

$B_{s} \rightarrow K \ell \nu \text{ decays} - \text{theory}$

9-11.04.2024 Kulturhaus Lÿz, Siegen

Andreas Jüttner

University of Southampton

Exclusive semileptonic meson decay

$$\frac{d\Gamma(B_s \to P\ell\nu)}{dq^2} = \eta_{\rm EW} \frac{G_F^2 |V_{xb}|^2}{24\pi^3} \frac{(q^2 - m_\ell^2)^2 |\vec{k}|}{(q^2)^2}$$

- form factors computed on lattice QCD (see <u>FLAG21</u> and updates on the <u>FLAG website</u>)
- considered a relatively standard computation for tree-level

heavily used for CKMology but also for lepton-flavour-universality tests

$b \rightarrow u \text{ exclusive: } |V_{ub}|$

Work required on the lattice (I)

- Lattice data sets show tension $B \rightarrow \pi, B_s \rightarrow K$ (combination requires PDG-inflation factor)
- by definition they should agree
- reasons yet to be understood

Work required on the lattice (I)

Results for $f_0(q^2)$ incompatible; origin of discrepancy understood in RBC/UKQCD 23 [RBC/UKQCD PRD 107 (2023)] note that kinematic constraint $f_0(0) = f_+(0)$ is imposed on data! → here: use only HPQCD 14 and RBC/UKQCD 23

Work required on the lattice (II)

$$\langle O_{B_s}(t)O_{B_s}^{\dagger}(0)\rangle = \sum_{n=1}^{N_n^{\text{max}}} \frac{\left|\left\langle 0 \mid O_{B_s}(0) \mid n \right\rangle\right|^2}{2E_{B_s}^{(n)}} e^{-E_{B_s}^{(n)}t} \quad \text{from Euclidean 2pt function}$$

$$\langle O_K(t_{\text{snk}})V_\mu(t)O_{B_s}^{\dagger}(0)\rangle = \sum_{m,n=1}^{N_n^{\text{max}},N_m^{\text{max}}} \frac{1}{4E_{B_s}^{(n)}E_K^{(m)}} \langle 0 \mid O_K(t_{\text{snk}}) \mid m \rangle \langle m \mid V_\mu(t) \mid n \rangle \langle n \mid O_{B_s}(0) \mid n \rangle e^{-E_{B_s}^{(m)}(t_{\text{snk}}-t)} e^{-E_K^{(n)}t}$$

$$\text{from Euclidean 3pt function}$$

Extraction of $\langle K | V_{\mu} | B_s \rangle$ is essentially a data-analysis problem:

- $N_{m,n}^{\max}$ limited by statistical precision of lattice results for 2pt/3pt function
- couplings to particular excited states enhanced (e.g. $B^*\pi$) in 3pt compared to 2pt function
- potential of mis-identification/representation of excited-states contribution, and hence, ground state

A so-far under-estimated/ignored systematic effect?

[Bär, Broll, Sommer, <u>arXiv:2306.02703</u>]

Work required on the lattice (II)

Preliminary data for $B_{\rm c} \to K$

• *b*, *s*, *l* at physical quark masses

• fit enforcing ES in 2pt and 3pt functions to be the same is not working

NOTE: the ES spectrum in QCD is the same — the

corresponding amplitudes may just be suppressed/enhanced

and resolution in data not sufficient to correctly identify!

• fit leaving ES independent between 2pt and 3pt functions is working

What to do?

- Here: identify nature of ES
- in general:
 - improve statistics
 - do GEVP
 - be careful!

