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Why we do it:

• A measurement of observables

• Unambiguous(ish), average, re-interpret

• What is your mK⇡ window?

• (Almost) model independent

• Scalars, tensors, CP-asymmetries

• Full value for the data

• Binning inherently loses information

• Too many observables

• Nice statistical behaviour

• Care for theory fits

[EPJC 83 (2023) 648]
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• We quote a central value ±� and correlation matrix

• Implicitly assuming (symmetric) parabolic �2NLL up to 1� around central value

• What if we quote y .yy+�+

���? Do the WC fits really use a bifurcated Gaussian?

• What if we know the central value is biased?

• Estimate the size of the bias? It depends on the unknown true value

• What does this mean for the correlation matrix?

• Coverage correction with Feldman-Cousins method?

• How would a WC coe�cient fit use a confidence interval?

• What if the fitted central value is outside the quoted interval?

• What about the correlation matrix?

• Practically can only use Feldman-Cousins method for  2 observables at once

• Physical boundaries may be defined by the combination of several observables
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• Model independent
dB
dq2

• Complete

CP-asymmetries

• Complete S-wave &

interference

• Symmetry check

• and more...

B ! K
⇤
µ
+
µ
�

9 April 2024 5 / 5



from  bins to -unbinned analysesq2 q2



Different type of analysis

1

Tom Hadavizadeh

Choosing the  modelq2

12

Z-expansion Dispersion 
relation

Amplitude 
ansatz

Generalised model Specific model  

The question we’d like to address:  
Do the anomalies persist, even if we allow interference with non-local 
amplitudes?

Four different analyses are being performed with different choices 
of the  treatment  q2

Binned fit

Model independent Model dependent
UnbinnedBinned

Binned angular 
observables AL,R(q2)

C(′ )
9,10

+ non-local 
polynomial  

C(′ )
9,10

+ Non-local phases & 
magnitudes 

Cτ
9

Modelling of the decay amplitudes

coming soon… LHCb-PAPER-2024-011 
in preparation

PRL 132 (2024) 131801 
PRD 109 (2024) 052009



z-expansion vs dispersion relation

2

- Usual experimental treatment of B  K*mumu 
(acceptance, combinatorial, etc.) 

- Local form factors (FFs)

Commonalities Differences

Constrained to: 
‣ light-cone sum rules 
‣ lattice QCD
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- Modelling of the non-local contribution 
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z-expansion
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Dispersion relation

4

Tom HadavizadehMoriond QCD

New results 
✓ Unbinned amplitude analysis to the whole  region 

✓ First measurement using the full Run1 [2011-2012] and Run2 [2016-2018] data 

q2 ≡ m2(μ+μ−)

12

Local Non-local contributions 
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cc̄ (q2) + Yττ̄(q2)Moving forward: ⇠⇠⇠⇠Isobar Dispersion model

Adopt alternative (more physical) model for non-local effects [Inspired by Cornella
et al]

⌘ Also useful to compare with our more naive model

PO, KP, UE, TH, MH Unbinned B0 ! K+⇡�µ+µ� Weekly meeting 15 / 19
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C. Cornella, G. Isidori, M. König, S. Liechti, P. Owen, N. 
Serra [Eur.Phys.J.C 80 (2020) 12, 1095]

Dispersion 
Relation

Tau loop 
contribution 

Moving forward: ⇠⇠⇠⇠Isobar Dispersion model
Adopt alternative (more physical) model for non-local effects [Inspired by Cornella
et al]

⌘ Also useful to compare with our more naive model

PO, KP, UE, TH, MH Unbinned B0 ! K+⇡�µ+µ� Weekly meeting 15 / 19
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Sensitive to Cτ
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LHCb-PAPER-2024-011,  
in preparation  New

Subtraction term

This is determined 
theoretically at  
negative  valuesq2

Asatrian, Greub, Virto 
[JHEP 04 (2020) 012]

Negligible impact from light 
quarks
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Polarisation 
dependent shift 

to  C7
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Signal parameters

5

z-expansion dispersion relation

Tom HadavizadehMoriond QCD

Analysis strategy 

13

Angular analysis preformed in the three decay angles and q2

• Resolution  

• S-wave parameters 

• Background model 

From Data

Fit determines 150 parameters: 
• , . , , 

• Mag. and Phase of 1-particle resonances

• Real+Imag   per helicity


•  per helicity

• Form factors 

ℜ(C9) ℜ(C10) ℜ(C′ 9) ℜ(C′ 10) ℜ(Cτ
9)

D(*)D(*)

ΔC7

LHCb-PAPER-2024-011,  
in preparation  

• Acceptance model 
From Simulation

New

• Local  Form factors B → K*
From Theory

GRvDV [JHEP 09, 133 (2022)]Gaussian constrained 
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•  

• Real+Imag non-local parameters  (18-30 pars)

• Form factors

αn
λ

ℛ(C9), ℛ(C10), ℛ(C′ 9), ℛ(C′ 10)
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Results

14
Figure 5: The q2 projection from the baseline data fit. The total PDF is decomposed into signal
and background components, with the signal contributions further decomposed into local and
nonlocal contributions as described in Sec. 2.5.1. Note the hybrid linear/log scale to incorporate
the very tall peaks from the charmonium states.

