Status and prospects of RD(*) and related measurements

Beyond the flavour anomalies V

Teaming up for the hunt

 $\tau \rightarrow \ell$

presented by Julian

at Moriond EW

Let's start with the generic measurement ideas at Belle II and LHCb before going into analysis specifics

Food for thought: Combinations in global Wilson coefficient fits is something to be considered

Semileptonic Decays at B-Factories

- e^+e^- -collision produces $\Upsilon(4S) \to B\overline{B}$
- Fully reconstruct the tag-side B meson
 → gives access to signal-side B meson
 kinematics
- Missing four-momentum (neutrino mass) can be reconstructed
- All measured particles are assigned (completeness)
- Caveat: Small efficiency of the tagging algorithms

Generic Strategy at B-Factories

- 3-class classification problem: signal, normalization, background
- Normalization chosen to cancel systematics (same topology and/or final state)

Leverage **fully known kinematics** and that **each reconstructed particle is assigned** to a decay

Nice illustration by F. Bernlochner

Semileptonic Decays at LHCb

- No constraint from beam energy, but large Lorentz boost resulting in mm decay lengths.
- Well separated vertices.
- Momentum direction of decaying particle is well known from vertices.
- Two τ decay modes analysed:
 - $\tau \rightarrow \mu \nu \nu \nu$: large yields low purity.
 - $\tau \rightarrow 3\pi\nu$: lower yields higher purity.

$\tau \rightarrow \mu$ strategy

• 3D fit in q², m_{miss}^2 and E_l^* .

$\tau \rightarrow 3\pi$ strategy

- 3D fit in q² τ decay time and BDT output.
- Key selection to reject $B \to D^* \pi^+ \pi^- \pi^+ X$ background.

• No direct normalisation to semimuonic mode:

$$\mathcal{K}(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-} 3\pi^{\pm})} \qquad R(D^*) = \mathcal{K}(D^*) \left\{ \frac{\mathcal{B}(B^0 \to D^{*-} 3\pi^{\pm})}{\mathcal{B}(B^0 \to D^{*-} \mu^+ \nu_{\mu})} \right\}$$

• Smaller yields but higher purity compared to leptonic mode.

A History of Measurements

Belle, Phys.Rev.D 92, 072014 (2015) $R(D) = 0.375 \pm 0.064 \pm 0.026$ $R(D^*) = 0.293 \pm 0.038 \pm 0.015$

Belle, Phys. Rev. Lett. 124, 161803 (2020) $R(D) = 0.307 \pm 0.037 \pm 0.016$ $R(D^*) = 0.283 \pm 0.018 \pm 0.014$

BaBar, Phys.Rev.D 88, 072012 (2013) $R(D) = 0.440 \pm 0.058 \pm 0.042$ $R(D^*) = 0.332 \pm 0.024 \pm 0.018$

 $P_{\tau}(D^*) = -0.38 \pm 0.51 \pm 0.21_{-0.16}^{-0.21}$

 $R(D^*) = 0.270 \pm 0.035 \pm 0.028$

Belle, Phys. Rev. D 97, 012004 (2018)

And the Start of a New Era

Belle, Phys.Rev.D 92, 072014 (2015) $R(D) = 0.375 \pm 0.064 \pm 0.026$ $R(D^*) = 0.293 \pm 0.038 \pm 0.015$

Belle, Phys. Rev. Lett. 124, 161803 (2020) $R(D) = 0.307 \pm 0.037 \pm 0.016$ $R(D^*) = 0.283 \pm 0.018 \pm 0.014$

BaBar, Phys.Rev.D 88, 072012 (2013) $R(D) = 0.440 \pm 0.058 \pm 0.042$ $R(D^*) = 0.332 \pm 0.024 \pm 0.018$

LHCb measurements

Challenges: Misider

- Background from $B \rightarrow D^{(*)}hX$ a serious challe
- Problem: Multiple sources which cannot be p
- Solution: Reverse offline/trigger muon ID to se
- Problem: Multiple different track types each v
- Solution: Split sample into different track cate

