

Many thanks to feedback from Keri Vos and Markus Prim

04/08 15:53:47-04/09 15:53:47, 2024 JST


## Puzzles...

It may look cute, but that might be deceiving...


## Puzzles...

It may look cute, but that might be deceiving...

... Long-standing discrepancy since about a decade



## Puzzles...

It may look cute, but that might be deceiving...

... Long-standing discrepancy since about a decade




## How to inclusive $V_{c b}$



$$
\begin{gathered}
\text { Inclusive }\left|V_{c b}\right| \\
\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell} \\
\text { Operator Product Expansion (OPE) } \\
\mathcal{B}=\left|V_{q b}\right|^{2}\left[\Gamma\left(b \rightarrow q \ell \bar{\nu}_{\ell}\right)+1 / m_{c, b}+\alpha_{s}+\ldots\right]
\end{gathered}
$$

## How to inclusive $V_{c b}$



> Inclusive $\left|V_{c b}\right|$
> $\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}$

Operator Product Expansion (OPE)
$\mathcal{B}=\left|V_{q b}\right|^{2}\left[\Gamma\left(b \rightarrow q \ell \bar{\nu}_{\ell}\right)+1 / m_{c, b}+\alpha_{s}+\ldots\right]$

Other complication: OPE does not allow point-by-point predictions


## How to inclusive $V_{c b}$

$$
\begin{gathered}
\text { Inclusive }\left|V_{c b}\right| \\
\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}
\end{gathered}
$$

Operator Product Expansion (OPE)

$$
\mathcal{B}=\left|V_{q b}\right|^{2}\left[\Gamma\left(b \rightarrow q \ell \bar{\nu}_{\ell}\right)+1 / m_{c, b}+\alpha_{s}+\ldots\right]
$$

Other complication: OPE does not allow point-by-point predictions

But converges if integrated over large parts of phase space

$$
\int w^{n}\left(v^{v}, p_{\ell}, p_{\nu}\right) \frac{\mathrm{d} \Gamma}{\mathrm{~d} \Phi} \mathrm{~d} \Phi
$$

Example weight functions

$$
\begin{aligned}
w & =\left(p_{\ell}+p_{\nu}\right)^{2}
\end{aligned}=q^{2}, ~ \begin{array}{ll} 
& =M_{X}^{2} \\
w & =\left(m_{B} v-q\right)^{2} \\
w=\left(v \cdot p_{\ell}\right) & =E_{\ell}^{B}
\end{array}
$$

four-momentum transfer squared
invariant mass squared

Lepton Energy

## How to inclusive $V_{c b}$



$$
\text { Inclusive }\left|V_{c b}\right|
$$

$$
\bar{B} \rightarrow X_{c} \ell \bar{\nu}_{\ell}
$$

Operator Product Expansion (OPE)

$$
\mathcal{B}=\left|V_{q b}\right|^{2}\left[\Gamma\left(b \rightarrow q \ell \bar{\nu}_{\ell}\right)+1 / m_{c, b}+\alpha_{s}+\ldots\right]
$$

Established approach: Use spectral moments (hadronic mass moments, lepton energy moments etc.) to determine non-perturbative matrix elements (ME) of OPE and extract $\left|\mathrm{V}_{\mathrm{cb}}\right|$

$$
d \Gamma=d \Gamma_{0}+d \Gamma_{\mu_{\pi}} \frac{\mu_{\pi}^{2}}{m_{b}^{2}}+d \Gamma_{\mu_{G}} \frac{\mu_{G}^{2}}{m_{b}^{2}}+d \Gamma_{\rho_{D}} \frac{\rho_{D}^{3}}{m_{b}^{3}}+d \Gamma_{\rho_{\mathrm{LS}}} \frac{\rho_{\mathrm{LS}}^{3}}{m_{b}^{3}}+\mathcal{O}\left(1 / m_{b}^{4}\right)
$$

$d \Gamma$ are calculated
perturbatively
$\longrightarrow$ Available at $\mathcal{O}\left(\alpha_{s}^{3}\right)$
Fael, Schönwald, Steinhauser
Phys. Rev. D 104, 016003 (2021)
$\mu_{\pi}, \mu_{G}, \rho_{D}, \rho_{L S}$ encapsulate non-perturbative dynamics