uncertainties. The SM values for the Wilson Coe�cients obtained from Ref. [14] are708

also indicated in Fig 6, revealing a 2.1� deviation in the C9 fit result, and otherwise709

good agreement with SM. Two-dimensional likelihood profiles for C(0)
9,10 are also obtained,710

as shown in Fig. 7. The parameters of the dominant nonlocal contributions, i.e. the711

one-particle resonance amplitudes, are listed in Tables 5 and 6, and the two-particle and712

non-resonant contributions to C7 are given in Table 7.713

The prior and posterior values for the local form factor parameters are given in Table 8.714

Projections of the fit on the angles as well as q2 in the individual subregions can be found715

in Fig. 17 in Appendix C.716

7 Discussion717

The primary observation to be made based on the results of Sec. 6 is that while the718

data-driven nonlocal model used in this analysis shows that there is some contribution of719

nonlocal amplitudes in the q2 regions used by previous binned analyses [4], it still prefers720

a value of C9 that is shifted from the SM expectation. Based on a 1D profile likelihood721

24

C Fit projections in q2
sub-regions890

The four-dimensional maximum likelihood fit to the signal region is performed simultane-891

ously in three q2 regions, as described in Sec. 3.3. The results of the fits to the cos ✓K ,892
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Figure 3: Distribution of the fit variables for the combined Run1 and 2016 datasets. The
distributions of the three angles, q2, and k2 are given for candidates within a window of
±50MeV/c2 around the known B0 mass. The total fit projections together with the individual
signal and background components are overlaid.

7 Systematic uncertainties377

There are di↵erent categories of systematic uncertainties that a↵ect the extraction of the378

parameters of interest, from the choice of the nominal amplitude model and the inclusion379

of external inputs in the fit, to imperfect modelling of experimental e↵ects. The distinct380

sources of systematic uncertainties are discussed in detail below and are summarised in381

Table 4. The size of each systematic uncertainty is estimated using pseudoexperiments382

generated using the observed signal and background yields. The parameters of interest383

are determined from these pseudoexperiments under the nominal and the systematically384

varied hypotheses. In most of the cases, the average di↵erence between the two results is385

taken as an estimation of the systematic uncertainty. Exceptions to this are the systematic386
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the very tall peaks from the charmonium states.

uncertainties. The SM values for the Wilson Coe�cients obtained from Ref. [14] are708

also indicated in Fig 6, revealing a 2.1� deviation in the C9 fit result, and otherwise709

good agreement with SM. Two-dimensional likelihood profiles for C(0)
9,10 are also obtained,710

as shown in Fig. 7. The parameters of the dominant nonlocal contributions, i.e. the711

one-particle resonance amplitudes, are listed in Tables 5 and 6, and the two-particle and712

non-resonant contributions to C7 are given in Table 7.713

The prior and posterior values for the local form factor parameters are given in Table 8.714

Projections of the fit on the angles as well as q2 in the individual subregions can be found715

in Fig. 17 in Appendix C.716

7 Discussion717

The primary observation to be made based on the results of Sec. 6 is that while the718

data-driven nonlocal model used in this analysis shows that there is some contribution of719

nonlocal amplitudes in the q2 regions used by previous binned analyses [4], it still prefers720

a value of C9 that is shifted from the SM expectation. Based on a 1D profile likelihood721

24

C Fit projections in q2
sub-regions890

The four-dimensional maximum likelihood fit to the signal region is performed simultane-891

ously in three q2 regions, as described in Sec. 3.3. The results of the fits to the cos ✓K ,892

cos ✓`, �, and q2 distributions within each of the three regions are shown in Fig. 17.893

Figure 17: Result of the fit to candidates in the signal mass region. The four rows correspond to
the distributions of cos ✓K , cos ✓`, � and q2. The three columns correspond to the low-, mid- and
high-q2 regions. The total PDF is shown in blue, the signal PDF in red and the background PDF
in dotted black. The impact of the neglected exotic states is visible in the cos ✓K distributions.
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Figure 9: The nonlocal contributions from (maroon) this analysis that includes one- and two-
particle hadronic amplitudes expressed as shifts to C9. The contributions from the �C�

7 terms
are also included, but the tau-loop contribution is excluded. The results of z-expansion fits [37]
from the 4.7 fb�1 LHCb analysis [32] are also shown (pink) with and (yellow) without theory
input from q2 < 0. See text for more detail.
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Figure 9: The nonlocal contributions from (maroon) this analysis that includes one- and two-
particle hadronic amplitudes expressed as shifts to C9. The contributions from the �C�

7 terms
are also included, but the tau-loop contribution is excluded. The results of z-expansion fits [37]
from the 4.7 fb�1 LHCb analysis [32] are also shown (pink) with and (yellow) without theory
input from q2 < 0. See text for more detail.
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.

