
fit is carried out in five MX bins. For each channel and
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sen. The likelihood is numerically maximized using the
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Example: Belle II  spectral momentsq2
11

FIG. 8. q2 moments (blue) as functions of q2 threshold with full uncertainties. The simulated moments (orange) are shown
for comparison.

FIG. 9. Central q2 moments as functions of q2 threshold with full uncertainties. The simulated moments (orange) are shown
for comparison.
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FIG. 15. Experimental correlations between hq2i and hq2ni for n = 1–4.
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From moments to central moments

10

and second moments, the q2reco resolution from mismod-
eling of the number of charged particles in the X system,
the B ! Xc ` ⌫̄` modeling, and the uncertainty from the
background subtraction are of similar size.

The branching fraction and BGL parameter uncertain-
ties of the resonant decays B ! D ` ⌫̄` and B ! D⇤ ` ⌫̄`
are smaller than the uncertainty due to the composition
of the higher mass states of the Xc spectrum.

At high q2 thresholds, MC simulation statistics also
can be sizeable sources of uncertainty for the first and
second moments. For the third and fourth moments, the
dominant uncertainty at high q2 thresholds is from the
mismodeling of the number of charged particles in the X
system, followed by MC simulation statistics, and B !

Xc ` ⌫̄` modeling.

VI. RESULTS

The hq2ni moments for n = 1–4 are shown in Fig. 8 for
q2 thresholds ranging from 1.5GeV2/c40 to 8.5GeV2/c40
in 0.5GeV2/c40 increments. Numerical values are given
in Appendix D in Tables II to V. Moments with simi-
lar q2 thresholds are strongly correlated. The estimated
correlation coefficients are given in Appendix E.

Figure 8 also shows the moments calculated from the
simulated B ! Xc ` ⌫̄` sample constructed with the as-
sumptions described in Section II D. The simulated mo-
ments include uncertainties from the B ! Xc ` ⌫̄` com-
position and B ! D(⇤) ` ⌫̄` BGL-form-factor parameters.
We observe a fair agreement between measured and sim-
ulated moments. We compare the raw moments for each
order with the simulated moments using �2 tests. To
obtain numerically stable results, each test only includes
measurements with correlation below 95%. The resulting
p values range from 27% to 94%.

We calculate values for the central q2 moments by ex-
panding the binomial relation

h(q2 � hq2i)ni =
nX

j=0

✓
n

j

◆
(�1)n�j

hq2jihq2i
n�j

(20)

and applying the following non-linear transformation
0

BB@

hq2i
hq4i
hq6i
hq8i

1

CCA !

0

BB@

hq2i
h(q2 � hq2i)2i
h(q2 � hq2i)3i
h(q2 � hq2i)4i

1

CCA . (21)

The covariance matrix of the central moments C 0

is calculated using Gaussian uncertainty propagation
C 0 = J C J|. Here, J is the Jacobian matrix for the
transformation in Eq. (21).

Figure 9 shows the second, third, and fourth central
moments as functions of q2 threshold. The central mo-
ments are less correlated with each other than the raw

moments, but have larger variances. We observe negative
correlations between some of the central moments. The
full correlation matrix is given in Appendix F. Compar-
isons of the measured and simulated moments using �2

tests show p values greater than 98%.
The Belle Collaboration recently presented a measure-

ment similar to this one [14]. This work provides ad-
ditional new measurements of the raw and central q2

moments with comparable precision. We present mea-
surements starting at lower q2 thresholds of 1.5, 2.0, and
2.5GeV2/c40, which retain more information about the
inclusive Xc spectrum and allow for reductions of the
uncertainty on |Vcb|. We compare the overlapping mea-
surements of the raw moments from both analyses for q2
thresholds between 3.0 and 8.5GeV2/c40 using a �2 test
including again only measurements with different lower
q2 selections having an observed correlation below 95%.
The tests yield p values between 5% and 72%. Here, we
assumed the systematic uncertainties for the simulation
of the Xc spectrum are fully correlated between the Belle
and Belle II measurements.

VII. SUMMARY AND CONCLUSION

We measure the first to fourth moments of the q2 spec-
trum of B ! Xc ` ⌫̄` from 1.5 to 8.5GeV2/c40. The pre-
cise determinations of these moments are a crucial ex-
perimental input for determinations of |Vcb| and HQE
parameters, proposed by the authors of Ref. [12]. This
analysis probes up to 77% of the accessible B ! Xc ` ⌫̄`
phase space, improving on the measurement of Ref. [14],
and includes the experimentally challenging q2 region of
[1.5, 2.5]GeV2/4. The measured moments are also trans-
formed into central moments, which are less correlated,
but have larger variances than the raw moments.

The uncertainty for the q2 moments is dominantly
systematic, with the uncertainties from the background
yield and shape, composition of the Xc system, and the
simulated detector resolution dominating. A better un-
derstanding of the detector and backgrounds will lead to
a more precise determination of the q2 moments in the
future and will allow measurements with a q2 threshold
below 1.5GeV2/c40.

Recently, a first value of |Vcb| was determined using
this measurement: Ref. [54] finds

|Vcb| = (41.70± 0.69)⇥ 10�3 , (22)

which is in good agreement with other inclusive determi-
nations.

We provide numerical results and covariance matricess
on HEPData (https://www.hepdata.net).
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Appendix F: Correlation Coefficients of the Central Moments

The experimental correlation coefficients between the first raw moment and central moments and for the central
moments of different order are shown in Fig. 16. The central moments are less correlated and some moments show
anti-correlations.

FIG. 16. Correlations between hq2i and h(q2 � hq2i)ni for n = 2–4 and for central moments of different order.
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FIG. 8. q2 moments (blue) as functions of q2 threshold with full uncertainties. The simulated moments (orange) are shown
for comparison.

FIG. 9. Central q2 moments as functions of q2 threshold with full uncertainties. The simulated moments (orange) are shown
for comparison.
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State-of-the-art:  with |Vcb | Eℓ : M2
X 5

(a)

(b)

FIG. 3. Total partonic decay rate in the kinetic (a) and 1S
scheme (b) as a function of the renormalization scale µs. See
text for details. Note that the normalization chosen for the y
axis is scheme independent.

N3LO. Fig 3(b) shows the corresponding results for the
1S scheme where mc is defined via a HQET relation.

The total partonic rate in the kinetic and in the 1S
scheme di↵er for the following reason. Higher power cor-
rections are not included in our partonic b ! c`⌫̄` predic-
tion. In particular the kinetic scheme absorbs µ2/m2

b and
µ3/m3

b terms from the redefinition of µ2
⇡ and ⇢3D, while in

the 1S scheme we neglect higher 1/mb and 1/mc power
corrections when expressing the charm mass in terms of
meson masses within HQET. Only the B ! Xc`⌫̄` total
rate predictions can be compared.

In general the large-�0 terms provide dominant contri-
butions. However, in all cases the remaining terms are
not negligible and often have a di↵erent sign. In the ki-
netic scheme where the charm quark is renormalized in
the MS scheme the remaining contributions are numeri-

FIG. 4. The third-order coe�cient to�q introduced in Eq. (1)
as a function of me/mµ.

cally even bigger than the large-�0 terms.
It is impressive that the expansion in � shows a good

converge behaviour even for � ! 1 which corresponds to
a massless daughter quark. This allows us to extract the
coe�cient X3 for the decay b ! u`⌫̄. A closer look to
the �10, �11, and �12 terms in Fig. 2 indicates that the
convergence is quite slow for ⇢ ! 0. As central value
for the three-loop prediction we use our approximation
based on the �12 term and estimate the uncertainty from
the behaviour of the one- and two-loop [66, 67] results for
⇢ = 0, where the exact results are known. Incorporating
expansion terms up to order �12 we observe a deviation
of about 3.5% whereas the �12 terms amount to less than
1%, both at one and two loops. At three loops the �12

term amounts to about 2%. We thus conservatively esti-
mate the uncertainty to 10% which leads to

Xu
3
⇡ �202± 20 . (10)

In this result the contributions with closed charm loops
are approximated with mc = 0.
In the remaining part of this paper we specify our re-

sults to QED and study the corrections to the muon de-
cay. A comprehensive review of the various correction
terms is given in Ref. [42] where �q in Eq. (1) is param-
eterized as

�q =
X

i�0

�q(i) . (11)

�q(0) is given by X0 � 1 (see Eq. (4)) with ⇢ = me/mµ

and �q(1) [41] and �q(2) [67, 68] are easily obtained af-
ter specification of the QCD colour factors to their QED
values (see Ref. [42] for analytic results). We introduce
�q(3) = (↵(mµ)/⇡)3X

µ
3
, where ↵(mµ) is the fine struc-

ture constant in the MS scheme [42]. In Fig. 4 we show
the third-order coe�cient Xµ

3
for 0  ⇢  0.3. At

the physical point me/mµ ⇡ 0.005 the convergence be-
haviour is similar to QCD. We estimate Xµ

3
using the

same approach as for Xu
3
and examine the one- and two-

loop behaviour. Up to an overall factor CF the one-loop

Fantastic progress on the theory side: 
semileptonic rate @ N3LO!