Challenge: Proliferation of
HQE parameters at higher order
HQE parameters must be extracted from data (currently! more about that later)
$\rightarrow$ requires the spectral moments of $B \rightarrow X_{c} \ell v$

Bad news: \# of matrix elements significantly increases if one increases expansion in $1 / m_{b, c}$



$\mu_{n}=\int_{-\infty}^{-\infty}(x-c)^{n} f(x) d x$
Raw moment: $c=0$
Central moment: $c=$ Mean

First raw moment: Mean
Measures the location

Second central moment: Variance Measures the spread

Third central moment: Skewness Measures asymmetry

Fourth central moment: Kurtosis Measures "tailedness"



Moments are measured with progressive cuts in the distribution
$\rightarrow$ highly correlated measurements

## How to measure spectral moments

Key-technique: hadronic tagging


## Hadronic Tagging

 with Belle II algorithm (FEI)$$
q^{2}=\left(p_{\text {sig }}-p_{X_{c}}\right)^{2}
$$

[Full Event Interpretation, T. Keck et al, Comp. Soft. Big. Sci 3 (2019), arXiv:1807.08680]
[PRD 107, 072002 (2023), arXiv:2205.06372]



## How to measure spectral moments

## Key-technique: hadronic tagging



## Hadronic Tagging with Belle II algorithm (FEl)

[PRD 107, 072002 (2023), arXiv:2205.06372]

Can identify $X_{c}$ constituents




## Measurement in a nutshell



## Step \#1: Subtract Background

Event-wise Master-formula

$$
\left\langle q^{2 n}\right\rangle=\frac{\sum_{i}^{N_{\text {data }}} w\left(q_{\mathrm{reco}, \mathrm{i}}^{2}\right) \times q_{\mathrm{calib}, i}^{2 n}}{\sum_{j}^{N_{\text {data }}} w\left(q_{\mathrm{reco}, \mathrm{j}}^{2}\right)} \times \mathcal{C}_{\mathrm{calib}} \times \mathcal{C}_{\mathrm{gen}}
$$

## Measurement in a nutshell

Exploit linear dependence between rec. \& true moments

$$
q_{\mathrm{cal} i}^{2 m}=\left(q_{\mathrm{reco} i}^{2 m}-c\right) / m
$$



Event-wise Master-formula

$$
\left\langle q^{2 n}\right\rangle=\frac{\sum_{i}^{N_{\text {data }}} w\left(q_{\mathrm{reco}, \mathrm{i}}^{2}\right) \times q_{\mathrm{calib}, i}^{2 n}}{\sum_{j}^{N_{\text {data }}} w\left(q_{\mathrm{reco}, \mathrm{j}}^{2}\right)} \times \mathcal{C}_{\mathrm{calib}} \times \mathcal{C}_{\mathrm{gen}}
$$

## Measurement in a nutshell



Very small deviation from linear behavior between reconstruct and true $q^{2}$


Step \#2: Calibrate moment

Event-wise Master-formula

$$
\left\langle q^{2 n}\right\rangle=\frac{\sum_{i}^{N_{\mathrm{data}}} w\left(q_{\mathrm{reco}, \mathrm{i}}^{2}\right) \times q_{\mathrm{calib}, i}^{2 n}}{\sum_{j}^{N_{\mathrm{data}}} w\left(q_{\mathrm{reco}, \mathrm{j}}^{2}\right)} \times \mathcal{C}_{\mathrm{calib}} \times \mathcal{C}_{\mathrm{gen}}
$$

Step \#3: If you fail, try again

## Measurement in a nutshell



Account for efficiency \& acceptance effects


Step \#2: Calibrate moment

Event-wise Master-formula

$$
\left\langle q^{2 n}\right\rangle=\frac{\sum_{i}^{N_{\text {data }}} w\left(q_{\mathrm{reco}, \mathrm{i}}^{2}\right) \times q_{\mathrm{calib}, i}^{2 n}}{\sum_{j}^{N_{\text {data }}} w\left(q_{\mathrm{reco}, \mathrm{j}}^{2}\right)} \times \mathcal{C}_{\mathrm{calib}} \times \mathcal{C}_{\mathrm{gen}}
$$

## Measurement in a nutshell



Step \#1: Subtract Background


## Step \#2: Calibrate moment

Event-wise Master-formula

$$
\left\langle q^{2 n}\right\rangle=\frac{\sum_{i}^{N_{\text {data }}} w\left(q_{\text {reco, } i}^{2}\right) \times q_{\text {eaib }, i}^{2 n}}{\sum_{j}^{N_{\text {data }}} w\left(q_{\text {reco }, j}\right)} \times \mathcal{C}_{\text {calib }} \times \mathcal{C}_{\text {gen }},
$$

Step \#3: If you fail, try again


## Example: Belle II $q^{2}$ spectral moments

$\qquad$





Statistical plus systematic correlations
strong correlations!


