Recent theory developments in $b \rightarrow c \ell \nu$ transitions

M. Fedele

based on arXiv:2305.15457 in collaboration with:
M. Blanke, A. Crivellin, S. Iguro, U. Nierste, S. Simula \& L. Vittorio

Vniversitat
(B) València

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

Introduction to $b \rightarrow c$ anomalies

- Tree level, theoretically clean processes with large Br (\sim few \%)Sensitive to NP via LFUV tests

$$
R\left(D^{(*)}\right)=\frac{\mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}\right)} \quad \ell=e, \mu
$$

Experimental average (HFLAV):

$$
\begin{aligned}
R(D) & =0.344 \pm 0.026 \\
R\left(D^{*}\right) & =0.285 \pm 0.012
\end{aligned}
$$

SM predictions:

$$
\begin{aligned}
R(D) & =0.298 \pm 0.004 \\
R\left(D^{*}\right) & =0.254 \pm 0.005
\end{aligned}
$$

Comb. discrepancy at $\sim 3.2 \sigma$ level hinting at τ over-abundance

What if it's a FF issue?

0.240 .250 .260 .270 .280 .290 .30 $\mathcal{R}\left(D^{*}\right)$

The SM prediction for $R\left(D^{*}\right)$ might not be as stable as originally thought!

Different Form Factors approaches have different predictions, with noticeable increase on the prediction for the latest determinations (and strongly correlated to $\left|V_{c b}^{\text {excl }}\right|$ determination)

Could the discrepancy actually arise from issues on the FF estimates?

The IgWa approach

Developed by Bordone, Jung, van Dyk to go beyond original HQET formulation:
expand the FF $h_{X}(w)=\xi(w) \hat{h}_{X}(w)$, with $\xi(w)$ the leading Isgur-Wise function, in α_{s} and $1 / m_{b, c}$

$$
\# \underset{\propto m_{i}}{\hat{h}_{X}=\hat{h}_{X, 0}+\frac{\alpha}{\pi} \delta \hat{h}_{X, \alpha_{s}}+\frac{\bar{\Lambda}}{2 m_{b}} \delta \hat{h}_{X, m_{b}}+\frac{\bar{\Lambda}}{2 m_{c}} \delta \hat{h}_{X, m_{c}}+\left(\frac{\bar{\Lambda}}{2 m_{c}}\right)^{2} \delta \hat{h}_{X, m_{c}^{2}}}
$$

Expand each of the $10 \mathrm{I}-\mathrm{W}$ functs. as a power of z, and fit to theory (LCSR and QCDSR) and experiment data up to a different order for each of the functions, selected by goodness-of-fit

$$
f(w)=f^{(0)}+8 f^{(1)} z+16\left(f^{(1)}+2 f^{(2)}\right) z^{2}+\frac{8}{3}\left(9 f^{(1)}+48 f^{(2)}+32 f^{(3)}\right) z^{3}+\mathcal{O}\left(z^{4}\right)
$$

The BGJS approach

Expand the FF as a series in $z=(\sqrt{w+1}-\sqrt{2}) /(\sqrt{w+1}+\sqrt{2})$, where $w=\left(m_{B}^{2}+m_{D^{*}}^{2}-q^{2}\right) /\left(2 m_{B} m_{D^{*}}\right)$

$$
f_{i}(z)=\frac{1}{P_{i}(z) \phi_{i}(z)} \sum_{k=0}^{n_{i}} a_{k}^{i} z^{k}
$$

Different expansion order for each FF (selected by goodness-of-fit)

Weak unitarity constraints imposed on series coefficients to ensure a rapid convergence of the series in the physical region, $0<z<0.056$

$$
\sum_{k=0}^{n_{g}}\left(a_{k}^{g}\right)^{2}<1, \quad \sum_{i=0}^{n_{f}}\left(a_{k}^{f}\right)^{2}+\sum_{k=0}^{n_{F_{1}}}\left(a_{k}^{\mathcal{F}_{1}}\right)^{2}<1
$$

Additional input coming from HQET required for pseudoscalar FF

The Lattice approach

Same parameterization as the BGL approach, results beyond non-zero recoil recently obtained

Results of F/M and HPQCD are mostly in agreement, however not well reproducing with data. JLQCD seems more compatible with data, but larger errors. Do we have a problem with the slope?