of the coe�cients squared over all b ! s`` processes must be below unity. However, the470

dispersive bound is found to be irrelevant for this analysis since it is very far from being471

fulfilled, as the sum of the coe�cients squared, after the appropriate basis transformation,472

is found to be of the order of O(10�3), for the fit result without the constraints at negative473

q2.474

Finally, a good compatibility between the input values and corresponding fit results475

is observed on all the B0 !  nK⇤0 observables. Moreover, in addition to the di↵erences476

of phases provided by B0 !  nK⇤0 external measurements, this analysis introduces477

another phase di↵erence that can be determined from the model, the di↵erence between478

the phase of A n
0 and the local amplitudes. The phase di↵erence of the J/ longitudinal479

amplitude (at the J/ mass pole) with respect to the rare mode is found to be �1.55+0.22
�0.18480

for the fit result with the q2 < 0 constraints and �1.61+0.22
�0.20 for the one without these481

constraints,3 showing a good agreement between the two fit configurations. This result is482

also compatible with one of the two solutions obtained in the measurement of the phase483

di↵erence between B+ ! K+µ+µ� and B+ ! J/ K+ decays [21], which are ruled by484

the same rare-electroweak and tree-level underlying transitions, respectively, but with a485

di↵erent spectator quark. The phase di↵erence of A (2S)
0 with respect to the rare mode486

shows an almost complete degeneracy and cannot be determined precisely from the fit.487

3The fit result with q2 > 0 only information shows a second solution at about �J/ 0 7! �J/ 0 + ⇡, which is
however excluded at more than 3�.
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correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.

of the coe�cients squared over all b ! s`` processes must be below unity. However, the470

dispersive bound is found to be irrelevant for this analysis since it is very far from being471

fulfilled, as the sum of the coe�cients squared, after the appropriate basis transformation,472

is found to be of the order of O(10�3), for the fit result without the constraints at negative473

q2.474

Finally, a good compatibility between the input values and corresponding fit results475

is observed on all the B0 !  nK⇤0 observables. Moreover, in addition to the di↵erences476

of phases provided by B0 !  nK⇤0 external measurements, this analysis introduces477

another phase di↵erence that can be determined from the model, the di↵erence between478

the phase of A n
0 and the local amplitudes. The phase di↵erence of the J/ longitudinal479

amplitude (at the J/ mass pole) with respect to the rare mode is found to be �1.55+0.22
�0.18480

for the fit result with the q2 < 0 constraints and �1.61+0.22
�0.20 for the one without these481

constraints,3 showing a good agreement between the two fit configurations. This result is482

also compatible with one of the two solutions obtained in the measurement of the phase483

di↵erence between B+ ! K+µ+µ� and B+ ! J/ K+ decays [21], which are ruled by484

the same rare-electroweak and tree-level underlying transitions, respectively, but with a485

di↵erent spectator quark. The phase di↵erence of A (2S)
0 with respect to the rare mode486

shows an almost complete degeneracy and cannot be determined precisely from the fit.487

3The fit result with q2 > 0 only information shows a second solution at about �J/ 0 7! �J/ 0 + ⇡, which is
however excluded at more than 3�.

17

z-expansion dispersion relation

- Good agreement in the 
real part between the 
two fit configurations 

- Small discrepancy in 
the imaginary part                  

In general, good agreement 
between the two analyses!

preliminary

preliminary



Wilson coefficients 2D

9

‣ Results consistent with current global analyses of  decaysb → sμ+μ−

2 3 4 5
Re(C9)

�4.5

�4.0

�3.5

�3.0

�2.5

R
e(
C 1

0)

LHCb 4.7 fb�1 q2 > 0 only
q2 < 0 constr.
SM

Figure 7: Two-dimensional profile likelihood scan of the Wilson coe�cients. Shaded areas
correspond to the one (68% CL) and two (95% CL) sigma contour regions. Dotted contours
in the top left plot assume right-handed Wilson coe�cients fixed to their SM values, i.e.
C0
9 = C0

10 = 0.

decay rate, d2�P/dq2dk2, both integrated over the k2. The determination of these angular522

observables o↵ers an important perspective for the validation and interpretation of the523

results. Figures 8 and 9 show the q2-dependent angular observables derived from the524

amplitude fit results. The contributions from non-local e↵ects to the so-called CP -averaged525

Si [27] and corresponding optimised Pi [13] series of observables, �S(P )bscc̄i , is also il-526

lustrated in the plots. In general, the post-fit determination of the angular observables527

agrees very well with the dedicated measurement of Ref. [9] and the overall impact of528

non-local hadronic contributions on the angular observables is found to be compatible529

between the two tested fit configurations. The only exception is observed in the S7 (P 0
6)530

observable, which is related to the imaginary part of the product of the longitudinal and531

parallel amplitudes, where the fit result that includes the theory points at q2 < 0 does532

not have enough freedom to fully accommodate the shape observed in the physical region.533

This is a reflection of the di↵erent behaviour of the imaginary part of H�(q2) between the534

two fit configurations observed in Sec. 8.2. In addition, a closer look at the P 0
5 observable535
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Figure 5: 1 and 2� contours of the posterior samples of the C
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9
, C
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10
fit. All other

Wilson coe�cients are assumed SM-like. The strong dispersive bound is applied to

all samples. The pulls are 5.7�, 2.7� and 2.6� for B ! Kµ
+
µ

� + Bs ! µ
+
µ

�,

B ! K
⇤
µ

+
µ

�, and Bs ! �µ
+
µ

�, respectively.

discussed previously in the literature [85–89]. To compute the SM-pull in the marginalized

posterior plane, we approximate the posterior distributions with Gaussian mixture densities

and compute the isobar of the distribution corresponding to the SM point. We find pulls of

5.7�, 2.7� and 2.6� for B ! Kµ
+
µ

� + Bs ! µ
+
µ

�, B ! K
⇤
µ

+
µ

�, and Bs ! �µ
+
µ

�,

respectively.