2

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Sample Feynman diagrams which contribute to the
forward scattering amplitude of a bottom quark at LO (a),
NLO (b), NNLO (c) and N3LO (d-f). Straight, curly and
dashed lines represent quarks, gluons and leptons, respec-
tively. The weak interaction mediated by the W boson is
shown as a blob.

compute for the first time ↵3 corrections to �q by spec-
ifying the colour factors of our b ! c`⌫̄ result to QED
and taking the limit mc ! 0. This allows for the deter-
mination of the third-order coe�cient with an accuracy
of 15%.

II. CALCULATION

We apply the optical theorem and consider the forward
scattering amplitude of a bottom quark where at leading
order the two-loop diagram in Fig. 1(a) has to be consid-
ered. It has a neutrino, a lepton and a charm quark as
internal particles. The weak interaction is shown as an
e↵ective vertex. Our aim is to consider QCD corrections
up to third order which adds up to three more loops.
Some sample Feynman diagrams are shown in Fig. 1(b-
f).

The structure of the Feynman diagrams allows the in-
tegration of the massless neutrino-lepton loop which es-
sentially leads to an e↵ective propagator raised to an ✏-
dependent power, where d = 4� 2✏ is the space-time di-
mension. The remaining diagram is at most of four-loop
order.

From the technical point of view there are two basic
ingredients which are crucial to realize our calculation.
First, we perform an expansion in the di↵erence between
the bottom and charm quark mass. It has been shown
in Ref. [27] that the expansion converges quite fast for
the physical values of mc and mb. Second, we apply the
so-called method of regions [44, 45] and exploit the simi-
larities to the calculation of the three-loop corrections to

the kinetic mass [46].
The method of regions [44, 45] leads to two possible

scalings for each loop momentum kµ

• |kµ| ⇠ mb (h, hard)

• |kµ| ⇠ � ·mb (u, ultra-soft)

with � = 1 �mc/mb. We choose the notion “ultra-soft”
for the second scaling to stress the analogy to the cal-
culation of the relation between the pole and the kinetic
mass of a heavy quark, see [46, 47]. Note that the mo-
mentum which flows through the neutrino-lepton loop,
`, has to be ultra-soft since the Feynman diagram has
no imaginary part if ` is hard since the corresponding
on-shell integral has no cut.
Let us next consider the remaining (up to three) mo-

mentum integrations which can be interpreted as a four-
point amplitude with forward-scattering kinematics and
two external momenta: ` and the on-shell momentum
p2 = m2

b . This is in close analogy to the scattering ampli-
tude of a heavy quark and an external current considered
in Ref. [46]. In fact, at each loop order each momentum
can either scale as hard or ultra-soft:

O(↵s) h, u

O(↵2
s) hh, hu, uu

O(↵3
s) hhh, hhu, huu, uuu

Note that all regions where at least one of the loop mo-
menta scales ultra-soft leads to the same integral families
as in Ref. [46, 47]. The pure-hard regions were absent
in [46, 47]; they lead to (massive) on-shell integrals.
At this point there is the crucial observation that the

integrands in the hard regions do not depend on the loop
momentum `. On the other hand, the ultra-soft integrals
still depend on `. However, for each individual integral
the dependence of the final result on ` is of the form

(�2p · `+ 2�)↵ (2)

with known exponent ↵. This means that it is always
possible to perform in a first step the ` integration which
is of the form

Z
dd`

`µ1`µ2 · · ·

(�2p · `+ 2�)↵(�`2)�
. (3)

A closed formula for such tensor integrals with arbitrary
tensor rank and arbitrary exponents ↵ and � can easily
be obtained from the formula provided in Appendix A
of Ref. [45]. We thus remain with the loop integrations
given in the above table. Similar to Eq. (3) we can in-
tegrate all one-loop hard or ultra-soft loops which leaves
us with pure hard or pure ultra-soft contributions up to
three loops.
A particular challenge of our calculation is the high

expansion depth in �. We perform an expansion of all
diagrams up to �12. This leads to huge intermediate ex-
pressions of the order of 100 GB. Furthermore, for some
of the scalar integrals individual propagators are raised

Renormalization scale
SL
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mkin
b mc(2GeV) µ2

⇡ ⇢3D µ2
G(mb) ⇢3LS BRc`⌫ 103|Vcb|

4.573 1.092 0.477 0.185 0.306 -0.130 10.66 42.16

0.012 0.008 0.056 0.031 0.050 0.092 0.15 0.51

1 0.307 -0.141 0.047 0.612 -0.196 -0.064 -0.420

1 0.018 -0.010 -0.162 0.048 0.028 0.061

1 0.735 -0.054 0.067 0.172 0.429

1 -0.157 -0.149 0.091 0.299

1 0.001 0.013 -0.225

1 -0.033 -0.005

1 0.684
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TABLE I. Results of the updated fit in our default scenario (µc = 2GeV, µb = mkin
b /2). All parameters are in GeV at the

appropriate power and all, except mc, in the kinetic scheme at µ = 1GeV. The first and second rows give central values and
uncertainties, the correlation matrix follows.

UPDATING THE SEMILEPTONIC FIT

Despite ongoing analyses of the q2 and MX -moments at Belle and Belle II [31, 32], no new experimental result on
the semileptonic moments has been published since the 2014 fit [4]. On the other hand, new lattice determinations
of mb and mc have been presented, improving their precision by roughly a factor 2. We use the FLAG 2019 averages
[17] with Nf = 2 + 1 + 1 for mb and mc,

mc(3GeV) = 0.988(7)GeV,

mb(mb) = 4.198(12)GeV, (7)

which correspond to mc(2GeV) = 1.093(8) and mkin
b (1GeV) = 4.565(19)GeV, where for the latter we have used

option B of [3] for the definition of mkin
b . We now repeat the 2014 default fit with both these constraints, slightly

updating the theoretical uncertainty estimates. In view of the small impact of the O(1/m4
b , 1/m

5) and O(↵s⇢3D)
corrections discussed in the previous section, we reduce the theoretical uncertainties used in the fit to the moments
with respect to Ref. [4]. In particular, we consider a 20%, instead of a 30%, shift in ⇢3D and ⇢3LS , and reduce to 4 MeV
the safety shift in mc,b. For all of the other settings and for the selection of experimental data we follow Ref. [4].

While the central values of the fit are close to those of 2014, the uncertainty on mkin
b (mc(3GeV)) decreases from

20(12) to 12(7) MeV, and we get |Vcb| = 42.39(32)th(32)exp(25)� 10�3 with �2
min/dof = 0.46. The very same fit

performed with µc = 2GeV and µb = mkin
b /2 gives

|Vcb| = 42.16(30)th(32)exp(25)� 10�3 (8)

with �2
min/dof = 0.47 and we neglect the very small shift due to the O(↵s⇢3D) correction to �sl. This is our new

reference value and in Table I we display the complete results of this fit.

Let us now comment on the interplay between the fit to the moments and the use of Eq. (1). First, we observe
that the fit to the moments is based on an O(↵2

s) calculation [20, 33–36] without O(↵s⇢3D) contributions, and that
the lower precision in the calculation of the moments with respect to the width inevitably a↵ects the determination of
|Vcb|. This is clearly visible in Eq. (6), where the theoretical component of the error is larger than the residual theory
error associated with the width. However, only a small part of that uncertainty is related to the purely perturbative
corrections, which are relatively suppressed in some semileptonic moments but sizeable in �sl, as we have seen above.
In other words, an O(↵3

s) calculation of the moments is unlikely to improve the precision of the fit significantly, and
the inclusion of O(↵3

s) corrections only in �sl is perfectly justified. On the other hand, an O(↵s/m3
b) calculation of the

moments can have an important impact on the |Vcb| determination. This is because the semileptonic moments, and
the hadronic central moments in particular, are highly sensitive to the OPE parameters. Since the power correction
related to ⇢3D amounts to about 3% percent in Eq. (1), an O(↵s) shift on ⇢3D induced by perturbative corrections to
the moments can have a significant impact in the determination of |Vcb|. Our estimates of the theoretical uncertainties
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See also [Phys.Lett.B 829 (2022) 137068, 2202.01434] for very recent 1S fit finding |Vcb | = (42.5 ± 1.1) × 10−3
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Innovative idea from [JHEP 02 (2019) 177, arXiv:1812.07472] 

(M. Fael, T. Mannel, K. Vos)

Spectral moments :

 Momentsw = (mBv − q)2 ⇒ ⟨Mn
X⟩

 Momentsw = v ⋅ pℓ ⇒ ⟨En
ℓ⟩

 Momentsw = q2 ⇒ ⟨(q2)n⟩

not RPI (depends on )v

RPI! (does not depend on )v

not RPI (depends on )v

⟨Mn[w]⟩ = ∫ wn(v, pℓ, pν)
dΓ
dΦ

dΦ

v = pB /mB
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 from |Vcb | q2 F. Bernlochner, M. Fael, K. Olschwesky, E. Persson,

R. Van Tonder, K. Vos, M. Welsch [arXiv:2205.10274]

Extraction of  from  moments:|Vcb | q2

Figure 4: Fit projections for the central q2 moments as a function of the q
2 threshold,

combined with the measurement moments from both Belle and Belle II.