Disclaimer:I am NOT a DM developer, just an ambassador! Be kind :)

The Dispersive Matrix approach

Goal: determine FFs $f(t)$ starting from known theoretical values of $f\left(t_{i}\right)$ (e.g. Lattice), that can be therefore used to extract $V_{c b}$ from all the independent differential measurements

The starting point is the introduction of 2 ingredients: inner product and auxiliary function:

$$
\begin{aligned}
& \langle g \mid h\rangle=\frac{1}{2 \pi i} \oint_{|z|=1} \frac{d z}{z} \bar{g}(z) h(z) \\
& g_{t}(z) \equiv \frac{1}{1-\bar{z}(t) z}
\end{aligned} \Rightarrow \mathbf{M} \equiv\left(\begin{array}{ccccc}
\langle\phi f \mid \phi f\rangle & \left\langle\phi f \mid g_{t}\right\rangle & \left\langle\phi f \mid g_{t_{1}}\right\rangle & \cdots & \left\langle\phi f \mid g_{t_{N}}\right\rangle \\
\left\langle g_{t} \mid \phi f\right\rangle & \left\langle g_{t} \mid g_{t}\right\rangle & \left\langle g_{t} \mid g_{t_{1}}\right\rangle & \cdots & \left\langle g_{t} \mid g_{t_{N}}\right\rangle \\
\left\langle g_{t_{1}|\phi f\rangle}\right. & \left\langle g_{t_{1}\left|g_{t}\right\rangle}\right. & \left\langle g_{t_{1}\left|g_{t_{1}}\right\rangle}\right. & \cdots & \left\langle g_{t_{1}\left|g_{t_{N}}\right\rangle}\right. \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & & \vdots & & \vdots \\
\left\langle g_{t_{N}} \mid \phi f\right\rangle & \left\langle g_{t_{N}} \mid g_{t}\right\rangle & \left\langle g_{t_{N}} \mid g_{t_{1}}\right\rangle & \cdots & \left\langle g_{t_{N}} \mid g_{t_{N}}\right\rangle
\end{array}\right)
$$

Matrix built out of inner products, hence its determinant is by construction positive semidefinite

The Dispersive Matrix approach

M_{11} obeys to the dispersion relation

$$
\frac{1}{2 \pi i} \oint_{|z|=1} \frac{d z}{z}|\phi(z) f(z)|^{2} \leq \chi \longrightarrow 0 \leq\langle\phi f \mid \phi f\rangle \leq \chi
$$

The Cauchy theorem allows to compute the remaining terms, and the semidefinite positiveness is not spoiled by replacing M_{11} by its upper limit

$$
\Rightarrow \mathbf{M}_{\chi}=\left(\begin{array}{ccccc}
\chi & \phi f & \phi_{1} f_{1} & \cdots & \phi_{N} f_{N} \\
\phi f & \frac{1}{1-z^{2}} & \frac{1}{1-z z_{1}} & \cdots & \frac{1}{1-z z_{N}} \\
\phi_{1} f_{1} & \frac{1}{1-z_{1} z} & \frac{1}{1-z_{1}^{2}} & \cdots & \frac{1}{1-z_{1} z_{N}} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\phi_{N} f_{N} & \frac{1}{1-z_{N} z} & \frac{1}{1-z_{N} z_{1}} & \cdots & \frac{1}{1-z_{N}^{2}}
\end{array}\right)
$$

Requiring the positiveness of the determinant allows to obtain a band for the FF, representing the envelope of the results of all possible (un)truncated z-expansions, like BGL ones