LHCb-PAPER-2013-063

IICI

JACK WIMBERLEY

UNFOLDING WITH INCOMPLETE INFORMATI

- What do about ghast tracks?
- In principle there's really an extra category on $\begin{pmatrix}
 N_{\hat{\pi}} \\
 N_{\hat{K}} \\
 \vdots \\
 N_{\text{uncat}}
 \end{pmatrix} = \begin{pmatrix}
 P(\pi \to \pi) & P(K \to \pi) & \cdots & P(K \to \pi) \\
 P(\pi \to K) & P(K \to K) & \cdots & P(K \to K) \\
 \vdots & \vdots & \ddots \\
 P(\pi \to \text{uncat}) & P(K \to \text{uncat}) & \cdots & P(K)
 \end{pmatrix}$
- Know blue values (because probabilities mus
- Don't know red values, or fake rate for ghosts
- Ghosts must be ignored; Lose constraints on ⁻

- Allow for independent variation of this background in latest $R(D^+)$ analysis.
- Less of a problem at Belle II.

Challenges: Form Factors

				Systematic uncertainty [%]				Total uncert. [%]			
Result	Experiment	τ decay	Tag	MC stats	$D^{(*)} l u$	$D^{**}l u$	Other bkg.	Other sources	Syst.	Stat.	Total
	$B\!AB\!AR$ $^{\rm a}$	lvv	Had.	5.7	2.5	5.8	3.9	0.9	9.6	13.1	16.2
$\mathcal{R}(D)$	$\operatorname{Belle}^{\mathrm{b}}$	$\ell \nu \nu$	Semil.	4.4	0.7	0.8	1.7	3.4	5.2	12.1	13.1
	$\operatorname{Belle}^{\operatorname{c}}$	$\ell \nu \nu$	Had.	4.4	3.3	4.4	0.7	0.5	7.1	17.1	18.5
	$B\!AB\!AR$ $^{\rm a}$	lνν	Had.	2.8	1.0	3.7	2.3	0.9	5.6	7.1	9.0
	$Belle^{b}$	$\ell \nu \nu$	Semil.	2.3	0.3	1.4	0.5	4.7	4.9	6.4	8.1
$\mathcal{D}(D^*)$	$\operatorname{Belle}^{\operatorname{c}}$	$\ell \nu \nu$	Had.	3.6	1.3	3.4	0.7	0.5	5.2	13.0	14.0
$\mathcal{K}(D^{-})$	$\operatorname{Belle}^{\operatorname{d}}$	$\pi\nu, \rho\nu$	Had.	3.5	2.3	2.4	8.1	2.9	9.9	13.0	16.3
	$\rm LHCb^{e}$	$\pi\pi\pi\pi(\pi^0)\nu$	/	4.9	4.0	2.7	5.4	4.8	10.2	6.5	12.0
	$\mathrm{LHCb}^{\mathrm{f}}$	$\mu u u$	_	6.3	2.2	2.1	5.1	2.0	8.9	8.0	12.0

^a (Lees *et al.*, 2012, 2013)

^b (Caria *et al.*, 2020) ^c (Huschle *et al.*, 2015) ^d (Hirose *et al.*, 2018) ^e (Aaij *et al.*, 2015c) ^f (Aaij *et al.*, 2018b) F. Bernlochner, M. Franco Sevilla, D. Robinson, G. Wormser

arXiv:2101.08326, Review of Modern Physics

Belle II *R*(*D**) arXiv:2401.02840

LHCb $R(D^+)$ LHCb-PAPER-2024-007

Source	$\mathcal{R}(D^+)$	$\mathcal{R}(D^{*+})$
Form factors	0.023	0.035
$B \to D^{**}[D^+X]\mu/\tau\nu$ fractions	0.024	0.025
$\overline{B}^{+/0} \to D^+ X_c X$ fraction	0.020	0.034
Misidentification	0.019	0.012
Simulation size	0.009	0.030
Combinatorial background	0.005	0.020
Data/simulation agreement	0.016	0.011
Muon identification	0.008	0.027
Multiple candidates	0.007	0.017
Total systematic uncertainty	0.047	0.086

$B \rightarrow D^{(*)} \ell \overline{\nu}_{\ell}$ form factors impact the efficiency determination

• Lots of progress from lattice community:

nonzero-recoil	$B \to D^*$	form	factors
----------------	-------------	------	---------

Fermilab/MILC	HPQCD	JLQCD
arXiv:2105.14019	arXiv:2304.03137	arXiv:2306.05657

• Lots of progress from the experimental community: new Belle & Belle II measurements of $B \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}$ - differential distributions - angular coefficients Belle arXiv:2310.20286