## From moments to central moments

Central moments are less strongly correlated

$$
\left(\begin{array}{c}
\left\langle q^{2}\right\rangle \\
\left\langle q^{4}\right\rangle \\
\left\langle q^{6}\right\rangle \\
\left\langle q^{8}\right\rangle
\end{array}\right) \quad \rightarrow\left(\begin{array}{c}
\left\langle q^{2}\right\rangle \\
\left\langle\left(q^{2}-\left\langle q^{2}\right\rangle\right\rangle^{2}\right\rangle \\
\left\langle\left\langle q^{2}-\left\langle q^{2}\right\rangle\right\rangle^{3}\right\rangle \\
\left\langle\left(q^{2}-\left\langle q^{2}\right\rangle\right)^{4}\right\rangle
\end{array}\right)
$$






## What's new?



## State-of-the-art: $\left|V_{c b}\right|$ with $E_{\ell}: M_{X}^{2}$

Fantastic progress on the theory side: semileptonic rate @ N3LO!

M. Fael, K. Schönwald, M. Steinhauser [Phys.Rev.D 104 (2021) 1, 016003, arXiv:2011.13654]

Updated inclusive fit to $\left\langle E_{\ell}\right\rangle,\left\langle M_{X}\right\rangle$ moments:

$$
\begin{aligned}
& \left|V_{c b}\right|=42.16(30)_{t h}(32)_{\exp }(25)_{\Gamma} 10^{-3} \\
& \qquad \Delta\left|V_{c b}\right| /\left|V_{c b}\right|=1.2 \%! \\
& \text { M. Bordone, B. Capdevila, P. Gambino } \\
& \text { [Phys.Lett.B } 822 \text { (2021) 136679, arXiv:2107.00604] }
\end{aligned}
$$



Renormalization scale
ee also [Phys.Lett.B 829 (2022) 137068, 2202.01434] for very recent 1 S fit finding $\left|V_{c b}\right|=(42.5 \pm 1.1) \times 10^{-3}$

$$
\mathrm{d} \Gamma=\mathrm{d} \Gamma_{0}+\mathrm{d} \Gamma_{\mu_{\pi}} \frac{\mu_{\pi}^{2}}{m_{b}^{2}}+\mathrm{d} \Gamma_{\mu_{G}} \frac{\mu_{G}^{2}}{m_{b}^{2}}+\mathrm{d} \Gamma_{\rho_{D}} \frac{\rho_{D}^{3}}{m_{b}^{3}}+\mathrm{d} \Gamma_{\rho_{L S}} \frac{\rho_{L S}^{3}}{m_{b}^{3}}+\ldots
$$

Bad news: number of these matrix elements increases if one increases expansion in $1 / m_{b, c}$

Innovative idea from [JHEP 02 (2019) 177, arXiv:1812.07472]
(M. Fael, T. Mannel, K. Vos)
$\rightarrow$ Number of ME reduce by exploiting reparametrization invariance, but not true for every observable

## Spectral moments :

\[

\]

$$
\mathrm{d} \Gamma=\mathrm{d} \Gamma_{0}+\mathrm{d} \Gamma_{\mu_{\pi}} \frac{\mu_{\pi}^{2}}{m_{b}^{2}}+\mathrm{d} \Gamma_{\mu_{G}} \frac{\mu_{G}^{2}}{m_{b}^{2}}+\mathrm{d} \Gamma_{\rho_{D}} \frac{\rho_{D}^{3}}{m_{b}^{3}}+\mathrm{d} \Gamma_{\rho_{L S}} \frac{\rho_{L S}^{3}}{m_{b}^{3}}+\ldots
$$

Bad news: number of these matrix elements increases if one increases expansion in $1 / m_{b, c}$