$$
\beta(z)-\sqrt{\gamma(z)} \leq f(z) \leq \beta(z)+\sqrt{\gamma(z)}
$$

The Dispersive Matrix approach

$$
\begin{array}{rlrl}
\beta(z)-\sqrt{\gamma(z)} \leq f(z) \leq \beta(z)+\sqrt{\gamma(z)} \\
\beta(z) & \equiv \frac{1}{\phi(z) d(z)} \sum_{j=1}^{N} \phi_{j} f_{j} d_{j} \frac{1-z_{j}^{2}}{z-z_{j}}, & \text { Unitarity requires } \gamma(z) \geq 0, \text { which } \\
\gamma(z) & \equiv \frac{1}{1-z^{2}} \frac{1}{\phi^{2}(z) d^{2}(z)}\left(\chi-\chi_{\mathrm{DM}}\right), & \text { implies } \chi \geq \chi_{\mathrm{DM}} \text {. Therefore, the FF } \\
\chi_{\mathrm{DM}} & \equiv \sum_{i, j=1}^{N} \phi_{i} f_{i} \phi_{j} f_{j} d_{i} d_{j} \frac{\left(1-z_{i}^{2}\right)\left(1-z_{j}^{2}\right)}{1-z_{i} z_{j}}, & \Rightarrow & \text { at any given } z \text { is given by the } \\
d(z) & \equiv \prod_{m=1}^{N} \frac{1-z z_{m}}{z-z_{m}}, & \text { convolution of } \gamma(z) \text { and } \beta(z) \text { with the } \\
d_{j} & & \begin{array}{l}
\text { distribution of input data with }
\end{array} \\
d_{j} & \equiv \chi_{\mathrm{DM}} \text { : input data is therefore }
\end{array}
$$

The filter can be interpreted, in terms of a z-expansion, as the existence of (at least) one (un)truncated BGL fit that satisfies unitarity and exactly reproduces input data (i.e. Lattice)

Not all that glitters is gold...

DM results shown here are based on F/M (only Lattice result published at time of the study), implications of HPQCD and JLQCD will be shown in a few slides

The DM FF approach is capable to address tension in $R\left(D^{*}\right)$ (and $\left|V_{c b}\right|$ incl. vs excl. discrepancy), but however in tension with new F_{L}^{ℓ} and A_{FB}^{ℓ} data!

Where is this coming from?

In order to understand the origin of this pattern, it's instrumental to take a look at the helicity amp.

$$
H_{0}(w)=\frac{\mathcal{F}_{1}(w)}{\sqrt{m_{B}^{2}+m_{D^{*}}^{2}-2 m_{B} m_{D^{*}} w}} \quad H_{ \pm}(w)=f(w) \mp m_{B} m_{D^{*}} \sqrt{w^{2}-1} g(w)
$$

which are used to build

$$
\begin{aligned}
& \frac{1}{\left|V_{c b}\right|^{2}} d \Gamma^{\ell} \\
& F_{L}^{\ell}(w) \propto \frac{\left|H_{0}(w)\right|^{2}+\left|H_{+}(w)\right|^{2}+\left|H_{-}(w)\right|^{2}}{\left|H_{0}(w)\right|^{2}+\left|H_{+}(w)\right|^{2}+\left|H_{-}(w)\right|^{2}} \\
& A_{\mathrm{FB}}^{\ell}(w)=\frac{\left|H_{-}(w)\right|^{2}-\left|H_{+}(w)\right|^{2}}{\left|H_{0}(w)\right|^{2}+\left|H_{+}(w)\right|^{2}+\left|H_{-}(w)\right|^{2}}
\end{aligned} \Rightarrow \begin{array}{|c|c|c|c|c|c|}
\mathcal{F}_{1}(w) & \frac{1}{\left|V_{c c}\right|^{2}} d \Gamma^{\ell} & \left|V_{c b}\right| & \mathcal{R}\left(D^{*}\right) & A_{\mathrm{FB}}^{\ell} & F_{L}^{\ell} \\
\hline \nearrow & \nearrow & \searrow & \searrow & \searrow & \nearrow \\
\hline \searrow & \searrow & \nearrow & \nearrow & \nearrow & \searrow \\
\hline
\end{array}
$$

A change in the shape of $F_{1}(w)$ has a direct proportional impact on $R\left(D^{*}\right),\left|V_{c b}\right|, A_{F B}^{\ell}$ and F_{L}^{ℓ}

What if we try to perform a fit to this data?

Goal: perform a fit to $A_{F B}^{\ell}$ and F_{L}^{ℓ} using DM results for the FF as priors

$$
\begin{aligned}
\mathcal{R}\left(D^{*}\right)_{\mathrm{fit}} & =0.265 \pm 0.005 \\
F_{L, \text { fit }}^{\ell} & =0.515 \pm 0.005 \\
A_{\mathrm{FB}, \text { fit }}^{e} & =0.227 \pm 0.007 \\
A_{\mathrm{FB}, \text { fit }}^{\mu} & =0.222 \pm 0.007
\end{aligned}
$$

$F_{1}(w)$ shape is changed to accommodate for F_{L}^{ℓ} and A_{FB}^{ℓ}, reintroducing the $R\left(D^{*}\right)$ anomaly

But this is an healthy cross-check

What data is telling us is that $A_{F B}^{\ell}$ and F_{L}^{ℓ} measurements are in agreement with differential distributions: a further hint that there's something fishy with FF...