A summary of our fit results is shown in the “BSM9,10” columns of Table 5. We observe

a small improvement of the goodness-of-fit in B ! K
⇤
µ

+
µ

� with respect to the SM fit, as

expected from our previous comments. For Bs ! �µ
+
µ

�, the improvement in the global

�
2 value is also marginal, resulting in a smaller p value. However, as can be inferred from

the values in parenthesis, the best-fit point can now be obtained without distortion of the

hadronic parameters. The B ! Kµ
+
µ

� fit is also improved in the presence of BSM physics,

but a tension remains. We find that the large �
2 value is driven by Belle 2019 measurement of

the semi-leptonic branching ratio. Being in agreement with SM predictions, this measurement

is de facto in tension with the measurements of the other collaborations.

From our results we conclude that the non-local FFs are not the source of the tension

between SM predictions and data: floating these FFs is insu�cient to bring the three processes

in agreement with the SM. We also find that the local FFs are driving the uncertainties. For

the process Bs ! �µ
+
µ

� in particular, the tension with the SM increases substantially when

we use light-meson LCSR results [29] instead of the the B-LCSR results [39] for the local FFs;

see the discussion in Section 4.1.
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S8, and S9 are calculated at the J/ pole mass, and compared along with the magnitudes766

and phases, |AJ/ 
k,?| and ✓J/ k,?, to the results reported by LHCb [40]. Agreement within 1.5�767

is observed between the two measurements for all observables, magnitudes, and phases.768

The measured magnitudes and phases of B0! J/ K⇤0 and B0!  (2S)K⇤0 transitions769

are also in good agreement with previous amplitude analyses performed by Belle [42, 65],770

once the systematic uncertainties due to the presence of Z(4430) and Z(4200) states are771

accounted for.772

In order to check that the model used in this analysis is complete regarding its773

description of the nonlocal contributions, an alternative fit is performed in which the774

values of C9 and C10 are allowed to carry a linear dependence on q2. Specifically, the775

following replacements are made,776
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included. The horizontal and vertical dotted lines show the Standard Model values.

presence of right-handed currents.729

This is the first direct measurement of C9⌧ , and the value of C9⌧ = �116 ± 264 ±730

98 is consistent with both zero and the SM expectation of lepton flavour universality,731

CSM
9⌧ = 4.27 [14]. The uncertainty on C9⌧ is dominated by statistical e↵ects. The largest732

systematic uncertainty, accounting for ⇠ 30% of the total uncertainty, arises from the733

constraint on the relative size of the B0 ! D(⇤)D̄(⇤)K⇤0 contributions, as detailed in734

section 2.5.1. The development of theory calculations that can be used to constrain the735

B0 ! D(⇤)D(⇤)(! µ+µ�)K⇤0 amplitudes would help improve sensitivity to C9⌧ in future736

measurements.737

The current best upper limit on B(B0 ! K⇤0⌧+⌧�) is 3.1 ⇥ 10�3 (90% C.L.) [64],738

corresponding to an upper limit of |C9⌧ | < 681 at 90% C.L. (assuming no New Physics739

contribution in C10⌧ ) or |C9⌧ | < 595 (assuming C10⌧ = �C9⌧ ). The 90% upper C.L. on |C9⌧ |740

from this work is |C9⌧ | < 501 (|C9⌧ | < 596 at 95% C.L.). To convert the upper limits on741

B(B0 ! K⇤0⌧+⌧�) in Ref. [64] to upper limits on |C9⌧ | the flavio package [65] was used,742

with local B0! K⇤0 form factors from Ref. [29] and subleading e↵ects parameterised as743

in Ref. [15].744

A number of cross-checks are performed to validate the results of this analysis. The745
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Biggest deviation is  with 

 at  from SM
C9

ΔCNP
9 = − 0.71 2.1σ
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Global significance  from SM∼ 1.5σ

LHCb-PAPER-2024-011,  
in preparation  

 dominates systematic 
uncertainty 
ℬ(B0 → J/ψK*0)

Table 4: Results for the Wilson coe�cients. The first uncertainty is statistical, while the second
is systematic.

Wilson coe�cient results
C9 3.56 ± 0.28 ± 0.18
C10 �4.02 ± 0.18 ± 0.16
C 0
9 0.28 ± 0.41 ± 0.12

C 0
10 �0.09 ± 0.21 ± 0.06

C⌧
9 �116 ± 264 ± 98

asses this bias, pseudoexperiments are generated with the di↵erence between the open-676

charm components set to 1.5. These pseudoexperiments are then fitted twice, once677

with the baseline constraint-width, and once with an unbiased constraint-width of 1.5.678

The di↵erence in the fit results is assigned as a systematic, and besides the open-charm679

parameters, the main a↵ected parameters are C9 and C9⌧ , with systematic uncertainties680

of 24% and 29% of the statistical uncertainty respectively.681

5.5 Sub-dominant e↵ects682

The experimental resolution in the angles cos ✓`, cos ✓K , and � is not explicitly accounted683

for in the signal model. Unlike the q2 spectrum, however, the angular distributions contain684

no sharp peaks and are thus not greatly a↵ected by the detector resolution. Ensembles of685

pseudoexperiments emulating the e↵ects of the angular resolution were used to confirm686

that this has no significant e↵ects on the signal parameters of interest.687

The q2 resolution is accounted for in the baseline model as described in Sec. 3.3. The688

parameters of the resolution model are assumed to remain constant within each q2 region689