## Innovative idea from [JHEP 02 (2019) 177, arXiv:1812.07472]

(M. Fael, T. Mannel, K. Vos)
$\rightarrow$ Number of ME reduce by exploiting reparametrization invariance, but not true for every observable

Measurements of $q^{2}$ moments of inclusive $B \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ decays with hadronic tagging [PRD 104, 112011 (2021), arXiv:2109.01685]

Measurements of Lepton Mass squared moments in inclusive $B \rightarrow X_{c} \ell \bar{\nu}_{\ell}$ Decays with the Belle II Experiment
[PRD 107, 072002 (2023), arXiv:2205.06372]

## $\left|V_{c b}\right|$ from $q^{2}$

F. Bernlochner, M. Fael, K. Olschwesky, E. Persson,

Extraction of $\left|V_{c b}\right|$ from $q^{2}$ moments:


Included corrections on the mom. predictions

| $\left\langle\left(q^{2}\right)^{n}\right\rangle$ | tree | $\alpha_{s}$ | $\alpha_{s}^{2}$ | $\alpha_{s}^{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| Partonic | $\checkmark$ | $\checkmark$ |  |  |
| $\mu_{G}^{2}$ | $\checkmark$ | $\checkmark$ |  |  |
| $\rho_{D}^{3}$ | $\checkmark$ | $\checkmark$ |  |  |
| $1 / m_{b}^{4}$ | $\checkmark$ |  |  |  |
|  |  |  |  |  |

$\longrightarrow \quad\left|V_{c b}\right|=\left(41.69 \pm\left. 0.59\right|_{\mathrm{fit}} \pm\left. 0.23\right|_{\mathrm{h} . \mathrm{o}}\right) \cdot 10^{-3}=(41.69 \pm 0.63) \cdot 10^{-3}$
M. Fael, M., Prim, M. \& K.K. Vos,

Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01090-w
Incl. $E_{\ell}, m_{X}$ Moments
Phys.Lett.B 822 (2021) 136679

Incl. $q^{2}$ Moments
JHEP 10 (2022) 068

Incl. $E_{\ell}, m_{X}$ and Incl. $q^{2}$
Our Average


Assume fully correlated BF uncertainties
and uncorrelated moment information

## Moments to party: $q^{2}: E_{\ell}^{B}: M_{X}^{2}$

The $\boldsymbol{q}^{2}$ moments in inclusive semileptonic $B$ decays

First simultaneous extraction using all moments
Very interesting take-away : inclusion of $q^{2}$ moments have the potential to decrease uncertainties on $\rho_{D}^{3}$


Fit includes BLM corrections $\left(\alpha_{s}^{2} \beta_{0}\right)$ and QED corrections for the first time ; uses updates FLAG input of heavy quark masses with $N_{f}=2+1+1$

$$
\bar{m}_{b}^{(4)}\left(\bar{m}_{b}\right)=4.203(11) \mathrm{GeV}, \quad \bar{m}_{c}^{(4)}(3 \mathrm{GeV})=0.989(10) \mathrm{GeV},
$$

$$
\left|V_{c b}\right|=\left(41.97 \pm 0.27_{e x p} \pm 0.31_{t h} \pm 0.25_{\Gamma}\right) \times 10^{-3}=(41.97 \pm 0.48) \times 10^{-3}
$$




## Interesting future directions



## LHCb might enter the scene

Inclusive semileptonic $B_{s}^{0}$ meson decays at the LHC via a sum-of-exclusive modes technique: possibilities and prospects
https://arxiv.org/abs/2312.05147
M. De Cian ${ }^{a}$, N. Feliks ${ }^{b, \dagger}$, M. Rotondo ${ }^{c}$ and K. Keri Vos ${ }^{d, e}$

LHCb records an impressive amount of b-hadrons of


$$
B_{u}: B_{d}: B_{s}: B_{c}: \Lambda_{b} \approx 40 \%: 40 \%: 10 \%: 0.2 \%: 8 \%
$$ various types

## LHCb might enter the scene

LHCb records an impressive amount of b-hadrons of various types

Interesting data set to study e.g. SU(3) breaking or baryon-meson differences of HQE parameters! But how?