				Systematic uncertainty [%]			Total uncert.		. [%]		
Result	Experiment	τ decay	Tag	MC stats	$D^{(*)} l u$	$D^{**}l u$	Other bkg.	Other sources	Syst.	Stat.	Total
	$B\!AB\!AR$ $^{\rm a}$	lνν	Had.	5.7	2.5	5.8	3.9	0.9	9.6	13.1	16.2
$\mathcal{R}(D)$	$\operatorname{Belle}^{\mathrm{b}}$	$\ell \nu \nu$	Semil.	4.4	0.7	0.8	1.7	3.4	5.2	12.1	13.1
	$\operatorname{Belle}^{\operatorname{c}}$	$\ell \nu \nu$	Had.	4.4	3.3	4.4	0.7	0.5	7.1	17.1	18.5
	$B\!AB\!AR$ $^{\rm a}$	$\ell \nu \nu$	Had.	2.8	1.0	3.7	2.3	0.9	5.6	7.1	9.0
	$\operatorname{Belle}^{\mathrm{b}}$	$\ell \nu \nu$	Semil.	2.3	0.3	1.4	0.5	4.7	4.9	6.4	8.1
$\mathcal{D}(D^*)$	$\operatorname{Belle}^{\operatorname{c}}$	$\ell \nu \nu$	Had.	3.6	1.3	3.4	0.7	0.5	5.2	13.0	14.0
$\mathcal{K}(D)$	$\operatorname{Belle}^{\operatorname{d}}$	$\pi\nu, \rho\nu$	Had.	3.5	2.3	2.4	8.1	2.9	9.9	13.0	16.3
	$\mathrm{LHCb}^{\mathrm{e}}$	$\pi\pi\pi\pi^{(\pi^0)}\nu$		4.9	4.0	2.7	5.4	4.8	10.2	6.5	12.0
	$\mathrm{LHCb}^{\mathrm{f}}$	μνν	_	6.3	2.2	2.1	5.1	2.0	8.9	8.0	12.0

^a (Lees *et al.*, 2012, 2013)

^b (Caria *et al.*, 2020) ^c (Huschle *et al.*, 2015) ^d (Hirose *et al.*, 2018) ^e (Aaij *et al.*, 2015c) ^f (Aaij *et al.*, 2018b)

F. Bernlochner, M. Franco Sevilla, D. Robinson, G. Wormser arXiv:2101.08326, Review of Modern Physics

Sizeable systematic impact from $B \rightarrow D^{**} \ell \overline{\nu}_{\ell}$ decays

Belle II $R(D^*)$ arXiv:2401.02840

LHCb $R(D^+)$ LHCb-PAPER-2024-007

Source	$\mathcal{R}(D^+)$	$\mathcal{R}(D^{*+})$
Form factors	0.023	0.035
$\overline{B} \to D^{**}[D^+X]\mu/\tau\nu$ fractions	0.024	0.025
$\overline{B}^{+/0} \to D^+ X_c X$ fraction	0.020	0.034
Misidentification	0.019	0.012
Simulation size	0.009	0.030
Combinatorial background	0.005	0.020
Data/simulation agreement	0.016	0.011
Muon identification	0.008	0.027
Multiple candidates	0.007	0.017
Total systematic uncertainty	0.047	0.086

Challenges: Feeddown from $\overline{B} \to D^{**} \ell \overline{\nu}_{\ell}$

•	$\mathcal{D}(D \to \Lambda_c c \nu_\ell) \sim 10.157$	0	
${ m D}^0\ell^+ u_\ell\ 2.31\%$	${ m D}^{*0}\ell^+ u_\ell$ 5.05 %	${f D^{**0}}\ell^+ u_\ell + {f Other} \ 2.38\%$	$\begin{array}{c} {\rm Gap} \\ \sim 1.05\% \end{array}$

 $\mathcal{B}(\mathrm{B}^+ \rightarrow X^0 \ell^+ \mu) \sim 10.70 \%$

Discrepancies in the measurements of $B o D^{**} \ell \overline{oldsymbol{ u}}_\ell$

- Tension in the available measurements
- Tension with theory prediction: $1/_2 \leftrightarrow 3/_2$ puzzle
- The nature of the D^{**} states is unclear

inclusive \neq sum of exclusive

- These poorly understood components lead to a sizeable systematic effect in the experimental measurements
- Common for Belle II & LHCb

