$B_{s} \rightarrow K \ell \nu$ decays - theory

9-11.04.2024
Kulturhaus Lÿz, Siegen
Andreas Jüttner
(CRINy $\begin{gathered}\text { University of } \\ \text { Southampton }\end{gathered}$

Exclusive semileptonic meson decay

$$
\frac{d \Gamma\left(B_{s} \rightarrow P \ell \nu\right)}{d q^{2}}=\eta_{E W} \frac{G_{F}^{2}\left|V_{x b}\right|^{2}}{24 \pi^{3}} \frac{\left(q^{2}-m_{\ell}^{2}\right)^{2}|\vec{k}|}{\left(q^{2}\right)^{2}}\left[\left(1+\frac{m_{\ell}^{2}}{2 q^{2}}\right) \vec{k}^{2}\left|f_{+}\left(q^{2}\right)\right|^{2}+\frac{3 m_{\ell}^{2}}{8 q^{2}} \frac{\left(M_{B_{s}}^{2}-M_{P}^{2}\right)^{2}}{M_{B_{s}}^{2}}\left|f_{0}\left(q^{2}\right)\right|^{2}\right.
$$

- form factors computed on lattice QCD (see FLAG21 and updates on the FLAG website)
- considered a relatively standard computation for tree-level
- heavily used for CKMology but also for lepton-flavour-universality tests

$b \rightarrow u$ exclusive: $\left|V_{u b}\right|$

Work required on the lattice (I)

- Lattice data sets show tension $B \rightarrow \pi, B_{s} \rightarrow K$ (combination requires PDG-inflation factor)
- by definition they should agree
- reasons yet to be understood

Work required on the lattice (I)

Results for $f_{0}\left(q^{2}\right)$ incompatible; origin of discrepancy understood in RBC/UKQCD 23 note that kinematic constraint $f_{0}(0)=f_{+}(0)$ is imposed on data!
\rightarrow here: use only HPQCD 14 and RBC/UKQCD 23

Work required on the lattice (II)

$$
\begin{aligned}
& \left\langle O_{B_{s}}(t) O_{B_{s}}^{\dagger}(0)\right\rangle=\sum_{n=1}^{N_{n}^{\max }} \frac{\left.\left|\langle 0| O_{B_{s}}(0)\right| n\right\rangle\left.\right|^{2}}{2 E_{B_{s}}^{(n)}} e^{-E_{B_{s}}^{(n)} t} \quad \text { from Euclidean 2pt function } \\
& \left\langle O_{K}\left(t_{\text {snk }}\right) V_{\mu}(t) O_{B_{s}}^{\dagger}(0)\right\rangle=\sum_{m, n=1}^{N_{n}^{\max }, N_{m}^{\max }} \frac{1}{4 E_{B_{s}}^{(n)} E_{K}^{(m)}}\langle 0| O_{K}\left(t_{\text {snk }}\right)|m\rangle \underbrace{\left.\left(m\left|V_{\mu}(t)\right| n\right\rangle\right\rangle} n\left|O_{B_{s}}(0)\right| n\rangle e^{-E_{B_{s}}^{(m)}\left(t_{\text {snk }}-t\right)} e^{-E_{K}^{(n)} t} \\
& \text { from Euclidean 3pt function }
\end{aligned}
$$

Extraction of $\langle K| V_{\mu}\left|B_{s}\right\rangle$ is essentially a data-analysis problem:

- $N_{m, n}^{\max }$ limited by statistical precision of lattice results for $2 \mathrm{pt} / 3 \mathrm{pt}$ function
- couplings to particular excited states enhanced (e.g. $B^{*} \pi$) in 3pt compared to 2pt function
- potential of mis-identification/representation of excited-states contribution, and hence, ground state

[Bär, Broll, Sommer, arXiv:2306.02703]
A so-far under-estimated/ignored systematic effect?

Work required on the lattice (II)

Preliminary data for $B_{S} \rightarrow K$

- b, s, l at physical quark masses
- fit enforcing ES in 2pt and 3pt functions to be the same is not working NOTE: the ES spectrum in QCD is the same - the corresponding amplitudes may just be suppressed/enhanced and resolution in data not sufficient to correctly identify!
- fit leaving ES independent between 2pt and 3pt functions is working

What to do?

- Here: identify nature of ES
- in general:
- improve statistics
- do GEVP
- be careful!

Even more work required on the lattice...

finite-volume errors
continuum limit
QED and iso-spin-breaking effects

In any case, lattice QCD predicts form factors at reference- q^{2} values;
they need to be combined with experiment in some way

Fitting strategies

- fit parameterisation to lattice data
- compute theory prediction for $d \Gamma / d q^{2} /\left|V_{u b}\right|^{2}$ bin-by-bin by integration

A

- combine with experimental data for bin-by-bin prediction for $\left|V_{u b}\right|$
- final $\left|V_{u b}\right|$ from weighted average over bins

Clean separation of SM and exp. measurement

- fit parameterisation simultaneously to lattice form factors and results for experimental data for diff. decay rate (use shape-information from both experiment and lattice)
- determine $\left|V_{u b}\right|$ directly from such a global fit

Unitarity constraint and fit-ansatz imposed on experimental data (which may contain BSM)

SM correct - A and B should result in compatible predictions

Form-factor parameterisation

Determine all $a_{X, n}$ from finite set of theory data
Frequentist fit: • $N_{\text {dof }}=N_{\text {data }}-K_{X} \geq 1$
\rightarrow in practice truncation K at low order

- induced systematic difficult to estimate
- meaning of Frequentist with unitarity constraint?

