#### Partner Institutions : <sup>2</sup>University of Mainz <sup>3</sup>Indiana University <sup>4</sup>Maastricht University <sup>5</sup>Huazhong University

# Inclusive $B \to X_s \ell \ell$ at the LHC

Jack Jenkins University of Siegen<sup>1</sup>

Collaborators:

T. Huber<sup>1</sup>, T. Hurth<sup>2</sup>, E. Lunghi<sup>3</sup>, K. K. Vos<sup>4</sup>, Qin Qin<sup>5</sup>



1/15

Introduction

- The CKM+LFU paradigm of the Standard Model should be tested in all semileptonic reactions
- Unique to  $b \to s$  (among FCNCs): No suppression other than the QED loop factor  $\alpha^2/16\pi^2 \sim 10^{-6}$ 
  - $\circ$  GIM-allowed  $m_t \sim M_W$
  - $\circ$  CKM-allowed  $|V_{tb}V_{ts}| \sim |V_{cb}|^2$
- The SM contribution is already known to dominate  $B \to X_s \gamma$ and  $B_s \to \mu \mu$ .. the situation for observables sensitive to  $C_9$  is more complex due to  $c\bar{c}$  effects





Jack Jenkins

### Resonances in $B \rightarrow X_s \ell \ell$



2/15

Leading order: one loop in RG improved perturbation theory ( $C_{1,2}$  and  $C_9$  running)

- Leading power  $(m_b 
  ightarrow \infty)$ 
  - $\circ~$  pQCD at NNLO, e.g. two-loop  $\mathit{Q}_{1,2} \mathit{Q}_{7,9}$  interference
  - $\circ\,$  pQED:  $\alpha_e \ln(m_\ell/m_b)$  (collinear radiation) and finite  $\alpha_e$  (in branching ratios)
  - $\circ~$  Resonances: HVP functions for factorizable four-quark matrix elements
- Power corrections
  - High  $q^2$ : Local  $1/m_b^2$ ,  $1/m_b^3$  and  $1/m_c^2$
  - Low  $q^2$ : Nonlocal resolved contributions  $1/m_b$  (uncertainty added post-analysis)
- Parametric
  - $\circ~$  Default normalization to  $B \to X_c \ell \nu$  ( $|V_{cb}|^2$  and  $m_b^5$  prefactors cancel)
  - $\circ~$  Optional normalization to  $B \to X_u \ell \nu$

Power corrections dominate the error at high- $q^2$ , in particular four-quark operators which are suppressed in the ratio

$$\mathcal{R}(q_0^2) = \int_{q_0^2}^{M_B^2} dq^2 rac{d\mathcal{B}(B o X_s \ell \ell)}{dq^2} \left/ \int_{q_0^2}^{M_B^2} dq^2 rac{d\mathcal{B}(B o X_u \ell 
u)}{dq^2} 
ight.$$

The ratio above offers an indirect determination of the  $B \rightarrow X_s \ell \ell$  rate in the Standard Model (which relies on measurement of another rare decay)

$$\begin{split} \mathcal{B}[>15] &= (2.59 \pm 0.21_{\text{scale}} \pm 0.03_{m_t} \pm 0.05_{C,m_c} \pm 0.19_{m_b} \pm 0.004_{\alpha_s} \pm 0.002_{\text{CKM}} \\ &\pm 0.04_{\text{BR}_{\text{sl}}} \pm 0.26_{\rho_1} \pm 0.10_{\lambda_2} \pm 0.54_{f_{u,s}}) \times 10^{-7} \\ &= (2.59 \pm 0.68) \times 10^{-7} \\ \mathcal{R}(15) &= (27.00 \pm 0.25_{\text{scale}} \pm 0.30_{m_t} \pm 0.11_{C,m_c} \pm 0.17_{m_b} \pm 0.15_{\alpha_s} \pm 1.16_{\text{CKM}} \\ &\pm 0.37_{\rho_1} \pm 0.07_{\lambda_2} \pm 1.43_{f_{u,s}}) \times 10^{-4} \\ &= (27.00 \pm 1.94) \times 10^{-4} \,. \end{split}$$

### **Electromagnetic effects**



At the B factories, with a recoiling B, it is possible but not necessary to simulate or measure radiation from the leptons to trigger on  $B \rightarrow X \ell \ell$ .

The "true"  $q^2$  distribution is sensitive to QED logarithms of the lepton mass.

At LHCb, the B momentum must be inferred on the signal side even if there are unmeasured photons..

### **Results without log-enhanced QED corrections**

| $q^2$ range [GeV <sup>2</sup> ]       | [1,6]                             | [1, 3.5]       |                  | [3.5, 6]        |
|---------------------------------------|-----------------------------------|----------------|------------------|-----------------|
| $\mathcal{B}$ [10 <sup>-7</sup> ]     | $16.87 \pm 1.25$                  | $9.17\pm0.61$  |                  | $7.70\pm0.65$   |
| $\mathcal{H}_{T}$ [10 <sup>-7</sup> ] | $\textbf{3.14} \pm \textbf{0.25}$ | $1.49\pm0.09$  |                  | $1.65\pm0.17$   |
| $\mathcal{H}_L$ [10 <sup>-7</sup> ]   | $13.65\pm1.00$                    | $7.63\pm 0.54$ |                  | $}6.02\pm 0.49$ |
| $\mathcal{H}_A \ [10^{-7}]$           | $-0.27\pm0.21$                    | $-1.08\pm0.08$ |                  | $0.81\pm0.16$   |
| $q^2$ range [GeV <sup>2</sup> ]       | > 14.4                            |                | > 15             |                 |
| $\mathcal{B}$ [10 <sup>-7</sup> ]     | $3.04\pm0.69$                     |                | $2.59\pm0.68$    |                 |
| ${\cal R}(q_0^2)~[10^{-4}]$           | $26.02\pm1.76$                    |                | $27.00 \pm 1.94$ |                 |