U.G. Meißner arXiv:2005.06909, Symmetry

Challenges: Feeddown from $B \rightarrow D^{**} \ell \bar{\nu}_{\ell}$

- Is the $D_0^*(2300)$ a resonance from the quark model, or a more complex structure described by $U\chi PT$?
- Form factors for semileptonic $\overline{B} \to D^{**} \ell \overline{\nu}_{\ell}$ decays assume the narrow width approximation for the broad D^{**}

Dŋ D K

2.4

2.5

2.6

Inputs from hadron physics (theory and experiment) will drive us forward

Challenges: Feeddown from $\overline{B} \to D^{**} \ell \overline{\nu}_{\ell}$

- Modelling of $\overline{B} \to D^{**} \ell \overline{v}_{\ell}$ decays in simulation depends on proper knowledge of form factors
- Background estimation challenging
- Active progress from our theory colleagues

- Is the $D_0^*(2300)$ a resonance from the quark model, or a more complex structure described by $U\chi PT$?
- Form factors for semileptonic $\overline{B} \to D^{**} \ell \overline{v}_{\ell}$ decays assume the narrow width approximation for the broad D^{**}

E. J. Gustafson, F. Herren, R. S. Van de Water, R. van Tonder, M. L. Wagman arXiv:2311.00864

On-shell recursion + HQET

C. A. Manzari, D. J. Robinson arXiv:2402.12460

				\frown	Syste	ematic u	ncertainty [%]]	Total	uncert	. [%]
Result	Experiment	τ decay	Tag	MC stats	$D^{(*)} l u$	$D^{**}l u$	Other bkg.	Other sources	Syst.	Stat.	Total
	BABAR ^a	lνν	Had.	5.7	2.5	5.8	3.9	0.9	9.6	13.1	16.2
$\mathcal{R}(D)$	$Belle^{b}$	$\ell \nu \nu$	Semil.	4.4	0.7	0.8	1.7	3.4	5.2	12.1	13.1
	$\operatorname{Belle}^{\operatorname{c}}$	$\ell \nu \nu$	Had.	4.4	3.3	4.4	0.7	0.5	7.1	17.1	18.5
	$B\!AB\!AR$ $^{\rm a}$	$\ell \nu \nu$	Had.	2.8	1.0	3.7	2.3	0.9	5.6	7.1	9.0
	$\operatorname{Belle}^{\mathrm{b}}$	$\ell \nu \nu$	Semil.	2.3	0.3	1.4	0.5	4.7	4.9	6.4	8.1
$\mathcal{D}(D^*)$	$\operatorname{Belle}^{\operatorname{c}}$	$\ell \nu \nu$	Had.	3.6	1.3	3.4	0.7	0.5	5.2	13.0	14.0
$\mathcal{K}(D)$	$\operatorname{Belle}^{\operatorname{d}}$	$\pi\nu, \rho\nu$	Had.	3.5	2.3	2.4	8.1	2.9	9.9	13.0	16.3
	$\mathrm{LHCb}^{\mathrm{e}}$	$\pi\pi\pi(\pi^0) u$	·	4.9	4.0	2.7	5.4	4.8	10.2	6.5	12.0
	$\mathrm{LHCb}^{\mathrm{f}}$	μνν		6.3	2.2	2.1	5.1	2.0	8.9	8.0	12.0

Challenges: Simulation San

a	(Lees	et	al.,	2012,	2013)	
					/	

^b (Caria *et al.*, 2020) ^c (Huschle *et al.*, 2015) ^d (Hirose *et al.*, 2018) ^e (Aaij *et al.*, 2015c) ^f (Aaij *et al.*, 2018b)

F. Bernlochner, M. Franco Sevilla, D. Robinson, G. Wormser

arXiv:2101.08326, Review of Modern Physics

MC statistics is often the leading systematic uncertainty,

needed for:

- Fit templates
- Efficiency determination
- Training of MVA classifiers

"trivial but costly" to improve

Belle II *R*(*D**) arXiv:2401.02840

LHCb $R(D^+)$ LHCb-PAPER-2024-007

Source	$\mathcal{R}(D^+)$	$\mathcal{R}(D^{*+})$
Form factors	0.023	0.035
$\overline{B} \to D^{**}[D^+X]\mu/\tau\nu$ fractions	0.024	0.025
$\overline{B}^{+/0} \to D^+ X_c X$ fraction	0.020	0.034
Misidentification	0.019	0.012
Simulation size	0.009	0.030
Combinatorial background	0.005	0.020
Data/simulation agreement	0.016	0.011
Muon identification	0.008	0.027
Multiple candidates	0.007	0.017
Total systematic uncertainty	0.047	0.086

Tracker-only simulation

- New fast simulation technique which turns Calo showers.
 - Eight times faster and 40% less disk space.
 - Requires involved set of emulations to obtain trigger/PID response.
- Finite simulation size demoted from first to fifth largest systematic.