Even more work required on the lattice...

finite-volume errors continuum limit **QED** and iso-spin-breaking effects

In any case, lattice QCD predicts form factors at reference- q^2 values; they need to be combined with experiment in some way

Fitting strategies

- fit parameterisation to lattice data

Clean separation of SM and exp. measurement

Unitarity constraint and fit-ansatz imposed on experimental data (which may contain BSM)

SM correct – A and B should result in compatible predictions

• compute theory prediction for $d\Gamma/dq^2/|V_{\mu b}|^2$ bin-by-bin by integration • combine with experimental data for bin-by-bin prediction for $|V_{\mu b}|$ • final $|V_{\mu b}|$ from weighted average over bins

• fit parameterisation simultaneously to lattice form factors and results for experimental data for diff. decay rate (use shape-information from both experiment and lattice) • determine $|V_{ub}|$ directly from such a global fit

Form-factor parameterisation $f_X(q_i^2) = \frac{1}{B_X(q_i^2)\phi_X(q_i^2, t_0)} \sum_{n=0}^{K_X-1} a_{X,n} z(q_i^2)^n \quad \text{unitarity constraint:} \ |\mathbf{a}_X|^2 \le 1$ Boyd, Grinstein, Leber

Determine all $a_{X,n}$ from finite set of theory data

Frequentist fit: • $N_{dof} = N_{data} - K_X \ge 1$

- \rightarrow in practice truncation K at low order
- induced systematic difficult to estimate
- meaning of Frequentist with unitarity constraint?
- **Bayesian fit:**
- fit including higher order z expansion meaningful
- unitarity regulates and controls higher-order coefficients [Flynn, AJ, Tsang JHEP 12 (2023) 175] well-defined meaning of unitarity constraint

Recommendation: Combined Frequentist + Bayesian perspective

Boyd, Grinstein, Lebed, PRL 74 (1995)

two bins from LHCb [LHCb PRD 108 (2023)]

$$R_{\rm BF} = \frac{\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_\mu)}{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)} \qquad \begin{array}{l} R_{BF} = 1.00(0) \\ R_{BF} = 3.25(2) \\ R_{BF} = 4.89(2) \end{array}$$

 $\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu) = 2.49(12)(21) \times 10^{-2}$ [LHCb <u>PRD 101 (2020)</u>]

$$|V_{ub}| = \sqrt{\frac{R_{BF}^{\rm bin}\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_{\mu})}{\tau_{B_s^0}\Gamma_0^{\rm bin}(B_s \to K\ell\nu)}}$$

$B_s \to K \ell \nu$	$-V_{ub}$
Let's fit just HPQCD 14 and RBC/UKQCD 23 (FNAL/MILC 19 excluded):	$ \begin{array}{c} 0.9 \\ \hline (0) \\ X \\ \hline (0) \\ R \\ \hline (0) \\ X \\ \hline (0) \\ (0) \\ X \\ \hline (0) \\ X $
Frequentist works: $K_+ K_0$ $a_{+,0}$ $a_{+,1}$ $a_{+,2}$ $a_{+,3}$ $a_{+,4}$ p χ^2/N_{dof} N_{dof} 3 3 0.01095(48) -0.0202(43) 0.079(26) - - 0.14 1.61 6 5 5 0.0129(22) 0.11(13) 2.5(2.5) 16.1(20.3) 34.9(64.6) 0.25 1.38 2	$\begin{bmatrix} 0.6 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.4 \end{bmatrix} = \begin{bmatrix} 0.6 \\ 0.5 \\ 0.5 \\ 0.4 \end{bmatrix}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \times & 0.4 \\ & 0.5 \\ & 0.3 \\ & & 0.2 \end{array}$
Bayesian fit works: K_{+} K_{0} $f(q^{2} = 0)$ $R_{B_{s} \to K}^{impr}$ $R_{B_{s} \to K}$ $\frac{\Gamma^{\tau}}{ V_{ub} ^{2}} [\frac{1}{ps}]$ $\frac{\Gamma^{\mu}}{ V_{ub} ^{2}} [\frac{1}{ps}]$ V_{CKM}^{low} 330.341(45)1.650(34)0.635(40)5.11(47)8.1(1.2)0.00277(38)0.0550.349(50)1.689(41)0.642(47)5.02(46)7.9(1.2)0.00279(41)0.010100.327(44)1.687(40)0.661(42)4.87(43)7.4(1.0)0.00294(40)0.0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