Figure 5: Comparison between Belle, Belle II and the combined fit for the correlation
between |Vcb| and ⇢

3

D. The crosses indicate the best-fit points.

For completeness, we also performed fits for di↵erent sets of ⇢mom and ⇢cut. The fit
results for Vcb, ⇢3D, r

4

E and r
4

G are given in Appendix C. These scans confirm the above
conclusion, that Vcb is stable against variations of ⇢mom and ⇢cut. A similar conclusion was
found in [10].
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h(q2)ni tree ↵s ↵
2

s ↵
3

s

Partonic 3 3

µ
2

G 3 3

⇢
3

D 3 3

1/m4

b 3

Included corrections

on the mom. predictions

|Vcb|⇥ 103 mb mc µ
2

G
µ
2

⇡ ⇢
3

D
r
4

G
r
4

E
⇥ 10 s

4

E
s
4

qB
s
4

B
⇢cut ⇢mom

Value 41.69 4.56 1.09 0.37 0.43 0.10 -0.12 0.04 -0.04 -0.02 0.04 0.05 0.10

Uncertainty 0.59 0.02 0.01 0.07 0.24 0.18 0.68 0.31 0.95 0.99 0.95 0.13 0.81

Table 5: Fit result including all 1/m4

b parameters with a Gaussian constraint with a mean
of zero and a standard deviation of one. All parameters are expressed in GeV at the
appropriate power.

Gaussian constraint (mean of zero, standard deviation one). The results of this fit is given in
Table 5. We observe no significant deviations from the default fit results. As expected, this
fit shows that the most sensitive O(1/m4

b) HQE parameters are r4G and r
4

E, since the post-fit
parameter uncertainties can be reduced. For the remaining O(1/m4

b) HQE parameters, no
significant uncertainty reduction is seen. Most importantly, we obtain exactly the same
Vcb value as from our default fit. Nevertheless, to be rather conservative, we do add an
additional uncertainty due to the neglected s

4

E, s
4

B and s
4

qB parameters. To assess this
additional uncertainty, we consider the e↵ect on |Vcb| by varying these parameters by ±1
GeV4. In total, we find an additional uncertainty of 0.23 · 10�3 on Vcb, dominated by the
contribution of s4E. Our final result is therefore

|Vcb| = (41.69± 0.59|fit ± 0.23|h.o.) · 10�3 = (41.69± 0.63) · 10�3
, (44)

where we have added the total fit uncertainty and the additional uncertainty from missing
higher orders in quadrature.

5 Conclusion and outlook

We have presented the first determination of Vcb from q
2 moments of the inclusive B !

Xc`⌫̄` spectrum based on [20]. These moments have the benefit that they depend on an RPI
reduced set of HQE parameters, requiring only 8 non-perturbative parameters up to order
1/m4

b . This opens the way to determination of Vcb including 1/m4

b terms based solely on
data. In this first determination, we are able to include two out of five 1/m4

b parameters. In
addition, we performed an in-depth analysis of the theoretical correlations for the moments
predictions, with a default scenario where these parameters are determined from data.

Using the recently measured q
2 moments from both Belle and Belle II, we find

|Vcb| = (41.69± 0.59|fit ± 0.23|h.o.) · 10�3 = (41.69± 0.63) · 10�3
, (45)

which has an incredible percent-level precision. Our new value present an independent cross-
check of previous inclusive Vcb determinations, using both new data and a new method. We
find good agreement with the previously obtained inclusive Vcb determination quoted in
(1) from [8] which was obtained from lepton-energy and hadronic invariant mass moments.
This shows once again that inclusive Vcb can be reliably obtained using the HQE and that
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Two  

terms in fit

1/m4
b
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Fig. 4 Summary of the two inclusive |Vcb| determinations using two subsets of the available kinematic moments of the
spectrum described in the text. In addition, we show our average of these two determinations, and the recent global fit to
all kinematic moments from [75]

3.3 Higher order terms

Above, we focused our discussion on global analyses including HQE terms up to 1/m3
b . At higher order, the number

of parameters starts to proliferate, making their extraction from data challenging. A rough estimate of the size of
these elements can be obtained using the Lowest Lying State Approximation (LLSA) [5, 77]. This approximation
starts by presenting the matrix elements as a sum over the full set of intermediate hadronic states and then assumes
that the lowest lying heavy-meson state saturates this sum. The degree of saturation by this lowest lying state
determines the quality of the approximation, making its accuracy hard to quantify. A toy study in [77], estimated
the uncertainty around 50%. Nevertheless, the LLSA may be used to set the scale for the higher order elements as
done in [78]. In this analysis, the effect of higher order terms up to 1/m5

b on the global fits were studied in detail.
In an iterative approach, 9 1/m4

b , 17 1/m5
b HQE parameters and the lower-dimensional parameters were fited to

the lepton and MX moments, starting from their LLSA value including a generous uncertainty. The authors of
Ref. [78] conclude from this fit that most of the higher dimensional parameters do not change much from their
initial LLSA values, indicating that there is low sensitivity to these parameters. In addition, the extracted value
of |Vcb| changes very little even when repeating the analysis with a larger uncertainty for the higher dimensional
operators. They report a −0.25% reduction on |Vcb|. In addition, this analysis shows no break down of the HQE
at higher orders and strengthens the theoretical basis of the |Vcb| determinations.

More recently, the higher order terms up to 1/m4
b were studied for the first time using the q2 moments [15].

The benefit of these moments is that, like the total rate, they are RPI quantities, sensitive only to a limited set
of HQE parameters. On the other hand, the 〈E!〉, 〈MX〉, are not RPI quantities as they are defined by choosing
a specific frame or direction of velocity v . Up to 1/m4

b , the latter depend on the full set of 13 parameters, while
for RPI quantities, only 8 parameters contribute. In [15], two HQE parameter r4E and r4G were extracted from the
data resulting in small values compatible with zero. As previously found, these results exclude large values for
these parameters. On the other hand, large correlations between these two parameters and the ρ3D parameter were
found, which is worth a further investigation. We note that including QCD corrections introduces two additional
operators at 1/m4

b [13].
Finally, as mentioned in (10) the dΓ5 includes both 1/m5

b terms and 1/m3
b1/m

2
c terms. The latter, the “intrinsic

charm” (IC) contributions, are numerically expected to contribute at the same level as the 1/m4
b terms. Very

recently, a study of the RPI 1/m5
b terms and the numerical size of these corrections appeared [14]. The authors

conclude that there may be cancellations between these effects and the genuine 1/m5
b terms and thus recommend

a combined analysis of these terms as was done in [78] for the non-RPI moments.

3.4 Inclusive unitarity tests

In the above analyses, either only decays to electrons were used or a combination of the muon and electron final
states. However, in the q2 analysis of Belle [52], also the compatibility of the electron and muon q2 moments at
each order was calculated, leading to p-values close to one. For the total rate, the Belle II collaboration recently
reported the most precise test of electron-muon universality in semileptonic B decays [79]

Re/µ(Xc)|exp≡
Γ(B → Xcµν̄µ)
Γ(B → Xceν̄e)

1.007± 0.009(stat)± 0.019(syst) (42)

123

Assume fully correlated BF uncertainties 

and uncorrelated moment information

M. Fael, M., Prim, M. & K.K. Vos,

Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01090-w
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3
D) (left) and (⇢3D, |Vcb|) (right). The dots

stand for the points at ��
2 = 0.

m
kin

b mc(2GeV) µ
2
⇡ µ

2

G(mb) ⇢
3

D(mb) ⇢
3

LS BRc`⌫ 103|Vcb|
4.573 1.090 0.454 0.288 0.176 �0.113 10.63 41.97
0.012 0.010 0.043 0.049 0.019 0.090 0.15 0.48

1 0.380 -0.219 0.557 -0.013 -0.172 -0.063 -0.428
1 0.005 -0.235 -0.051 0.083 0.030 0.071

1 -0.083 0.537 0.241 0.140 0.335
1 -0.247 0.010 0.007 -0.253

1 -0.023 0.023 0.140
1 -0.011 0.060

1 0.696
1

Table 4: Results of the updated fit in our default scenario (µc = 2 GeV, µs = mb/2). All
parameters are in GeV at the appropriate power and all, except mc, in the kinetic scheme at µk = 1
GeV. The first and second rows give central values and uncertainties, the correlation matrix follows.
�
2
min = 40.4 and �

2
min/dof = 0.546.