Bayesian fit: - fit including higher order z expansion meaningful

- unitarity regulates and controls higher-order coefficients [Fymm, Au, Tsang, JHep 12 (2023) 175]
- well-defined meaning of unitarity constraint

Recommendation: Combined Frequentist + Bayesian perspective

Strategy A

$B_{s} \rightarrow K \ell v-\left|V_{u b}\right|$

Experiment

two bins from LHCb [LHCb PRD 108 (2023]]

$$
R_{\mathrm{BF}}=\frac{\mathcal{B}\left(B_{s}^{0} \rightarrow K^{-} \mu^{+} \nu_{\mu}\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}\right)} \quad \begin{aligned}
& R_{B F}^{\mathrm{low}}=1.66(08)(09) \times 10^{-3} \quad \begin{array}{l}
\text { high } \\
\left.R_{B F}^{2} \leq 7 \mathrm{GeV}^{2}\right) \\
\\
R_{B F}^{\mathrm{total}}=4.25(21)\left({ }_{-19}^{+18}\right) \times 10^{-3}\left(q^{2} \geq 7 \mathrm{GeV}^{2}\right)
\end{array} \\
& \mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}\right)= \\
& 2.49(12)(21) \times 10^{-2},\left[\begin{array}{l}
+25 \\
-25
\end{array}\right) \times 10^{-3}
\end{aligned}
$$

$$
\left|V_{u b}\right|=\sqrt{\frac{R_{B F}^{\mathrm{bin}} \mathcal{B}\left(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} \nu_{\mu}\right)}{\tau_{B_{s}^{0}} \Gamma_{0}^{\mathrm{bin}}\left(B_{s} \rightarrow K \ell \nu\right)}}
$$

$\frac{d \Gamma\left(B_{s} \rightarrow K \ell \nu\right)}{d q^{2}}=\eta_{\text {EW }} \frac{G_{F}^{2}\left|V_{\text {b }}\right|^{2}}{24 \pi^{3}} \frac{\left(q^{2}-m_{c}^{2}\right)^{2}|\vec{k}|}{\left(q^{2}\right)^{2}}$

$$
\times\left[\left(1+\frac{m_{q}^{2}}{2 q^{2}}\right) \overrightarrow{k^{2}}\left|f_{+}\left(q^{2}\right)\right|^{2}+\frac{3 m_{t}^{2}\left(M_{B_{i}}^{2}-M_{P}^{2}\right)^{2}}{8 q^{2}} \frac{F_{\bar{B}_{1}}}{\left.\left.M_{0}\left(q^{2}\right)\right|^{2}\right]}\right.
$$

$B_{s} \rightarrow K \ell \nu-\left|V_{u b}\right|$

Let's fit just HPQCD 14 and RBC/UKQCD 23

 (FNAL/MILC 19 excluded):
Frequentist works:

$K_{+} K_{0}$	$a_{+, 0}$	$a_{+, 1}$	$a_{+, 2}$	$a_{+, 3}$	$a_{+, 4}$	p	$\chi^{2} / N_{\text {dof }}$	$N_{\text {dof }}$
3	$0.01095(48)$	-0.0202(43)	0.079(26)	-		0.14	1.61	6
5 5	$0.0129(22)$	$0.11(13)$	2.5(2.5)	16.1(20.3)	34.9(64.6)	0.25	1.38	2
$K_{+} K_{0}$	${ }^{a_{0,0}}$	$a_{0,1}$	$a_{0,2}$	${ }^{a_{0,3}}$	${ }^{a_{0,4}}$	p	$\chi^{2 /} N_{\text {dof }}$	$N_{\text {dof }}$
3	$0.0752(24)$	-0.250(24)	0.61(11)		-	0.14	1.61	6
5 5	0.0830 (85)	0.29(55)	11.7(11.9)	92.9(115.0)	270.2(401.8)	0.25	1.38	2

Bayesian fit works:

Strategy A - $10 B \rightarrow D^{*} \ell \nu$ bins

Strategy A

bin-by-bin results for $\left|V_{c b}\right|$ based on JLQCD 23 (lattice) and Bellell (experiment)
fits to four different differential decay rates

combined fit to all differential decay rat
Procedure that deals with correlations needs to be defined carefully

Strategy B

not much I can say at this tage for $B_{s} \rightarrow K$ (only 2 bins),
so let's look at $B \rightarrow D^{*}$

Strategy B

Bellell and JLQCD 23

BGL fits to:

experiment
Bellell

lattice
JLQCD 2023
experiment + lattice
Bellell+JLQCD 2023

- fits all of acceptable quality
- theory and exp agree on shape
- compare results for variety of observables from variations of fitting strategy
[Bordone and AJ, in preparation]

Yet another fit variation:
 combined fit of $B \rightarrow \pi l \nu$ and $B_{s} \rightarrow K l \nu$

Idea: simultaneous Bayesian fit over both channels subject to combined unitarity constraint

Lattice data: $B_{S} \rightarrow K^{\text {[HPCCD } 14 \text { PRD } 90 \text { (2014), RBC/vKOCD } 23 \text { PRD } 107 \text { (20233) }}$

$$
B \rightarrow \pi \quad[J L Q C D 22 \operatorname{PRD} 106 \text { (2022)] }
$$

- we find simultaneous unitarity constraint stronger than individual
- effect will depend on channel
- in case at hand coefficients have noticeably smaller error
- work in progress

Conclusions

- bread-and-butter may actually not be as bread-and-butter - issues in existing and future lattice computations need to be addressed and resolved
- expect updates for lattice results
- there are many different ways in which we can analyse the experimental and lattice data and we should explore them all
- it's exciting to get semileptonic data of such high quality and precision we are ready for analysing new bins for $B_{s} \rightarrow K \ell \nu$ (and other channels)
- please provide detailed list of all input
- please provide stat. and syst. correlations/covariances for all results
- please provide as much detail as possible
- exciting interplay between experiment and theory over coming years!

