Partner Institutions : ²University of Mainz ³Indiana University ⁴Maastricht University ⁵Huazhong University

Inclusive $B \to X_s \ell \ell$ at the LHC

Jack Jenkins University of $Siegen¹$

Collaborators:

T. Huber¹, T. Hurth², E. Lunghi³, K. K. Vos⁴, Qin Qin⁵

1/15

- The SM contribution is already known to dominate $B \to X_s \gamma$ and $B_s \rightarrow \mu\mu$.. the situation for observables sensitive to C_9 is more complex due to $c\bar{c}$ effects
- Unique to $b \rightarrow s$ (among FCNCs): No suppression other than the QED loop factor $\alpha^2/16\pi^2\sim 10^{-6}$

• The CKM+LFU paradigm of the Standard Model should be

⊙ GIM-allowed $m_t \sim M_W$

Introduction

○ $\,$ CKM-allowed $|V_{tb}V_{ts}| \sim |V_{cb}|^2$

tested in all semileptonic reactions

b s t

 W س کر W γ, Z ℓ

Jack Jenkins

Resonances in $B \to X_s \ell \ell$

2/15

Leading order: one loop in RG improved perturbation theory $(C_{1,2}$ and C_9 running)

- Leading power $(m_b \to \infty)$
	- pQCD at NNLO, e.g. two-loop Q1,² − Q7,⁹ interference
	- \circ pQED: α_e ln(m_ℓ/m_b) (collinear radiation) and finite α_e (in branching ratios)
	- Resonances: HVP functions for factorizable four-quark matrix elements
- Power corrections
	- $\circ~$ High q^2 : Local $1/m_b^2$, $1/m_b^3$ and $1/m_c^2$
	- \circ Low q^2 : Nonlocal resolved contributions $1/m_b$ (uncertainty added post-analysis)
- Parametric
	- \circ Default normalization to $B\to X_c\ell\nu\ (|V_{cb}|^2$ and m_b^5 prefactors cancel)
	- \circ Optional normalization to $B \to X_u \ell \nu$

Power corrections dominate the error at high- q^2 , in particular four-quark operators which are suppressed in the ratio

$$
\mathcal{R}(q_0^2) = \int_{q_0^2}^{M_B^2} dq^2 \frac{d\mathcal{B}(B \to X_s\ell\ell)}{dq^2} / \int_{q_0^2}^{M_B^2} dq^2 \frac{d\mathcal{B}(B \to X_u\ell\nu)}{dq^2}
$$

The ratio above offers an indirect determination of the $B \to X_s \ell\ell$ rate in the Standard Model (which relies on measurement of another rare decay)

$$
\mathcal{B}[>15] = (2.59 \pm 0.21_{\text{scale}} \pm 0.03_{m_t} \pm 0.05_{C,m_c} \pm 0.19_{m_b} \pm 0.004_{\alpha_s} \pm 0.002_{\text{CKM}} \pm 0.04_{\text{BR}_{\text{sl}}} \pm 0.26_{\rho_1} \pm 0.10_{\lambda_2} \pm 0.54_{f_{u,s}}) \times 10^{-7} \n= (2.59 \pm 0.68) \times 10^{-7} \n\mathcal{R}(15) = (27.00 \pm 0.25_{\text{scale}} \pm 0.30_{m_t} \pm 0.11_{C,m_c} \pm 0.17_{m_b} \pm 0.15_{\alpha_s} \pm 1.16_{\text{CKM}} \n\pm 0.37_{\rho_1} \pm 0.07_{\lambda_2} \pm 1.43_{f_{u,s}}) \times 10^{-4} \n= (27.00 \pm 1.94) \times 10^{-4} .
$$

Electromagnetic effects

At the B factories, with a recoiling B, it is possible but not necessary to simulate or measure radiation from the leptons to trigger on $B \to X \ell \ell$.

The "true" q^2 distribution is sensitive to QED logarithms of the lepton mass.

At LHCb, the B momentum must be inferred on the signal side even if there are unmeasured photons..

Results without log-enhanced QED corrections

Results including log-enhanced QED corrections

 \dagger The denominator of $\mathcal{R}(q_0^2)$ (the $B\to X_u\ell\nu$ rate) does not include log-enhanced QED corrections

Charged $(B^{\pm} \to K^{\pm} \mu \mu)$ and neutral $(B^{0} \to K^{0} \mu \mu)$ branching ratios $(\times 10^{-7})$ are available from LHCb over a common phase space $q^2>15$ GeV 2

† Combinations do not include correlations from common backgrounds

Estimate nonresonant contributions by S-wave $K\pi$ [Isidori et al '23]

$$
\mathcal{B}(B\to (K\pi)_s\ell\ell)[>15] = \textbf{0.58} \pm \textbf{0.25}
$$

Semi-inclusive determination:

 $|B| > 15$ _{LHCb+ChiPT} = **3.00** \pm **0.30** $\mathcal{B}[>15]_{\text{LHCb+ChiPT}}^{\text{charged only}}=3.01\pm0.43$

Jack Jenkins

- Interpolated B factory results to LHCb's phase space:
	- $\circ~$ BaBar: $~q^2>14.2~(e/\mu$ avg)
	- $\circ~$ Belle: $~q^2>$ 14.4 $(e/\mu$ avg)
	- \circ LHCb: $q^2 > 15$ (noQED, μ only)
- Used inclusive theory predictions to correct for phase space and QED

\n- $$
\beta
$$
 > 14.4]/B[> 14.2] = 0.96
\n- β > 15]_{noQED}/B[> 14.4] = 0.97
\n

No clear anomaly in the inclusive mode

Our analysis does not reproduce a deficit in the data w.r.t. theory reported by Isidori et al '23

Jack Jenkins

Extrapolated LHCb+ChiPT to Belle's phase space

- Direct, indirect theory determinations are in better agreement for $q^2>14\,{\rm GeV}^2$
- Experimental average is compatible with both theory determinations
- Low- q^2 also in agreement

Constraints on C_9 and C_{10}

- \bullet Three branching ratio constraints: $B\to X_s\ell\ell$ (low- q^2 and high- $q^2)$ and $B_s\to\mu\mu$
- $\bullet\,$ With (left) and without (right) normalization to $B\to X_u\ell\nu$ at high- q^2

Constraints on C_9 and C_{10} (expanded plane)

Belle II projections

The angular decomposition in the low- q^2 region would be key to extracting \mathcal{C}_9 from inclusive analyses at Belle II

- We considered the effect of collinear photon radiation in inclusive $B \to X_s \ell \ell$, suitable for analyses at LHCb
- The inclusive theory predictions can also be used to compare LHCb results to the B factories: bounds on C_9 from the inclusive mode are consistent with the SM.

Several directions to progress (before a fully inclusive measurement at Belle II):

- $\bullet\,$ LHCb updates of $B\to K^{(\ast)}$ at high- q^2
- Closer look at $K\pi$ and $K\pi\pi$ (theory and experiment)
- Updates of power corrections parameters and $B \to X_u \ell \nu$

Inclusive $B \to X_s \ell \ell$ at the LHC

Thank you for listening ! Any Questions ?