4 Summary and outlook

The recent measurements of the q
2-moments by Belle and Belle II [18, 19] has opened

new opportunities for the study of inclusive semileptonic B decays. In this paper we have
presented the results of a new calculation of the moments of the q

2 spectrum in inclusive
semileptonic B decays that includes contributions up to O(↵2

s�0) and O(↵s⇤3

QCD
/m

3

b). In
particular, we have reproduced many of the results presented in Refs. [15, 30] and computed
for the first time the BLM corrections O(↵2

s�0) to the q
2-moments. If we employ the results

– 18 –

First simultaneous extraction using all moments
https://arxiv.org/abs/2310.20324

of the default fit of [12] as inputs, our predictions for the central moments of the q2 spectrum
are in excellent agreement with Belle II data [19], while there is a mild tension with Belle
data [18] in the case of the second and third central moments. As a matter of fact, the
Belle and Belle II for those moments differ by about 2�.

The inclusion of the q
2-moments in the global fit confirms the above picture. The q

2-
moments lower slightly the value of ⇢3D(mb) by half a � and that of |Vcb| by a fraction of a �,
decreasing the final uncertainty on them from 0.031 to 0.018GeV3 and from 0.51⇥10�3 to
0.48 ⇥10�3, respectively. Because of its correlation with ⇢

3

D, the determination of µ2
⇡ also

benefit from the new data, with the uncertainty going down from 0.056 to 0.042 GeV2. We
have also included the results of the new calculation of QED and electroweak effects on the
lepton energy spectrum and moments [41]. Applying them to the BaBar data only, they
lower the values of the branching fraction and of |Vcb| by about 0.23%. Our final result for
|Vcb|, obtained updating the input charm and bottom masses and increasing the uncertainty
on the hadronic moments, is

|Vcb| = (41.97± 0.27exp ± 0.31th ± 0.25�)⇥ 10�3 = (41.97± 0.48)⇥ 10�3
. (4.1)

This is still in tension with most estimates based on the Belle and BaBar measurements
of exclusive decay B ! D

⇤
`⌫ [43–49], but agrees well with the very recent Belle and Belle

II results [50, 51] and with analyses of B ! D`⌫ [52, 53]. Interestingly, we also find that
a global fit to moments measured at a single cut on E` and q

2, which minimally depends
on the correlations among theory errors, gives very similar results. This corroborates our
study of the dependence on the modelling of theory correlations.

Further improvements of the inclusive determination of |Vcb| may come from new and
more precise measurements of the leptonic and hadronic moments at Belle II, which could
also measure the Forward-Backward asymmetry and related observables for the first time,
bringing a new sensitivity to µ

2

G to the fits [54, 55]. The new measurements should be able
to improve the treatment of QED corrections using the results of [41]. It will be useful
to investigate the higher power contributions of O(⇤4

QCD
/m

4

b ,⇤
5

QCD
/(m2

cm
3

b),⇤
5

QCD
/m

5

b) in
the q

2-moments, in analogy to what has been done in [25] for the hadronic and leptonic
moments. As far as perturbative corrections are concerned, a complete O(↵2

s) calculation
of the q

2-moments at arbitrary q
2
cut is feasible and necessary. The poor convergence of the

perturbative series for the third hadronic moments observed at O(↵3
s) in [37] should also be

investigated. In the longer term, we expect lattice calculation of the inclusive semileptonic
B decays [56–58] to validate and complement the OPE calculations.
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Very interesting take-away : inclusion of  moments 
have the potential to decrease uncertainties on 

q2

ρ3
D

q2

EB
ℓ

MX
All

m
kin

b mc µ
2
⇡ µ

2

G ⇢
3

D ⇢
3

LS 102BRc`⌫ 103|Vcb| �
2
min(/dof)

without 4.573 1.092 0.477 0.306 0.185 �0.130 10.66 42.16 22.3
q
2-moments 0.012 0.008 0.056 0.050 0.031 0.092 0.15 0.51 0.474

Belle II
4.573 1.092 0.460 0.303 0.175 �0.118 10.65 42.08 26.4
0.012 0.008 0.044 0.049 0.020 0.090 0.15 0.48 0.425

Belle
4.572 1.092 0.434 0.302 0.157 �0.100 10.64 41.96 28.1
0.012 0.008 0.043 0.048 0.020 0.089 0.15 0.48 0.476

Belle & 4.572 1.092 0.449 0.301 0.167 �0.109 10.65 42.02 41.3
Belle II 0.012 0.008 0.042 0.048 0.018 0.089 0.15 0.48 0.559

Table 3: Global fit results with and without the q
2 moments from Belle/Belle II for µs = mb/2

and µc = 2 GeV. All parameters are in GeV at the appropriate power and all, except mc , in
the kinetic scheme at µk = 1 GeV. The first row shows the central values and the second row the
uncertainties. The first case corresponds to the default fit of [12].

Figure 4: Results for the central moments including the theory uncertainty bands (green) and
the parametric uncertainty from the results of the fit performed in this paper (blue). The combined
errors are not shown.

II data is presented in Fig. 4. We observe a clear reduction of the parametric uncertainty,
mostly due to the improved determination of ⇢3D.

We have performed a number of other fits, changing the scales and selecting different
subsets of data. In particular, we study the dependence on the model of theoretical corre-
lations by varying �q in between 0.7 and 3 GeV2. The results of the global fits including
both Belle and Belle II data are shown in Fig. 5: they depend very little on the choice for
�q. As can be seen from (3.1) the value of q̄2 controls the region in q

2
cut where the cor-

relation between adjacent measurements starts to decrease because of fast growing higher
order effects. Values of q̄2 lower than 9 GeV2 would lead to ⇠(q2cut) similar to those obtained
with large �q, while values of q̄2 higher than 9GeV2 appear unjustified.

The results of fits with various subsets of data are shown in Fig. 6. The fits with only
hadronic moments and only q

2-moments also include the measurements of the branching
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m
kin

b mc µ
2
⇡ µ

2

G ⇢
3

D ⇢
3

LS 102BRc`⌫ 103|Vcb| �
2
min(/dof)

without 4.573 1.092 0.477 0.306 0.185 �0.130 10.66 42.16 22.3
q
2-moments 0.012 0.008 0.056 0.050 0.031 0.092 0.15 0.51 0.474

Belle II
4.573 1.092 0.460 0.303 0.175 �0.118 10.65 42.08 26.4
0.012 0.008 0.044 0.049 0.020 0.090 0.15 0.48 0.425

Belle
4.572 1.092 0.434 0.302 0.157 �0.100 10.64 41.96 28.1
0.012 0.008 0.043 0.048 0.020 0.089 0.15 0.48 0.476

Belle & 4.572 1.092 0.449 0.301 0.167 �0.109 10.65 42.02 41.3
Belle II 0.012 0.008 0.042 0.048 0.018 0.089 0.15 0.48 0.559

Table 3: Global fit results with and without the q
2 moments from Belle/Belle II for µs = mb/2

and µc = 2 GeV. All parameters are in GeV at the appropriate power and all, except mc , in
the kinetic scheme at µk = 1 GeV. The first row shows the central values and the second row the
uncertainties. The first case corresponds to the default fit of [12].
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subsets of data. In particular, we study the dependence on the model of theoretical corre-
lations by varying �q in between 0.7 and 3 GeV2. The results of the global fits including
both Belle and Belle II data are shown in Fig. 5: they depend very little on the choice for
�q. As can be seen from (3.1) the value of q̄2 controls the region in q

2
cut where the cor-

relation between adjacent measurements starts to decrease because of fast growing higher
order effects. Values of q̄2 lower than 9 GeV2 would lead to ⇠(q2cut) similar to those obtained
with large �q, while values of q̄2 higher than 9GeV2 appear unjustified.