— an approximation that holds to varying degrees as a function of q2. Pseudoexperiments690

investigating the e↵ects of mismodelling the q2 resolution were performed and no significant691

e↵ects were observed to result from this assumption.692

After the full selection has been applied, the fraction of events that contain more693

than one candidate is approximately 0.18%. These events are unlikely to correspond694

to multiple true candidates and are not distributed evenly throughout the phase space.695

However, the distribution of events with multiple candidates is found to be well modelled696

in simulation, hence all candidates are retained in the subsequent analysis and a small697

systematic uncertainty related to their inclusion is determined from simulation.698

6 Results699

The full q2 spectrum resulting from the simultaneous fit is shown overlaid on the data in700

Fig. 5. The total PDF is decomposed into signal and background components, and the701

signal component is further decomposed into the contributions from local amplitudes, one-702

and two-particle nonlocal amplitudes, and the interference between them. The same results703

are shown with alternative signal decompositions in Figs. 18 and 19 in Appendix C.1.704

The optimal values of the Wilson Coe�cients C(0)
9,10 and C9⌧ are listed in Table 4. The705

corresponding one-dimensional likelihood profiles are shown in Fig. 6, wherein the 1�,706

2�, and 3� confidence intervals are indicated considering both statistical and systematic707
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2.1σ
0.6σ
0.7σ
0.4σ
0.4σ

New

In agreement with previous unbinned 
analysis  

Global significance 1.3 (1.4) σ

di↵erence between B+ ! K+µ+µ� and B+ ! J/ K+ decays [21], which are ruled by
the same rare-electroweak and tree-level underlying transitions, respectively, but with a
di↵erent spectator quark. The phase di↵erence of A (2S)

0 with respect to the rare mode
shows an almost complete degeneracy and cannot be determined precisely from the fit.

8.3 Wilson coe�cients

Table 5 reports the values of the Wilson coe�cients for the two fit configurations, together
with their confidence intervals (C.I.) and compatibility with the Standard Model. For each
of the four Wilson coe�cients, confidence intervals are built from the one-dimensional
profile likelihood scans shown in Fig. 6. The 68% (95%) C.I. range is identified with the
interval where the negative log-likelihood di↵erence, �NLL, is smaller than 0.5 (2). The
di↵erence between the best fit values and the corresponding SM predictions obtained are

�C9 = �0.93+0.53
�0.57 (�0.68+0.33

�0.46 ) ,

�C10 = 0.48+0.29
�0.31 ( 0.24+0.27

�0.28 ) ,

�C 0
9 = 0.48+0.49

�0.55 ( 0.26+0.40
�0.48 ) ,

�C 0
10 = 0.38+0.28

�0.25 ( 0.27+0.25
�0.27 ) ,

for the fit configuration without (with) constraints at negative q2, where the SM prediction
at the b-quark energy scale is taken to be CSM

9 = 4.27, CSM
10 = �4.17 and C 0 SM

9,10 = 0 [29, 30].
The coe�cient that shows the largest di↵erence with respect to the SM is C9, whose
compatibility with the SM is found to be at the level of 1.9 and 1.8 standard deviations,
for fit models using only q2 > 0 information and with the q2 < 0 constraints, respectively.

Two-dimensional profile likelihood contours for the Wilson coe�cients are shown in
Fig. 7, where the 68% (95%) C.I. range is identified with the region where the �NLL is
smaller than 1.15 (3.09). A shift of approximately 0.2 is observed in the central values
of all the Wilson coe�cients between the two fit configurations, with the fit result with
the q2 < 0 constraints being closer to the SM. While from a theoretical perspective one
could expect that non-local hadronic contributions would only a↵ect C9, the experimental
determination of the Wilson coe�cients is a↵ected by the strong correlations of the system:
a modification of the non-local hadronic contributions is found to influence the result
on the form factors (as shown in Fig. 4), which in turn have an impact on the Wilson
coe�cients. This behaviour has been studied with pseudoexperiments, where the same
generated dataset is fitted with and without the constraints at negative q2 replicating the
procedure adopted on data, and the variation measured in data is found to be compatible
with what is observed in the pseudoexperiments.

Finally, the global compatibility with respect to the SM is evaluated by inspecting the
likelihood di↵erence in the four-dimensional space given by the four considered Wilson
coe�cients. Taking into account the systematic uncertainties, the observed di↵erence
in twice the log-likelihood between the best fit and SM point is found to be 2.99 (3.25).
Considering the four degrees of freedom of the system, this corresponds to 1.3 (1.4)
standard deviations with respect to the SM, for the fit without (with) the negative q2

constraints.
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1.9 (1.8) σ
1.5 (0.9) σ
0.9 (0.5) σ

1.5 (1.0) σ

Table 5: Best fit value, confidence intervals and deviation from the SM predictions [29,30] for
the four Wilson coe�cients and the two fit configurations. For each Wilson coe�cient, the
likelihood has been profiled over the other coe�cients. The SM predictions at the b-quark energy
scale [29, 30] are also reported for reference.