## Sum over Exclusive Modes

$$
=
$$

Reconstruct your inclusive $B_{s} \rightarrow X_{c s} \ell \bar{\nu}_{e}$ system by explicitly reconstructing the majority of all prompt final states

Challenge: need good understanding of

- missing prompt exclusive contributions to $X_{c s}$
- correct for missing decay modes of exclusive $D_{s}^{(* * *)}$

Inclusive semileptonic $B_{s}^{0}$ meson decays at the LHC via a sum-of-exclusive modes technique: possibilities and prospects
https://arxiv.org/abs/2312.05147
M. De Cian ${ }^{a}$, N. Feliks ${ }^{b, t}$, M. Rotondo ${ }^{c}$ and K. Keri Vos $^{d, e}$

$$
B_{u}: B_{d}: B_{s}: B_{c}: \Lambda_{b} \approx 40 \%: 40 \%: 10 \%: 0.2 \%: 8 \%
$$



| $D_{s 0}^{*}$ | $D_{s 1}^{\prime}$ |  | $D_{s 1}$ |  | $D_{s 2}^{*}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \hline 2317.8 \pm 0.5 \mathrm{MeV} \\ <3.8 \mathrm{MeV} \end{gathered}$ | $\begin{gathered} 2459.5 \pm 0.6 \mathrm{MeV} \\ <3.5 \mathrm{MeV} \end{gathered}$ |  | $\begin{gathered} 2535.11 \pm 0.06 \mathrm{MeV} \\ 0.92 \pm 0.05 \mathrm{MeV} \end{gathered}$ |  | $\begin{gathered} 2569.1 \pm 0.8 \mathrm{MeV} \\ 16.9 \pm 0.7 \mathrm{MeV} \end{gathered}$ |  |
| $D_{s}^{+} \pi^{0} \quad 100_{-20}^{+0 .} \%$ | $D_{s}^{*+} \pi^{0}$ | $48 \pm 11 \%$ | $D^{*+} K_{\mathrm{S}}^{0}$ | $85 \pm 12 \%$ | $D^{0} K^{+}$ | seen |
| $D_{s}^{+} \gamma \quad<5 \%$ | $D_{s}^{+} \gamma$ | $18 \pm 4 \%$ | $D^{* 0} K^{+}$ | 100\% | $D^{+} K_{\mathrm{S}}^{0}$ | seen |
| $D_{s}^{*+} \gamma \quad<6$ | $D_{s}^{+} \pi^{+} \pi^{-}$ | $4.3 \pm 1.3 \%$ | $D^{+} \pi^{-} K^{+}$ | $2.8 \pm 0.5 \%$ | $D^{*+} K_{\mathrm{S}}^{0}$ | seen |
| $D_{s}^{*+} \gamma<66$ | $D_{s}^{*+} \gamma$ | < $8 \%$ | $D_{s}^{+} \pi^{+} \pi^{-}$ | seen |  |  |
|  | $D_{s 0}^{*} \gamma$ | $3.7_{-2.4}^{+5.0 \%}$ | $D^{+} K^{0}$ | < $34 \%$ |  |  |
|  |  |  | $D^{0} K^{+}$ | < $12 \%$ |  |  |

## LHCb might enter the scene

Inclusive semileptonic $B_{s}^{0}$ meson decays at the LHC via a sum-of-exclusive modes technique: possibilities and prospects
https://arxiv.org/abs/2312.05147
M. De Cian ${ }^{a}$, N. Feliks ${ }^{b, \dagger}$, M. Rotondo ${ }^{c}$ and K. Keri Vos ${ }^{d, e}$

## LHCb records an impressive

 amount of b-hadrons of various types
## Proof - of - concept :







$\begin{array}{ll}\mathrm{SU}(3) \text { breaking } \\ \text { estimates : } & \frac{\mu_{\pi}^{2}\left(B_{s}^{0}\right)}{\mu_{\pi}^{2}\left(B^{0}\right)}=0.96,\end{array} \quad \frac{\rho_{D}^{3}\left(B_{s}^{0}\right)}{\rho_{D}^{3}\left(B^{0}\right)}=0.86$,