Can we reproduce everything introducing NP in light leptons?

The DM FF offer the unique possibility to employ NP in light leptons to address anomalies (forbidden in other scenarios due to CKM limits)

Could this fix the issue?

Only evidence found for $g_{V_{L}}$; however F_{L}^{ℓ} and A_{FB}^{ℓ} are ratios, hence insensitive to it!

The absence of an hint for scalar/tensor WCs is due to more precise measurements in light lepton channel, together with m_{ℓ} suppression in interference terms with SM

$$
\begin{aligned}
g_{V_{L}} & =-0.054 \pm 0.015 \\
g_{V_{R}} & \in[-0.04,0.01] \\
g_{S_{L}} & \in[-0.07,0.02] \\
g_{S_{R}} & \in[-0.05,0.03] \\
g_{T} & \in[-0.01,0.02]
\end{aligned}
$$

\Rightarrow If the FF prediction for F_{L}^{ℓ} and A_{FB}^{ℓ} does not reproduce data, this cannot be fixed by introducing NP effects in light leptons as could be done for $R\left(D^{*}\right)$!

DM confronts with all lattice estimates...

As expected, FNAL/MILC and HPQCD give similar results (with different precision), while JLQCD is somewhat different (notice increase of precision thanks to DM filter)

Finally, a combined extraction to all datasets à la BGL or by means of Importance Sampling (IS) is done, with results mainly driven by FNAL/MILC \& HPQCD

Implications on the prediction to F_{L}^{ℓ} and A_{fB}^{ℓ}

Lattice FFs	$R\left(D^{*}\right)$	$P_{\tau}\left(D^{*}\right)$	$F_{L, \tau}$	$F_{L, \ell}$	$A_{F B, \ell}$
FNAL/MILC [15]	$0.275(8)$	$-0.529(7)$	$0.418(9)$	$0.450(19)$	$0.261(14)$
HPQCD [16]	$0.266(12)$	$-0.543(18)$	$0.399(23)$	$0.435(42)$	$0.265(30)$
JLQCD [17]	$0.247(8)$	$-0.509(11)$	$0.448(16)$	$0.516(29)$	$0.220(21)$
Average [15]-[17]	$0.262(9)$	$-0.525(7)$	$0.422(10)$	$0.465(22)$	$0.251(13)$
(PDG scale factor)	(1.8)	(1.3)	(1.4)	(1.5)	(1.2)
Combined [15]-[17]	$0.259(5)$	$-0.521(6)$	$0.425(7)$	$0.473(14)$	$0.252(10)$
Experimental value	$0.284(12)[36]$	$-0.38 \pm 0.51_{-0.16}^{+0.21}[38]$	$0.49(8)[39,40]$	$0.520(6)[13,14])$	$0.232(10)[13,14)$

We have an analogous pattern: either we reproduce $R\left(D^{*}\right)$ but observe a tension with new F_{L}^{ℓ} and A_{FB}^{ℓ} data ($\mathrm{FNAL} / \mathrm{MILC} \& \mathrm{HPQCD}$) or viceversa (JLQCD)!

Implications to $V_{c b}$ determinations

Take Home Messages

- For the experimental community: please, give us as much differential data as possible (also for angular obs!), it will help us better understand the shape of the Form Factors!
- For the lattice community: it is great that we have various groups computing the same things, keep up on your hard work!
- For everyone computing FFs: I hope I convinced you that while a discrepancy in $d \Gamma / d w$ might be due to NP, this is not the case for F_{L}^{ℓ} and A_{FB}^{ℓ}. Please, take a look at 'em!

Conclusions

- Recent determination of $A_{F B}^{\ell}$ and F_{L}^{ℓ} have become available from Belle and Belle II, already with great precision!
- Theory prediction of $A_{F B}^{\ell}$ and F_{L}^{ℓ} strongly correlated to the one of $R\left(D^{*}\right)$; while the latter can be modified by NP effects, the former are strongly NP-insensitive...
- Theory determinations of FF should therefore take in great attention their implications of the predictions for $A_{F B}^{\ell}$ and F_{L}^{ℓ}, and the consequent impact on the extraction of $\left|V_{c b}^{\text {excl }}\right|$!