$\sigma_{\mathcal{R}(D^*)}~(\times 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}~(\times 10^{-2})$	Correlation
1.8	6.0	-0.49
1.5	4.5	
0.8	3.2	
0.7	2.1	
0.8	1.2	
0.3	1.2	
0.1	0.8	
0.5	0.5	
< 0.1	0.1	
< 0.1	0.1	
	$\sigma_{\mathcal{R}(D^*)} (\times 10^{-2})$ 1.8 1.5 0.8 0.7 0.8 0.3 0.1 0.5 < 0.1 < 0.1 < 0.1	$\begin{array}{c c c} \sigma_{\mathcal{R}(D^{*})} \ (\times 10^{-2}) & \sigma_{\mathcal{R}(D^{0})} \ (\times 10^{-2}) \\ \hline 1.8 & 6.0 \\ \hline 1.5 & 4.5 \\ \hline 0.8 & 3.2 \\ 0.7 & 2.1 \\ 0.8 & 1.2 \\ 0.3 & 1.2 \\ 0.3 & 1.2 \\ 0.1 & 0.8 \\ 0.5 & 0.5 \\ < 0.1 & 0.1 \\ < 0.1 & 0.1 \\ \hline \end{array}$

 $R(D^0)$

	- (- 1)	- (- 1)
Source	$\mathcal{R}(D^+)$	$\mathcal{R}(D^{*+})$
Form factors	0.023	0.035
$\overline{B} \to D^{**}[D^+X]\mu/\tau\nu$ fractions	0.024	0.025
$\overline{B}^{+/0} \to D^+ X_c X$ fraction	0.020	0.034
Misidentification	0.019	0.012
Simulation size	0.009	0.030
Combinatorial background	0.005	0.020
Data/simulation agreement	0.016	0.011
Muon identification	0.008	0.027
Multiple candidates	0.007	0.017
Total systematic uncertainty	0.047	0.086

Different fast simulation to that used for three-prong mode (<u>ReDecay</u>).

Figure 124:

LHCb-PAPER-2024-007

Latest RD+ measurement from LHCb

• Results:

 $R(D^+) = 0.249 \pm 0.043 \pm 0.047$ $R(D^{*+}) = 0.402 \pm 0.081 \pm 0.085$ LHCb-PAPER-2024-007

Status Quo & Quo Vadis

Searching for New Physics

New physics contribution alter signal and **background decay distributions** \rightarrow Impact on the acceptance and fitting templates

arXiv:2101.08326

Searching for New Physics

Challenge: We need MC for each NP working point

- Our standard generator EvtGen does not incorporate NP effects
- **Very** costly to re-produce MC at various NP working points

Luckily for us, this problem has been solved!

F. Bernlochner, S. Duell, Z. Ligeti, M. Papucci, D. J. Robinson arXiv:2002.00020, EPJC

It also allows us to perform **truly global** fits for $b \rightarrow c\tau \bar{\nu}_{\tau}$ transitions that **avoid biases and remove SM priors**

Searching for New Physics

Proof of concept

based on LHCb simulation and a Belle toy

J. Albrecht, F. Bernlochner, M. Colonna, B. Mitreska, M. Prim, I. Tsaklidis Work in progress

It also allows us to perform **truly global** fits for $b \rightarrow c\tau \bar{\nu}_{\tau}$ transitions that **avoid biases and remove SM** priors

Idea currently being discussed internally within the respective collaborations.

F. Bernlochner, M. Franco Sevilla, D. Robinson, G. Wormser arXiv:2101.08326, Review of Modern Physics Belle II Collaboration

arXiv:2207.06307, Snowmass White Paper

Glimpse into the future

More data to come! Will push precision of the $b \rightarrow c$ LFU ratios considerably

LHCb

Belle II

Discussion!

Backup

Challenges: Form Factors