q2 > 0 only
best fit
value

68% C.I. 95% C.I. SM value
deviation
from SM

C9 3.34 [ 2.77, 3.87] [ 2.30, 4.33] 4.27 1.9 �

C10 �3.69 [�4.00,�3.40] [�4.33,�3.12] �4.17 1.5 �

C 0
9 0.48 [�0.07, 0.97] [�0.62, 1.45] 0 0.9 �

C 0
10 0.38 [ 0.13, 0.66] [�0.14, 0.92] 0 1.5 �

q2 < 0 constraints

C9 3.59 [ 3.13, 3.92] [ 2.75, 4.34] 4.27 1.8 �

C10 �3.93 [�4.21,�3.66] [�4.51,�3.40] �4.17 0.9 �

C 0
9 0.26 [�0.22, 0.66] [�0.68, 1.08] 0 0.5 �

C 0
10 0.27 [ 0.00, 0.52] [�0.26, 0.78] 0 1.0 �

8.4 Comparison to binned observables

Conventional angular observables accessed by binned angular analyses [7–9] can be
determined from the fit results by dividing the angular coe�cients, Ii(q2, k2), by the
di↵erential decay rate, d2�P/dq2dk2, both integrated over k2. The determination of these
angular observables o↵ers an important perspective for the validation and interpretation
of the results. Figures 8 and 9 show the q2-dependent angular observables derived from
the amplitude fit results. The contributions from non-local e↵ects to the so-called CP -
averaged Si [32] and corresponding optimised Pi [13] series of observables, �S(P )bscc̄i ,
is also illustrated in the plots. In general, the post-fit determination of the angular
observables agrees very well with the dedicated measurement of Ref. [9] and the overall
impact of non-local hadronic contributions on the angular observables is found to be
compatible between the two tested fit configurations. The only exception is observed
in the S7 (and the related P 0

6) observable, which is related to the imaginary part of the
product of the longitudinal and parallel amplitudes, where the fit result that includes
the theory points at q2 < 0 does not have enough freedom to fully accommodate the
shape observed in the physical region. This is a reflection of the di↵erent behaviour of
the imaginary part of H�(q2) between the two fit configurations observed in Sec. 8.2. In
addition, a closer look at the P 0

5 observable indicates that non-local hadronic contributions
are responsible for a positive shift in P 0

5 of the order of 0.1± 0.1 in the region between 4
and 8GeV2/c4. This is found to be true for both the fit configurations with and without
the q2 < 0 constraints, with the latter characterised by a naturally larger uncertainty.

Similarly, the signal branching fraction can be derived from the amplitude fit parameters
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likelihood di↵erence in the four-dimensional space given by the four considered Wilson
coe�cients. Taking into account the systematic uncertainties, the observed di↵erence
in twice the log-likelihood between the best fit and SM point is found to be 2.99 (3.25).
Considering the four degrees of freedom of the system, this corresponds to 1.3 (1.4)
standard deviations with respect to the SM, for the fit without (with) the negative q2
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�0.31 ( 0.24+0.27

�0.28 ) ,

�C 0
9 = 0.48+0.49

�0.55 ( 0.26+0.40
�0.48 ) ,

�C 0
10 = 0.38+0.28

�0.25 ( 0.27+0.25
�0.27 ) ,
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9 = 4.27, CSM
10 = �4.17 and C 0 SM

9,10 = 0 [29, 30].
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on the form factors (as shown in Fig. 4), which in turn have an impact on the Wilson
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generated dataset is fitted with and without the constraints at negative q2 replicating the
procedure adopted on data, and the variation measured in data is found to be compatible
with what is observed in the pseudoexperiments.
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Table 5: Best fit value, confidence intervals and deviation from the SM predictions [29,30] for
the four Wilson coe�cients and the two fit configurations. For each Wilson coe�cient, the
likelihood has been profiled over the other coe�cients. The SM predictions at the b-quark energy
scale [29, 30] are also reported for reference.

q2 > 0 only
best fit
value

68% C.I. 95% C.I. SM value
deviation
from SM

C9 3.34 [ 2.77, 3.87] [ 2.30, 4.33] 4.27 1.9 �

C10 �3.69 [�4.00,�3.40] [�4.33,�3.12] �4.17 1.5 �

C 0
9 0.48 [�0.07, 0.97] [�0.62, 1.45] 0 0.9 �

C 0
10 0.38 [ 0.13, 0.66] [�0.14, 0.92] 0 1.5 �

q2 < 0 constraints

C9 3.59 [ 3.13, 3.92] [ 2.75, 4.34] 4.27 1.8 �

C10 �3.93 [�4.21,�3.66] [�4.51,�3.40] �4.17 0.9 �

C 0
9 0.26 [�0.22, 0.66] [�0.68, 1.08] 0 0.5 �

C 0
10 0.27 [ 0.00, 0.52] [�0.26, 0.78] 0 1.0 �

8.4 Comparison to binned observables

Conventional angular observables accessed by binned angular analyses [7–9] can be
determined from the fit results by dividing the angular coe�cients, Ii(q2, k2), by the
di↵erential decay rate, d2�P/dq2dk2, both integrated over k2. The determination of these
angular observables o↵ers an important perspective for the validation and interpretation
of the results. Figures 8 and 9 show the q2-dependent angular observables derived from
the amplitude fit results. The contributions from non-local e↵ects to the so-called CP -
averaged Si [32] and corresponding optimised Pi [13] series of observables, �S(P )bscc̄i ,
is also illustrated in the plots. In general, the post-fit determination of the angular
observables agrees very well with the dedicated measurement of Ref. [9] and the overall
impact of non-local hadronic contributions on the angular observables is found to be
compatible between the two tested fit configurations. The only exception is observed
in the S7 (and the related P 0

6) observable, which is related to the imaginary part of the
product of the longitudinal and parallel amplitudes, where the fit result that includes
the theory points at q2 < 0 does not have enough freedom to fully accommodate the
shape observed in the physical region. This is a reflection of the di↵erent behaviour of
the imaginary part of H�(q2) between the two fit configurations observed in Sec. 8.2. In
addition, a closer look at the P 0

5 observable indicates that non-local hadronic contributions
are responsible for a positive shift in P 0

5 of the order of 0.1± 0.1 in the region between 4
and 8GeV2/c4. This is found to be true for both the fit configurations with and without
the q2 < 0 constraints, with the latter characterised by a naturally larger uncertainty.