The results of fits with various subsets of data are shown in Fig. 6. The fits with only
hadronic moments and only q

2-moments also include the measurements of the branching
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X
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dominated by 
theory errors
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Darwin term
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Fit includes BLM corrections ( ) and QED 
corrections for the first time ; uses updates FLAG 
input of heavy quark masses with 

α2
s β0

Nf = 2 + 1 + 1

Figure 6: Fit results for different data sets (A-F), different choice of µs (G) and of the MS
scale for the charm mass (H). The fit F corresponds to the last row of Table 3.

mass averages are

m
(4)

b (mb) = 4.203(11)GeV , m
(4)

c (3GeV) = 0.989(10)GeV , (3.2)

where we have indicated the number of active quark flavours, which has to be taken into
account in the conversion to the kinetic scheme. Converting m

(4)

b (mb) to m
(5)

b (mb) =

4.196(11) GeV and then using the three loop results of [14, 35] (scheme B) we obtain the
kinetic mass of the b quark

mb(1 GeV) = 4.562(18) GeV . (3.3)

Concerning the charm mass, we observe that the latest FLAG average has a larger un-
certainty than in 2021, due to tensions between different determinations. Our default
input is mc(2 GeV) = 1.094(11) GeV, obtained evolving mc in (3.2) from 3 to 2 GeV.
For ↵

(5)

s (MZ) we use the PDG value 0.1179(9) [40] and we keep the same constraints
µ
2

G(mb) = 0.35(7)GeV2 and ⇢
3

LS = �0.15(10)GeV3 employed in [12].
The QED corrections to the leptonic moments have been recently computed in Ref. [41],

where small but non-negligible differences have been found with respect to the BaBar
estimate based on PHOTOS. We have investigated the importance of these differences in
the context of the global fit. Let us illustrate our procedure with the example of the
branching fraction measured for E` > Ecut, R(Ecut). BaBar has measured [1, 7] a photon
inclusive branching fraction, Rincl(Ecut) and estimated the leading logarithmic soft-photon
QED contribution �R(Ecut) using PHOTOS [42]. The QED-subtracted branching ratio
that we want to compare with our QCD-only theoretical predictions is therefore

RQCD(Ecut) = Rincl(Ecut)��R(Ecut) . (3.4)
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Fig. 4 Summary of the two inclusive |Vcb| determinations using two subsets of the available kinematic moments of the
spectrum described in the text. In addition, we show our average of these two determinations, and the recent global fit to
all kinematic moments from [75]

3.3 Higher order terms

Above, we focused our discussion on global analyses including HQE terms up to 1/m3
b . At higher order, the number

of parameters starts to proliferate, making their extraction from data challenging. A rough estimate of the size of
these elements can be obtained using the Lowest Lying State Approximation (LLSA) [5, 77]. This approximation
starts by presenting the matrix elements as a sum over the full set of intermediate hadronic states and then assumes
that the lowest lying heavy-meson state saturates this sum. The degree of saturation by this lowest lying state
determines the quality of the approximation, making its accuracy hard to quantify. A toy study in [77], estimated
the uncertainty around 50%. Nevertheless, the LLSA may be used to set the scale for the higher order elements as
done in [78]. In this analysis, the effect of higher order terms up to 1/m5

b on the global fits were studied in detail.
In an iterative approach, 9 1/m4

b , 17 1/m5
b HQE parameters and the lower-dimensional parameters were fited to

the lepton and MX moments, starting from their LLSA value including a generous uncertainty. The authors of
Ref. [78] conclude from this fit that most of the higher dimensional parameters do not change much from their
initial LLSA values, indicating that there is low sensitivity to these parameters. In addition, the extracted value
of |Vcb| changes very little even when repeating the analysis with a larger uncertainty for the higher dimensional
operators. They report a −0.25% reduction on |Vcb|. In addition, this analysis shows no break down of the HQE
at higher orders and strengthens the theoretical basis of the |Vcb| determinations.

More recently, the higher order terms up to 1/m4
b were studied for the first time using the q2 moments [15].

The benefit of these moments is that, like the total rate, they are RPI quantities, sensitive only to a limited set
of HQE parameters. On the other hand, the 〈E!〉, 〈MX〉, are not RPI quantities as they are defined by choosing
a specific frame or direction of velocity v . Up to 1/m4

b , the latter depend on the full set of 13 parameters, while
for RPI quantities, only 8 parameters contribute. In [15], two HQE parameter r4E and r4G were extracted from the
data resulting in small values compatible with zero. As previously found, these results exclude large values for
these parameters. On the other hand, large correlations between these two parameters and the ρ3D parameter were
found, which is worth a further investigation. We note that including QCD corrections introduces two additional
operators at 1/m4

b [13].
Finally, as mentioned in (10) the dΓ5 includes both 1/m5

b terms and 1/m3
b1/m

2
c terms. The latter, the “intrinsic

charm” (IC) contributions, are numerically expected to contribute at the same level as the 1/m4
b terms. Very

recently, a study of the RPI 1/m5
b terms and the numerical size of these corrections appeared [14]. The authors

conclude that there may be cancellations between these effects and the genuine 1/m5
b terms and thus recommend

a combined analysis of these terms as was done in [78] for the non-RPI moments.

3.4 Inclusive unitarity tests

In the above analyses, either only decays to electrons were used or a combination of the muon and electron final
states. However, in the q2 analysis of Belle [52], also the compatibility of the electron and muon q2 moments at
each order was calculated, leading to p-values close to one. For the total rate, the Belle II collaboration recently
reported the most precise test of electron-muon universality in semileptonic B decays [79]

Re/µ(Xc)|exp≡
Γ(B → Xcµν̄µ)
Γ(B → Xceν̄e)

1.007± 0.009(stat)± 0.019(syst) (42)

123

also glad to see, that statistical averaging of estimated quantities works ;-)

M. Fael, M., Prim, M. & K.K. Vos,

Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01090-w
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LHCb records an impressive 

amount of b-hadrons of 
various types 
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Interesting data set to study e.g. SU(3) 
breaking or baryon-meson differences 
of HQE parameters! But how?

Sum over Exclusive Modes

= 
Reconstruct your inclusive 

system by explicitly reconstructing

the majority of all prompt final states

Bs → Xcsℓν̄ℓ
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Figure 1: Distributions of M(Xcs) of a pseudo-experiment. The peaks correspond to the
resonant contributions.

Because of the narrowness of both L = 0 and L = 1 D(⇤,⇤⇤)
s states, we can write the

semileptonic di↵erential m2
H

spectrum, normalized to the total semileptonic rate, as

1

�SL

d�SL

dm2
H

=
X

L=0

�i

�SL

· �(m2
H
�m2

i
) +

X

L=1

�i

�SL

· �(m2
H
�m2

i
) +

�DK

�SL

· fDK(m2
H
), (24)

where �SL is the inclusive B0
s
semileptonic width in (2), �i are the decay widhts of the

B0
s
! D(⇤,⇤⇤)

s µ⌫ decays, m2
i
are mass-squared values of the various D(⇤,⇤⇤)

s states, fDK(m2
H
)

is the normalized hadronic mass-squared distribution for the B0
s
! DKµ⌫ decays, beyond

the P -wave resonances.
The hadronic mass moments of this spectrum in (8), can then be obtained via

Mn =
X

L=0

�i

�SL

· (m2
i
)n +

X

L=1

�i

�SL

· (m2
i
)n +

�DK

�SL

·MDK

n
, (25)

where MDK

n
are the moments of the fDK(m2

H
) distribution.

In order to obtain the spectrum, we generate large set of pseudo-experiments, assuming
that the hadronic state in the inclusive B0

s
! Xcs`⌫ is constituted by the resonant states

with L = 0 and L = 1 shown in Tab. 2, and the non-resonant B0
s
! D(⇤)K`�⌫̄` decays. In

10

Ds D*s

Ds0

D′ s1

Ds1

Ds2

D(*)K

Table 1: Masses and widths of the excited states and their decay modes [29]. Only
measured branching fractions and upper limits are reported, “seen” is used when a decay is
established, but no branching fraction has been reported. Note that for the Ds1 meson, the
decay D⇤0K+ is defined as 100%, and all other branching fraction are measured relative to
it.

D⇤
s0 D

0
s1 Ds1 D⇤

s2

2317.8± 0.5MeV 2459.5± 0.6MeV 2535.11± 0.06MeV 2569.1± 0.8MeV

< 3.8MeV < 3.5MeV 0.92± 0.05MeV 16.9± 0.7MeV

D+
s
⇡0 100+0.

�20% D⇤+
s
⇡0 48± 11% D⇤+K0

S 85± 12% D0K+ seen

D+
s
� < 5% D+

s
� 18± 4% D⇤0K+ 100% D+K0

S seen

D⇤+
s
� < 6 D+

s
⇡+⇡� 4.3± 1.3% D+⇡�K+ 2.8± 0.5% D⇤+K0

S seen

D⇤+
s
� < 6% D⇤+

s
� < 8% D+

s
⇡+⇡� seen

D⇤
s0� 3.7+5.0

�2.4% D+K0 < 34%

D0K+ < 12%

and D⇤
s2

5. The two lightest D+
s

excited L = 1 states, D⇤
s0 and D

0
s1, have a small decay

width. They have a mass below the D0K+ and D⇤0K+ mass threshold, respectively, so
they only decay to the D+

s
⇡, D⇤+

s
⇡ final states or via electromagnetic processes. Since their

discovery, several studies have been done on these mesons, because they are good candidate
to be tetraquarks or bounded D(⇤)K states. At present, the only observed decay of the D⇤

s0

meson, D⇤
s0! D⇤+

s
⇡0, has been measured by the BESIII collaboration, with an uncertainty

on the branching fraction of 20% [38]. The other allowed decay modes, D⇤
s0 ! D⇤+

s
� and

D⇤
s0 ! D⇤+

s
��, have not been observed yet. Several final states of the D

0
s1 meson decay

have been observed, many involving neutral particles. The most precise measurements were
performed with the D⇤+

s
⇡0 and D+

s
� final state, both with a relative uncertainty of about

22% [29].
The masses of the Ds1 and D⇤

s2 states are larger than the threshold for D0K+ and D⇤K+

production, so they preferentially decay in the D⇤K+ or D0K+ final states, mainly via D-
wave processes. Because these states have masses close to the threshold, their natural width
is very narrow. No absolute branching fraction results exist for the Ds1 and D⇤

s2 states: for
the Ds1 meson, D⇤+K0 and D⇤0K+ final states appear most dominant, while for the D⇤

s2

meson, the D0K+ and D+K0 final states have been observed [29].
The mass, width and principal decay modes of the 4 P -wave states are summarized in

Table 1.
The small natural widths of these four states, and consequently the lack of interference

between any two states, make the Xcs spectrum qualitatively very di↵erent to the Xc

spectrum from B decays. As mentioned, this presents a significant advantage from an

5
In the literature, these four states are also denoted as D⇤

s0(2317), Ds1(2460), Ds1(2536) and

D⇤
s2(2573) [29].