$$
\left|V_{c b}\right|=(41.8 \pm 2.0) \cdot 10^{-3} .
$$

## LQCD might enter the scene

Impressive progress understanding inclusive

On the study of inclusive semileptonic decays of $B_{s}$-meson from lattice QCD
https://arxiv.org/abs/2311.09892
P. $\operatorname{Gambino}\left({ }^{1}\right)$, S. Hashimoto $\left({ }^{2}\right)$, S. Mächler $\left({ }^{1}\right)\left({ }^{3}\right)$, M. Panero $\left({ }^{1}\right)$, F. Sanfilippo( ${ }^{4}$ ),
S. Simula $\left({ }^{4}\right)$, A. Smecca $\left({ }^{1}\right)$ and N. Tantalo $\left({ }^{5}\right)\left({ }^{*}\right)$
${ }^{(1)}$ ) Dipartimento di Fisica, Università di Torino 8 INFN, Sezione di Torino - Torino, Italy
${ }^{(2)}$ Theory Center, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK) - Tsukuba, Japan
${ }^{\left({ }^{3}\right)}$ Physikinstitut, Universität Zürich - Zürich, Switzerland
${ }^{(5)}$ INFN, Sezione di Roma Tre - Rome, Italy
$\left({ }^{5}\right)$ Dipartimento di Fisica, Università di Roma "Tor Vergata" $\mathcal{G}$ INFN, Sezione di Roma "Tor Vergata" - Rome, Italy decays in the framework of Lattice QCD (LQCD)

$$
\text { E.g. study of } B_{s} \rightarrow X_{c s} \ell \bar{\nu}_{\ell}
$$

$$
\frac{d \Gamma}{d \boldsymbol{q}^{2}}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2}}{24 \pi^{3}|\boldsymbol{q}|} \sum_{l=0}^{2}\left(\sqrt{\boldsymbol{q}^{2}}\right)^{2-l} \boldsymbol{Z}^{(l)}\left(\boldsymbol{q}^{2}\right),
$$

## Structure functions, which can be

 probed with lattice correlation functionsannihilation



## More interesting developments! But time is running out :-(

QED effects important to push precision ;

Need more experimental results w/o
FSR corrections

Full $1 / m_{b}^{5}$ !

Full $\alpha_{s}^{2}$ !

QED effects in inclusive semi-leptonic $B$ decays

Dante Bigi, Marzia Bordone, ${ }^{a}$ Paolo Gambino, ${ }^{b, c, d}$ Ulrich Haisch ${ }^{c}$ and Andrea Piccione ${ }^{e}$
https://arxiv.org/abs/2309.02849

Inclusive Semileptonic $b \rightarrow c \ell \bar{\nu}$ Decays<br>to Order $1 / m_{b}^{5}$<br>https://arxiv.org/pdf/2311.12002.pdf<br>Thomas Mannel, Ilija S. Milutin<br>Theoretische Physik 1, Center for Particle Physics Siegen<br>Universität Siegen, D-57068 Siegen, Germany

NNLO QCD corrections to the $\boldsymbol{q}^{2}$ spectrum of inclusive semileptonic $B$-meson decays
https://arxiv.org/pdf/2403.03976.pdf
Matteo Fael ${ }^{a}$ and Florian Herren ${ }^{b}$
${ }^{a}$ Theoretical Physics Department, CERN, 1211 Geneva, Switzerland
${ }^{b}$ Physics Institute, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland


## Discussion items



## Experimental and Theory Errors

In our $V_{c b}$ fits, we currently do not include experimental correlation between moments of different types (e.g. $E_{\ell}: M_{X}$ )
single analysis that extracts all moments simultaneously

Data is really precise and systematically limited - also no theory correlations between different moments

Theory correlations long-standing discussion item; HQE parameters depend on them to some extend, but $V_{c b}$ only has an underlying dependence



## Oh my Darwin: SU(3) and Lifetimes

- Scenario A: large value of $\left\langle\mathcal{O}_{6}\right\rangle_{B_{d}}$ from Ref. [239] $\longrightarrow E_{\ell}: M_{X}$ and large $S U(3)_{F}$ breaking;
- Scenario B: small value of $\left\langle\mathcal{O}_{6}\right\rangle_{B_{d}}$ from Ref. [240] $\longrightarrow q^{2}$ and small $S U(3)_{F}$ breaking.

$$
\frac{\tau\left(B_{s}\right)}{\tau\left(B_{d}\right)}= \begin{cases}1.028 \pm 0.011 & \text { Scenario A } \\ 1.003 \pm 0.006 & \text { Scenario B }\end{cases}
$$