$K_+ K_0$	$f(q^2 = 0)$	${}^{\mathrm{impr}}_{B_s \to K}$	$R_{B_s \to K} = \overline{[}$	$rac{\Gamma^{ au}}{ V_{ub} ^2} \left[rac{1}{\mathrm{ps}} ight] = rac{1}{ V }$	$\frac{\Gamma^{\mu}}{\left[\frac{1}{\mathrm{ps}}\right]^2} \left[\frac{1}{\mathrm{ps}}\right]$	$V_{ m CKM}^{ m low}$ V	,high CKM	$V_{ m CKM}^{ m full}$
3 3	0.341(45)	1.650(34)	0.635(40) 5.	11(47) 8.1	(1.2) (0.00277(38) = 0.00	0346(33) 0	.00316(33)
5 5	0.349(50)	1.689(41)	0.642(47) 5.	02(46) 7.9	(1.2) (0.00279(41) 0.00	0354(35) 0	.00322(35)
10 10	0.327(44)	1.687(40)	0.661(42) 4.	87(43) 7.4	(1.0) (0.00294(40) = 0.00	0.361(35) = 0.	.00332(35)
K ₊ K ₀	$I[\mathcal{A}_{ ext{FB}}^{ au}][rac{1}{ ext{ps}}]$	$I[\mathcal{A}^{\mu}_{\mathrm{FB}}][rac{1}{\mathrm{ps}}]$	$[\vec{A}_{\rm FB}^{\tau}]$	${\cal A}^{\mu}_{ m FB}$	$I[\mathcal{A}_{\mathrm{pol}}^{\tau}][\frac{1}{\mathrm{ps}}]$	$I[\mathcal{A}^{\mu}_{\mathrm{pol}}][\frac{1}{\mathrm{ps}}]$	$\widetilde{\mathcal{A}}_{\mathrm{pol}}^{ au}$	$\widetilde{\mathcal{A}}^{\mu}_{\mathrm{pol}}$
3 3	1.47(15)	0.058(13)	0.2875(36)) 0.00703(65)	0.34(12)	8.0(1.1)	0.066(22)	0.9805(17)
5 - 5	1.45(14)	0.059(14)	0.2891(37) 0.00744(79)	0.22(13)	7.7(1.2)	0.042(26)	0.9792(21)
10 10	1.40(13)	0.053(12)	0.2876(34) 0.00711(70)	0.22(13)	7.3(1.0)	0.045(25)	0.9801(19)

[Flynn, AJ, Tsang <u>JHEP 12 (2023) 175</u>]

Strategy A – 10 $B \rightarrow D^* \ell \nu$ bins

not much I can say at this tage for $B_s \rightarrow K$ (only 2 bins), so let's look at $B \rightarrow D^*$

Bellell and JLQCD 23

- compare results for variety of observables [Bordone and AJ, in preparation]

See also: Fedele et al. PRD 108, 055037 (2023)

Yet another fit variation: combined fit of $B \to \pi l \nu$ and $B_s \to K l \nu$ Idea: simultaneous Bayesian fit over both channels subject to combined unitarity constraint

$$\frac{|f_X^{B_s \to K}(t)|^2}{(t-q^2)^{n_X}} \to \qquad 1 \ge |\vec{a}_X^{B \to \pi}|^2 + |\vec{a}_X^{B_s \to K}|^2 \qquad (X = +$$

- we find simultaneous unitarity constraint stronger than individual
- effect will depend on channel
- in case at hand coefficients have noticeably smaller error
- work in progress

- lattice computations need to be addressed and resolved
- expect updates for lattice results
- and we should explore them all
- it's exciting to get semileptonic data of such high quality and precision we are ready for analysing new bins for $B_s \to K \ell \nu$ (and other channels) - please provide detailed list of all input - please provide stat. and syst. correlations/covariances for all results - please provide as much detail as possible
- exciting interplay between experiment and theory over coming years!

• bread-and-butter may actually not be as bread-and-butter — issues in existing and future

• there are many different ways in which we can analyse the experimental and lattice data