7

Challenge: need good understanding of

- missing prompt exclusive contributions to  

- correct for missing decay modes of exclusive 

Xcs

D(*/**)
s

B0
s
Decay B[%] (Conf. A)

B0
s
! Xcs`⌫ 10.05±0.31

B0
s
! D+

s
`�⌫̄` [37] 2.44±0.23

B0
s
! D⇤+

s
`�⌫̄` [37] 5.3±0.5

B0
s
! D⇤

s0(2317)`
�⌫̄` (see text) 0.3±0.3

B0
s
! D

0
s1(2460)`

�⌫̄` (see text) 0.3±0.3

B0
s
! Ds1(2536)`�⌫̄` 0.98±0.20

B0
s
! D⇤

s2(2573)`
�⌫̄` 0.58±0.20

B0
s
! D(⇤)K`�⌫̄` (see text) 0.15±0.15
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Figure 2: Distributions of the three Mx moments and their correlations obtained in Conf.
A.

6 Moment Analysis

The distribution of the moments determined from the pseudo-experiments are shown in
Fig. 2. It can be noted that the two higher order central moments M 0

2 and M 0
3, have a

correlation above 90%. The resulting moments, and their correlations, are reported in
table Tab. 3 for both the Configurations considered. For comparison we report also the
moments assuming only the resonant states. While the moment M1 is only marginally
a↵ected by the non resonant component, the higher order moments, M 0

2 and M 0
3, depend

crucially on this component.

6.1 Expressions for the moments and theoretical inputs

In this section, we discuss what the extracted experimental moments imply for the HQE
parameters. For this study, we fix both the mass of the b quark and the c quark as in (10).
With these inputs, we can find easy expressions for the centralized moments in (9) in terms
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Proof - of - concept :

higher mass resonances in the experimental data. This study presents a first e↵ort to
explore the possibilities for future analyses of the B0

s
decays modes using a sum-over-

exclusive approach, with the extracted values indicating where to improve over the status
quo. We stress that the main outcome is the estimated uncertainties, which show excellent
prospects for future studies. It could be interesting to study if a soft cut on the hadronic
mass M(Xcs) < M cut

X
⇡ 2.8 � 3.0 GeV could be applied. Recently, a study for inclusive

B ! Xs`+`� decays in Ref. [58], shows a limited breakdown of the OPE with such a
minimal mass cut.

To emphasize this, we use the moments of the future configuration B in Tab. 3 to
perform the same fit. Using the same procedure to estimate the theoretical uncertainties,
we obtain

µ2
⇡
= (0.47± 0.07) GeV2 , ⇢3

D
= (0.16± 0.04) GeV3 , (34)

where the uncertainties are dominated by the theory.
Finally, we may also extract a value for |Vcb| using experimental input for the branching

ratio. While clearly not meant as a precise value, it serves as a proof-of-concept and as a
reference what future studies of semileptonic B0

s
decays could achieve. A measurement of

the absolute branching fraction is unlikely to be performed at a hadron-collider experiment,
therefore a |Vcb| also requires external input on the branching ratio, for example measured
by the BELLE II collaboration with dedicated runs at the ⌥(5S). Pioneering measurements
of the B0

s
inclusive semileptonic branching fraction were obtained by BaBar [59] and Belle

[60]. The averaged branching fraction, dominated by the Belle measurements, is

B(B0
s
! X`⌫̄) = (9.6± 0.8)%, [29] (35)

which is consistent with the indirect estimation in Eq.(22). Using this branching fraction,
ignoring the suppressed b ! u contribution, we find

|Vcb| = (41.8± 2.0) · 10�3 . (36)

The correlation between |Vcb| and µ2
⇡
is also shown in Fig. 3. The uncertainty on |Vcb| is

dominated by the inclusive branching ratio. In the fit to the moments with the Configu-
ration B, for the determination of |Vcb| we assume that the uncertainty on B(B0

s
! X`⌫̄)

will be reduce from 8% to 3%.

7 Outlook & Conclusion

We presented a proof-of-concept for a future precision determination of inclusive B0
s
decays

through a sum-over-exclusives at LHCb. Doing so requires significantly more information
on the B0

s
decay modes than presently available.

Specifically, it is important to improve the knowledge of the semi-leptonic B0
s
decay into

D⇤⇤+
s

state. This requires more precise determinations of the D⇤⇤+
s

branching fractions into
their non-leptonic and radiative final states, which are presently poorly known. The best
prospects for improving the branching fractions are future measurements at BESIII [61] or
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Figure 3: Correlation between the extracted HQE parameters (in units of GeV to the
appropriate power) and |Vcb| for both Conf. A and B.

which are lower than the expected values based on SU(3)F . In addition, we note that these
parameters are smaller than those extracted from B0 decays. We find

µ2
⇡
(B0

s
)

µ2
⇡
(B0)

= 0.96 ,
⇢3
D
(B0

s
)

⇢3
D
(B0)

= 0.86 , (32)

where we used the values for the B0 HQE parameters from [3]. For the parameters we
constrain, we find

µ2
G
= (0.33± 0.07) GeV2 , ⇢3

LS
= �(0.12± 0.10) GeV3 , (33)

which are very close to the constraints we put in, especially for ⇢3
LS

showing the reduced
sensitivity to this parameter.

In Fig. 3, we give the correlations between ⇢3
D

and µ2
⇡
. We note a strong correlation

between these two parameters, which was also noted explicitly in [5].
At this point a comment on the extracted values of ⇢3

D
and µ2

⇡
is in order. These

values should clearly not be taken at the same level as those for its B0 counterpart, they
simply present an estimate of what the current B0

s
data tells us. The small values for

⇢3
D

and µ2
⇡
extracted from the moments is mainly due to the low value of M 0

3 compared
to the theoretical prediction. As mentioned before, this could be due to underestimating
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which are lower than the expected values based on SU(3)F . In addition, we note that these
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where we used the values for the B0 HQE parameters from [3]. For the parameters we
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= (0.33± 0.07) GeV2 , ⇢3

LS
= �(0.12± 0.10) GeV3 , (33)

which are very close to the constraints we put in, especially for ⇢3
LS

showing the reduced
sensitivity to this parameter.

In Fig. 3, we give the correlations between ⇢3
D

and µ2
⇡
. We note a strong correlation

between these two parameters, which was also noted explicitly in [5].
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is in order. These

values should clearly not be taken at the same level as those for its B0 counterpart, they
simply present an estimate of what the current B0
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data tells us. The small values for
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and µ2
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extracted from the moments is mainly due to the low value of M 0

3 compared
to the theoretical prediction. As mentioned before, this could be due to underestimating
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ON THE STUDY OF INCLUSIVE SEMILEPTONIC DECAYS OF ⌫(-MESON FROM LATTICE QCD 3

⌫B

�†` �a

⌫B

1

B̄

1
2

C2 C1
Csnk Csrc

Fig. 1.: Schematic representation of the four-point Euclidean correlation function defined
in eq. (4). The crosses represent the insertions of the weak currents at times C1 and C2, the
meson states are created at time Csrc and annihilated at time Csnk. Between the currents
we have the propagation of the charm quark, hence, the piece of the correlation functions
defined between the currents contained all the possible charmed states -2.

3. – Lattice computation

In ref. [7], the authors show that in order to access the full spectrum of charmed
final states, one needs to compute a four-point lattice correlation function, which can be
written explicitly as

(4) ⇠`a (Csnk, C2, C1, Csrc) =
π

33G 48q ·x) h0|q̃⌫B (0, Csnk)�†` (x, C2)�a (0, C1)q̃†⌫B
(0, Csrc) |0i,

where the two currents are sandwiched between the ⌫B meson states, as shown in fig. 1.
The above equation can then be normalised with two-point correlators ⇠ (C) in order to
remove the contribution coming from the creation/annihilation of the ⌫B meson,

(5) "`a (C2 � C1; q) = lim
Csnk!+1
Csrc!�1

⇠`a (Csrc, C2, C1, Csnk)
⇠ (Csnk � C2)⇠ (C1 � Csrc)

.

Then, it is possible to rewrite this expression as the Laplace transform of the hadronic
tensor

(6) "`a (C; q) =
π 1

0
3l ,`a (l, q2)4�lC ,

where here the time C is understood as the time separation between the two currents
C = C2 � C1.