Similarly, the signal branching fraction can be derived from the amplitude fit parameters
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Tom HadavizadehMoriond QCD Figure 7: Two-dimensional likelihood profiles for selected combinations of the Wilson Coe�-

cients C(0)
9,10. The shaded regions indicate the 1� and 3� contours considering only statistical

uncertainties, while the dotted contours indicate the same regions with systematic uncertainties
included. The horizontal and vertical dotted lines show the Standard Model values.

presence of right-handed currents.729

This is the first direct measurement of C9⌧ , and the value of C9⌧ = �116 ± 264 ±730

98 is consistent with both zero and the SM expectation of lepton flavour universality,731

CSM
9⌧ = 4.27 [14]. The uncertainty on C9⌧ is dominated by statistical e↵ects. The largest732

systematic uncertainty, accounting for ⇠ 30% of the total uncertainty, arises from the733

constraint on the relative size of the B0 ! D(⇤)D̄(⇤)K⇤0 contributions, as detailed in734

section 2.5.1. The development of theory calculations that can be used to constrain the735

B0 ! D(⇤)D(⇤)(! µ+µ�)K⇤0 amplitudes would help improve sensitivity to C9⌧ in future736

measurements.737

The current best upper limit on B(B0 ! K⇤0⌧+⌧�) is 3.1 ⇥ 10�3 (90% C.L.) [64],738

corresponding to an upper limit of |C9⌧ | < 681 at 90% C.L. (assuming no New Physics739

contribution in C10⌧ ) or |C9⌧ | < 595 (assuming C10⌧ = �C9⌧ ). The 90% upper C.L. on |C9⌧ |740

from this work is |C9⌧ | < 501 (|C9⌧ | < 596 at 95% C.L.). To convert the upper limits on741

B(B0 ! K⇤0⌧+⌧�) in Ref. [64] to upper limits on |C9⌧ | the flavio package [65] was used,742

with local B0! K⇤0 form factors from Ref. [29] and subleading e↵ects parameterised as743

in Ref. [15].744

A number of cross-checks are performed to validate the results of this analysis. The745
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Table 4: Results for the Wilson coe�cients. The first uncertainty is statistical, while the second
is systematic.

Wilson coe�cient results
C9 3.56 ± 0.28 ± 0.18
C10 �4.02 ± 0.18 ± 0.16
C 0
9 0.28 ± 0.41 ± 0.12

C 0
10 �0.09 ± 0.21 ± 0.06

C⌧
9 �116 ± 264 ± 98

asses this bias, pseudoexperiments are generated with the di↵erence between the open-676

charm components set to 1.5. These pseudoexperiments are then fitted twice, once677

with the baseline constraint-width, and once with an unbiased constraint-width of 1.5.678

The di↵erence in the fit results is assigned as a systematic, and besides the open-charm679

parameters, the main a↵ected parameters are C9 and C9⌧ , with systematic uncertainties680

of 24% and 29% of the statistical uncertainty respectively.681

5.5 Sub-dominant e↵ects682

The experimental resolution in the angles cos ✓`, cos ✓K , and � is not explicitly accounted683

for in the signal model. Unlike the q2 spectrum, however, the angular distributions contain684

no sharp peaks and are thus not greatly a↵ected by the detector resolution. Ensembles of685

pseudoexperiments emulating the e↵ects of the angular resolution were used to confirm686

that this has no significant e↵ects on the signal parameters of interest.687

The q2 resolution is accounted for in the baseline model as described in Sec. 3.3. The688

parameters of the resolution model are assumed to remain constant within each q2 region689

— an approximation that holds to varying degrees as a function of q2. Pseudoexperiments690

investigating the e↵ects of mismodelling the q2 resolution were performed and no significant691

e↵ects were observed to result from this assumption.692

After the full selection has been applied, the fraction of events that contain more693

than one candidate is approximately 0.18%. These events are unlikely to correspond694

to multiple true candidates and are not distributed evenly throughout the phase space.695

However, the distribution of events with multiple candidates is found to be well modelled696

in simulation, hence all candidates are retained in the subsequent analysis and a small697

systematic uncertainty related to their inclusion is determined from simulation.698

6 Results699

The full q2 spectrum resulting from the simultaneous fit is shown overlaid on the data in700

Fig. 5. The total PDF is decomposed into signal and background components, and the701

signal component is further decomposed into the contributions from local amplitudes, one-702

and two-particle nonlocal amplitudes, and the interference between them. The same results703

are shown with alternative signal decompositions in Figs. 18 and 19 in Appendix C.1.704