# **Results including log-enhanced QED corrections**

| $q^2$ range [GeV <sup>2</sup> ]     | [1,6]                  | [1, 3.5]         | [3.5, 6]      |  |
|-------------------------------------|------------------------|------------------|---------------|--|
| $\mathcal{B}$ [10 <sup>-7</sup> ]   | $17.41 \pm 1.31$       | $9.58\pm0.65$    | $7.83\pm0.67$ |  |
| $\mathcal{H}_T$ $[10^{-7}]$         | $4.77\pm0.40$          | $2.50\pm0.18$    | $2.27\pm0.22$ |  |
| $\mathcal{H}_L$ [10 <sup>-7</sup> ] | $12.65\pm0.92$         | $7.085\pm0.48$   | $5.56\pm0.45$ |  |
| $\mathcal{H}_A \ [10^{-7}]$         | $-0.10\pm0.21$         | $-0.989\pm0.080$ | $0.89\pm0.16$ |  |
| $q^2$ range [GeV <sup>2</sup> ]     | > 14.4                 |                  |               |  |
| $\mathcal{B}$ [10 <sup>-7</sup> ]   | $2.66\pm0.70$          |                  |               |  |
| ${\cal R}(q_0^2) \; [10^{-4}]$      | $24.12\pm2.01^\dagger$ |                  |               |  |

† The denominator of  $\mathcal{R}(q_0^2)$  (the  $B \to X_u \ell \nu$  rate) does not include log-enhanced QED corrections

Charged  $(B^{\pm} \to K^{\pm} \mu \mu)$  and neutral  $(B^0 \to K^0 \mu \mu)$  branching ratios  $(\times 10^{-7})$  are available from LHCb over a common phase space  $q^2 > 15 \text{ GeV}^2$ 

|                        | Charged                 | Neutral                 | lsospin avg.              |
|------------------------|-------------------------|-------------------------|---------------------------|
| B  ightarrow K         | $0.85\pm0.05$           | $0.66\pm0.11$           | $0.82\pm0.05^{\dagger}$   |
| $B  ightarrow K^*$     | $1.58\pm0.33$           | $1.74\pm0.14$           | $1.72\pm0.13^{\dagger}$   |
| $B  ightarrow K + K^*$ | $2.43\pm0.33^{\dagger}$ | $2.41\pm0.18^{\dagger}$ | $2.41 \pm 0.16^{\dagger}$ |

† Combinations do not include correlations from common backgrounds

Estimate nonresonant contributions by S-wave  $K\pi$  [Isidori et al '23]

$$\mathcal{B}(B 
ightarrow (K\pi)_{s}\ell\ell) [>15] = \mathbf{0.58} \pm \mathbf{0.25}$$

Semi-inclusive determination:

$$\begin{split} \mathcal{B}[>15]_{\rm LHCb+ChiPT} &= 3.00 \pm 0.30 \\ \mathcal{B}[>15]_{\rm LHCb+ChiPT}^{\rm charged \ only} &= 3.01 \pm 0.43 \end{split}$$

Jack Jenkins



- Interpolated B factory results to LHCb's phase space:
  - $\circ$  BaBar:  $q^2 > 14.2$  ( $e/\mu$  avg)
  - $\circ$  Belle:  $q^2 > 14.4$  ( $e/\mu$  avg)
  - $\circ$  LHCb:  $q^2 > 15$  (noQED,  $\mu$  only)
- Used inclusive theory predictions to correct for phase space and QED

$$\sim \mathcal{B}[>14.4]/\mathcal{B}[>14.2] = 0.96 \ \sim \mathcal{B}[>15]_{
m noQED}/\mathcal{B}[>14.4] = 0.96$$

### No clear anomaly in the inclusive mode

Our analysis does not reproduce a deficit in the data w.r.t. theory reported by Isidori et al '23

Jack Jenkins

#### Extrapolated LHCb+ChiPT to Belle's phase space



- Direct, indirect theory determinations are in better agreement for  $q^2 > 14 \, {\rm GeV}^2$
- Experimental average is compatible with both theory determinations
- Low- $q^2$  also in agreement

# Constraints on $C_9$ and $C_{10}$

- Three branching ratio constraints:  $B o X_s \ell \ell$  (low- $q^2$  and high- $q^2$ ) and  $B_s o \mu \mu$
- With (left) and without (right) normalization to  $B o X_u \ell 
  u$  at high- $q^2$



## Constraints on $C_9$ and $C_{10}$ (expanded plane)



# Belle II projections

The angular decomposition in the low- $q^2$  region would be key to extracting  $C_9$  from inclusive analyses at Belle II





- We considered the effect of collinear photon radiation in inclusive  $B \to X_s \ell \ell$ , suitable for analyses at LHCb
- The inclusive theory predictions can also be used to compare LHCb results to the B factories: bounds on  $C_9$  from the inclusive mode are consistent with the SM.

Several directions to progress (before a fully inclusive measurement at Belle II):

- LHCb updates of  $B o {\cal K}^{(*)}$  at high- $q^2$
- Closer look at  $K\pi$  and  $K\pi\pi$  (theory and experiment)
- Updates of power corrections parameters and  $B 
  ightarrow X_u \ell 
  u$

### Inclusive $B \rightarrow X_s \ell \ell$ at the LHC

Thank you for listening ! Any Questions ?