In our analysis we make use of the decomposition of the hadronic tensor in structure
functions and we write a linear combination of normalised four-point lattice correlators

(7) ⌧ (;) (0g; q) =
π 1

0
/ (;)
! (l, q2) 4�0gl ,

where we used C = 0g, 0 being the lattice spacing. The problem of computing eq. 3 is
then reduced to the problem of extracting / (;)

! (l, q2) from eq. 7 and then performing
the integral with the correct integration kernel. This is known in the literature as an

Impressive progress understanding inclusive 
decays in the framework of Lattice QCD (LQCD)
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any deviation from unitarity would be indirect evidence for beyond the Standard Model
(BSM) physics.

At the moment, there is a persistent tension between the inclusive and exclusive
determination of two CKM matrix elements, 8.4. |+D1 | and |+21 |. These determinations
are obtained studying exclusive or inclusive semileptonic decays of ⌫-mesons, where in
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(1)
3�

3@23@03⇢;
=
⌧2

� |+21 |2
8c3

!`a,
`a ,

where !`a and ,`a are respectively the leptonic and hadronic tensor. It is useful to
write the hadronic tensor in its spectral representation as

(2) ,`a (l, @) =
(2c)3
2"⌫B

h⌫B (0) |�†` (0)X(�̂ � l)X3 (V̂ � q)�a (0) |⌫B (0)i,

with the Hamiltonian operator �̂ and momentum operator V̂ written explicitly.
After integrating analytically over ⇢;, the di↵erential decay rate can be rewritten as

(3)

3�
3q2

=
⌧2

� |+21 |2
24c3 |q |

2’
;=0

⇣p
q2

⌘2�;
/ (;) (q2), with / (;) (q2) =

π 1

0
3l ⇥; (lmax�l)/ (;) (l, q2),

where / (;) (q2) is the energy integral the hadronic tensor decomposed into Lorentz invari-
ant structure functions / (;) (l, q2). The integration kernel ⇥; is defined as ⇥; (G) = G;\ (G),
where \ (G) is the Heaviside step function, and it enforces the correct integration over the
allowed phase space.

Eq. 3 is the key quantity which allows to unlock the di↵erential decay rate calculation.
In the following section we will show how to compute it using lattice correlators.

E.g. study of Bs → Xcsℓν̄ℓ

Structure functions, which can be 
probed with lattice correlation functions
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where the two currents are sandwiched between the ⌫B meson states, as shown in fig. 1.
The above equation can then be normalised with two-point correlators ⇠ (C) in order to
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where here the time C is understood as the time separation between the two currents
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functions and we write a linear combination of normalised four-point lattice correlators
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Fig. 2.: Combined f ! 0 extrapolation of / (;)
f for the ETMC correlators, employing 10

values of f 2 [0.12<⌫B , 0.3<⌫B ] and using the smallest 5 to perform the fit

5. – Lattice results and comparison with the OPE

As stressed in the previous section, in order to make contact with any physical quantity
it is important to remove the dependence on the finite volume and the smearing. In
particular, one needs to first perform the infinite volume extrapolation and only then
take the f ! 0 limit:

(11) / (;) (q2) = lim
f!0

 
lim
!!1

/ (;)
f,! (q

2)
!
.

The two limits do not commute due to the fact that the infinite volume extrapolation
is well-defined for continuous (smeared) quantities only. However, in our study we were
unable to perform the infinite-volume extrapolation due to the fact that our data were
obtained from simulations at only one physical volume. We quote our final results per-
forming only the f ! 0 limit, a choice which is justified considering that our present
statistical uncertainties are likely to be larger than finite volume e↵ects.

An example of the f ! 0 extrapolation is shown in fig. 2, where we show a combined
linear fit of the results obtained with di↵erent versions of the smeared kernel ⇥(;)

f , for
details see ref. [1].

Finally, we are also able to compare the lattice results with the analytic predictions of
the OPE. The two lattice results cannot be directly compared because they use di↵erent
quark masses in their respective simulations. In fig. 3 we see a remarkable agreement
between the lattice results both in the JLQCD and the ETMC case. It is important
to note that the uncertainty in the OPE is larger than the lattice one because of the
unphysically light mass of the 1-quark which enters the analysis through a 1

<1
expansion.

These results provide a non-trivial test for the method discussed in this work, making
us optimistic that a full lattice QCD study including all the sources of systematic errors
can be achieved in the near future. This is certainly a remarkable first step towards a
better comprehension of the inclusive analysis with the hope that it could one day resolve
the tension that a↵ects the determination of |+21 |.

⇤ ⇤ ⇤
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Fig. 3.: Di↵erential q2 spectrum, divided by |q |, in the SM. Comparison of OPE with
JLQCD (top panel) and ETMC (bottom panel) data are shown.
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Experimental and Theory Errors

In our  fits, we currently do not include experimental correlation 
between moments of different types (e.g. )

Vcb
Eℓ : MX

Data is really precise and systematically limited — also no theory 
correlations between different moments

Theory correlations long-standing discussion item ; HQE parameters depend 
on them to some extend, but  only has an underlying dependenceVcb

Figure 6: 2D �
2 profile scans of |Vcb| versus ⇢cut and ⇢mom. The minimum �

2

min
is subtracted

from the �
2 function.

Figure 7: 2D �
2 profile scans of |Vcb| versus ⇢3D, r4E and r

4

G. The minimum �
2

min
is subtracted

from the �
2 function.

that can be determined from the q
2 moments. We find

⇢
3

D = (0.12± 0.12|Exp. ± 0.13|Theo. ± 0.11|Constr.) GeV4 = (0.12± 0.20) GeV3
, (41)

where the uncertainty stems from the experimental and theoretical uncertainty on the
moments and on the external inputs, respectively. For the 1/m4

b , we are able to constrain
r
4

E and r
4

G for the first time completely in a data-driven way. We find

r
4

E = (0.02± 0.21|Exp. ± 0.27|Theo. ± 0.00|Constr.) · 10�1 GeV4

= (0.02± 0.34) · 10�1 GeV4
, (42)

r
4

G = (�0.21± 0.42|Exp. ± 0.49|Theo. ± 0.25|Constr.) GeV4

= (�0.21± 0.69) GeV4
. (43)

Both values are small and compatible with zero within their uncertainties. We note that r4E
� the parameter we are most sensitive to � is constrained to be very well below 1 GeV4 or
even ⇤4

QCD
, and also our results of r4G exclude spuriously (unexpected) large values for these

parameters. This implies that the HQE seems well behaved and holds up to this order.
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Oh my Darwin: SU(3) and Lifetimes

9

Up to the currently achievable theory precision we do
not find any di↵erence compared to the Bd-meson. The
composition of the theory error is more or less identical
to the Bd-meson case, therefore we do not show it in a
separate plot.

Regarding the lifetime ratio ⌧(Bs)/⌧(Bd), now only
the free quark decay cancels there, while two-quark
contributions survive as SU(3)F -symmetry breaking ef-
fects [31]. In particular, we find a huge dependence of
⌧(Bs)/⌧(Bd) on the Darwin term �6 hO6iBs

/m3

b
. Here,

the perturbative coe�cient turned out to be very large
[179, 222–224], and the size of the corresponding non-
perturbative matrix elements is not directly known. For
Bd- and B+-mesons the matrix element hO6iBd

can be
extracted from fits of data on inclusive semi-leptonic de-
cay of the Bd- or B+-meson [239, 240]. Unfortunately,
these two extractions result in very di↵erent values,
which was also not entirely settled in a subsequent study
of Ref. [241]6. To determine the ratio ⌧(Bs)/⌧(Bd) we
actually need the SU(3)F -symmetry breaking combina-
tion hO6iBs

�hO6iBd
. The size of the SU(3)F breaking

e↵ects is currently not well understood. Therefore in
Ref. [31] two scenarios have been investigated:

– Scenario A: large value of hO6iBd
from Ref. [239]

and large SU(3)F breaking;

– Scenario B: small value of hO6iBd
from Ref. [240]

and small SU(3)F breaking.

These two scenarios lead to quite di↵erent predictions:

⌧(Bs)

⌧(Bd)
=

(
1.028± 0.011 Scenario A

1.003± 0.006 Scenario B
. (21)

Until the discrepant status of the size of the Darwin-
term for the Bd-meson and the size of the corresponding
SU(3)F breaking is clarified, we have to accept a very
large spread of the HQE predictions, see Fig. 13. The
composition of the relative theory errors is shown in
Fig. 8, with the dominant uncertainty originating from
the Darwin operator contribution. The next important
uncertainty stems from the non-perturbative matrix el-
ements of the four-quark operators hÕ6i, both for the
Bd- and Bs-meson.

6The matrix element of the Darwin operator can also be
determined from the matrix elements of four-quark opera-
tors, using equations of motion [31]. Depending on the chosen
renormalisation scale one either reproduces the small value for
the Darwin matrix element found by Ref. [240] or the large
value found by Ref. [239].

Fig. 8 Composition of the theoretical error in the HQE pre-
diction of the lifetime ratio ⌧(Bs)/⌧(Bd).

2.1.3 b-baryons

The current theory predictions for the total decay rates
of b baryons [34] are

� (⇤b) = (0.671+0.108

�0.071
)ps�1,

� (⌦0

b
) = (0.591+0.108

�0.071
)ps�1,

� (⌅0

b
) = (0.670+0.108

�0.071
)ps�1,

� (⌅�
b
) = (0.622+0.104

�0.067
)ps�1. (22)

As in the meson case, the theory error for the total
decay rate is completely dominated by the free quark
decay. The small di↵erence in the central values arises
mostly due to the dimension-six four-quark operator
contribution (described by �̃i), given by peculiar com-
binations of the destructive Pauli interference, weak ex-
change, and constructive Pauli interference diagrams.
The more pronounced spectator e↵ect in the decay width
of ⌦0

b
-baryon, rendering the latter smaller compared

to other b-baryons, c.f. Eq. (22), stems from the large
value of the matrix element of the four-quark operator
hÕ6i⌦b

, see Ref. [34].
In lifetime ratios, the free-quark decay again cancels,
and the current predictions read [34]

⌧(⇤b)

⌧(Bd)
= 0.955± 0.014,

⌧(⌦b)

⌧(Bd)
= 1.081± 0.042,

⌧(⌅0

b
)

⌧(Bd)
= 0.956± 0.023,

⌧(⌅0

b
)

⌧(⌅�
b
)
= 0.929± 0.028. (23)

The relative theory error composition of ⌧(⇤b)/⌧(Bd),
⌧(⌦b)/⌧(Bd) and ⌧(⌅0

b
)/⌧(⌅�

b
) is presented respectively

in Fig. 9, 10 and 11 – the one of ⌧(⌅0

b
)/⌧(Bd) looks very

similar to ⌧(⇤b)/⌧(Bd) and thus we do not show it as a
separate plot. The by far dominant uncertainties stems
from our limited knowledge of the values of the ma-
trix elements of the four-quark operators. In Ref. [34],
a common theoretical framework for these matrix ele-
ments was used, the non-relativistic constituent quark

Eℓ : MX

q2
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from Ref. [240]

and small SU(3)F breaking.

These two scenarios lead to quite di↵erent predictions:

⌧(Bs)

⌧(Bd)
=

(
1.028± 0.011 Scenario A

1.003± 0.006 Scenario B
. (21)

Until the discrepant status of the size of the Darwin-
term for the Bd-meson and the size of the corresponding
SU(3)F breaking is clarified, we have to accept a very
large spread of the HQE predictions, see Fig. 13. The
composition of the relative theory errors is shown in
Fig. 8, with the dominant uncertainty originating from
the Darwin operator contribution. The next important
uncertainty stems from the non-perturbative matrix el-
ements of the four-quark operators hÕ6i, both for the
Bd- and Bs-meson.

6The matrix element of the Darwin operator can also be
determined from the matrix elements of four-quark opera-
tors, using equations of motion [31]. Depending on the chosen
renormalisation scale one either reproduces the small value for
the Darwin matrix element found by Ref. [240] or the large
value found by Ref. [239].

Fig. 8 Composition of the theoretical error in the HQE pre-
diction of the lifetime ratio ⌧(Bs)/⌧(Bd).

2.1.3 b-baryons

The current theory predictions for the total decay rates
of b baryons [34] are

� (⇤b) = (0.671+0.108

�0.071
)ps�1,

� (⌦0

b
) = (0.591+0.108

�0.071
)ps�1,

� (⌅0

b
) = (0.670+0.108

�0.071
)ps�1,

� (⌅�
b
) = (0.622+0.104

�0.067
)ps�1. (22)

As in the meson case, the theory error for the total
decay rate is completely dominated by the free quark
decay. The small di↵erence in the central values arises
mostly due to the dimension-six four-quark operator
contribution (described by �̃i), given by peculiar com-
binations of the destructive Pauli interference, weak ex-
change, and constructive Pauli interference diagrams.
The more pronounced spectator e↵ect in the decay width
of ⌦0

b
-baryon, rendering the latter smaller compared

to other b-baryons, c.f. Eq. (22), stems from the large
value of the matrix element of the four-quark operator
hÕ6i⌦b

, see Ref. [34].
In lifetime ratios, the free-quark decay again cancels,
and the current predictions read [34]

⌧(⇤b)

⌧(Bd)
= 0.955± 0.014,

⌧(⌦b)

⌧(Bd)
= 1.081± 0.042,

⌧(⌅0

b
)

⌧(Bd)
= 0.956± 0.023,

⌧(⌅0

b
)

⌧(⌅�
b
)
= 0.929± 0.028. (23)

The relative theory error composition of ⌧(⇤b)/⌧(Bd),
⌧(⌦b)/⌧(Bd) and ⌧(⌅0

b
)/⌧(⌅�

b
) is presented respectively

in Fig. 9, 10 and 11 – the one of ⌧(⌅0

b
)/⌧(Bd) looks very

similar to ⌧(⇤b)/⌧(Bd) and thus we do not show it as a
separate plot. The by far dominant uncertainties stems
from our limited knowledge of the values of the ma-
trix elements of the four-quark operators. In Ref. [34],
a common theoretical framework for these matrix ele-
ments was used, the non-relativistic constituent quark
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Fig. 12 HQE prediction of the total decay rates of the B-
mesons compared to the experimental values.

Fig. 13 HQE prediction of the lifetime ratios of the B-
mesons compared to the experimental values.

Fig. 14 HQE prediction of the total decay rates of b-baryons
compared to the experimental values.

Fig. 13, there is excellent agreement for ⌧(B+)/⌧(Bd)
with slightly larger theory uncertainties, while for the
lifetime ratio ⌧(Bs)/⌧(Bd) the situation is currently not
settled, due to the unknown value of the size of the
Darwin term and the corresponding SU(3)F -symmetry
breaking e↵ects. In scenario B, we find a perfect agree-
ment of experiment and theory, in the case of scenario A
there is a tension arising at the level of 2 standard de-
viations.

The most recent predictions for the total decay rates
of b-baryons [34] agree also well with experiment. For
the ⌅b-baryons and in particular for the ⇤b-baryon the
experimental uncertainties are considerably smaller than
the theoretical ones, while in the case of ⌦b-baryon ex-
periment and theory have a similar size of uncertainties,
see Fig. 14.

For the lifetime ratio ⌧(⇤b)/⌧(Bd) we find both in
experiment and theory a small negative deviation from

Fig. 15 HQE prediction of the lifetime ratios of b-baryons
compared to the experimental values.

one [34]

⌧(⇤b)

⌧(B0

d
)

HQE

= 1� (0.045± 0.014) ,

⌧(⇤b)

⌧(B0

d
)

Exp.

= 1� (0.031± 0.006) . (24)

Moreover, we confirm the experimentally observed life-
time splitting of the ⌅0

b
- and ⌅�

b
-baryons, and coinci-

dentally we find currently the same central value and
uncertainty for the deviation from one [34]

⌧(⌅0

b
)

⌧(⌅�
b
)

HQE

= 1� (0.071± 0.028) ,

⌧(⌅0

b
)

⌧(⌅�
b
)

Exp.

= 1� (0.071± 0.028) . (25)

For the ⌦b-baryon we predict a larger lifetime compared
to the B0

d
-meson, although here a clear experimental

confirmation is still missing. A comparison of the HQE
predictions for lifetime ratios with the corresponding
experimental data is presented in Fig. 15.

The excellent and precise agreement of theory and
experiment for the lifetime ratio ⌧(B+)/⌧(Bd) can be
used to constrain BSM e↵ects in non-leptonic tree-level
decays [261], which will modify the Pauli-interference
and weak exchange contributions, but again due to iso-
spin symmetry the Darwin term will vanish. Such BSM
e↵ects in b ! cūd transitions could e.g. explain the
discrepancy between predictions based on QCD fac-
torisation and corresponding measurements of branch-
ing fractions of decays like B̄0

s
! D+

s
⇡� [121–124].

Ref. [261] found that the lifetime ratio ⌧(B+)/⌧(Bd)
considerably shrinks the allowed parameter space in
Ref. [124], needed to explain the B̄0

s
! D+

s
⇡� anoma-

lies by BSM e↵ects. Moreover, future, more precise mea-
surement of the semi-leptonic CP asymmetry ad

sl
have

the potential to exclude or confirm a BSM contribution
in the b ! cūd channel.

BSM e↵ects in b ! cc̄s decays could be the origin
of the B-anomalies, and they will modify the lifetime
ratio ⌧(Bs)/⌧(Bd) [114,118,119]. The same lifetime ra-
tio will be modified by lepto-quark models explaining
the B-anomalies and introducing large b ! (d, s)⌧⌧