The optimal values of the Wilson Coe�cients C(0)
9,10 and C9⌧ are listed in Table 4. The705

corresponding one-dimensional likelihood profiles are shown in Fig. 6, wherein the 1�,706

2�, and 3� confidence intervals are indicated considering both statistical and systematic707
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Figure 9: Angular observables (P -basis) obtained a posteriori from the fit results of the two fit
configurations; the subfigures isolate the contribution from non-local e↵ects to the given angular
observables. The LHCb result from Ref. [9] is overlaid for comparison, together with the SM
theory prediction from DHMV [14,15] and (for P 0

5) GRvDV [16].
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Figures 10 and 11 show the role of the nonlocal contributions in the observable P 0
5 and827

the di↵erential branching fraction, respectively. The nonlocal components are set to zero in828

the model when constructing the observables in order to plot only the local contributions,829

as shown in Fig. 10a for P 0
5 and Fig. 11a for the di↵erential branching fraction, d�/dq2.830

The local only observables evidently di↵er from the total across much of the q2 spectrum,831

including within the bins used in previous analyses [68]. By setting the Wilson Coe�cients832

to their SM values, SM “postdictions” of the angular observables can be computed from833

the signal parameters returned by the baseline fit to the data. The resulting observables834

are constructed using the nonlocal contributions derived from data from this analysis835

and can be compared to the formal SM predictions from Ref. [30], as shown in Figs. 10b836

and 11b. The SM observable postdictions of this analysis have central values closer to837

those of the data, indicating that the data prefer larger nonlocal contributions than the838

formal SM computations. This is in agreement with the distributions of the nonlocal839

amplitudes shown in Fig. 9. Nevertheless, the SM postdictions also have di↵erent central840

values to the baseline fit that are closer to the SM predictions. The latter observation841

indicates that the nonlocal contributions, while important, are not su�cient to explain842

the deviation seen in the total observables.843
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Figure 10: Distributions of the observable P 0
5 constructed out of the signal parameters from

the baseline fit to data. In (a), the unbinned distribution is shown both with and without the
nonlocal contributions included in the amplitudes. In (b), the binned distribution is shown for
the baseline fit to data, and with the Wilson Coe�cients set to their SM values. These are
compared against SM predictions obtained from Ref. [30].

Overall, this set of results is consistent with those reported in recent global analyses844

of b ! s`+`� decays [21], which favour lepton flavour universal NP contributions to845

C9. Moreover, they are consistent with the findings of other complementary analyses846

investigating the e↵ect of the nonlocal contributions in B0! K⇤`+`� decays [5, 69] which847

also found them to be of only minor importance.848
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Figure 9: The nonlocal contributions from (maroon) this analysis that includes one- and two-
particle hadronic amplitudes expressed as shifts to C9. The contributions from the �C�

7 terms
are also included, but the tau-loop contribution is excluded. The results of z-expansion fits [36]
from the 4.7 fb�1 LHCb analysis [31] are also shown (pink) with and (yellow) without theory
input from q2 < 0. See text for more detail.
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Figs. 10 and 11 show the role of the nonlocal contributions in the observable P 0
5 and the810

di↵erential branching fraction, respectively. The nonlocal components are set to zero in811

the model when constructing the observables in order to plot only the local contributions,812

as shown in Fig. 10a for P 0
5 and 11a for the di↵erential branching fraction, d�/dq2. The813

local only observables evidently di↵er from the total across much of the q2 spectrum,814

including within the bins used in previous analyses [66]. By setting the Wilson Coe�cients815

to their SM values, SM “postdictions” of the angular observables can be computed from816

the signal parameters returned by the baseline fit to the data. The resulting observables817

are constructed using the data-driven nonlocal contributions from this anlysis and can be818

compared to the formal SM predictions from Ref. [29], as shown in Figs. 10b and 11b.819

The SM observable postdictions of this analysis have central values closer to those of the820

data, indicating that the data prefer larger nonlocal contributions than the formal SM821

computations. This is in agreement with the distributions of the nonlocal amplitudes822

shown in Fig. 9. Nevertheless, the SM postdictions also have di↵erent central values to823

the baseline fit that are closer to the SM predictions. The latter observation indicates that824

the nonlocal contributions, while important, are not su�cient to explain the deviation825

seen in the total observables.826
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Figure 10: Distributions of the observable P 0
5 constructed out of the signal parameters from

the baseline fit to data. In (a), the unbinned distribution is shown both with and without the
nonlocal contributions included in the amplitudes. In (b), the binned distribution is shown for
the baseline fit to data, and with the Wilson Coe�cients set to their SM values. These are
compared against SM predictions obtained from Ref. [29]

Overall, this set of results is consistent with those reported in recent global analyses827

of b ! s`+`� decays [20], which favour lepton flavour universal NP contributions to828

C9. Moreover, they are consistent with the findings of other complementary analyses829

investigating the e↵ect of the nonlocal contributions in B0! K⇤`+`� decays [5, 67] who830

also found them to be of only minor importance.831
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the model when constructing the observables in order to plot only the local contributions,812

as shown in Fig. 10a for P 0
5 and 11a for the di↵erential branching fraction, d�/dq2. The813

local only observables evidently di↵er from the total across much of the q2 spectrum,814

including within the bins used in previous analyses [66]. By setting the Wilson Coe�cients815

to their SM values, SM “postdictions” of the angular observables can be computed from816

the signal parameters returned by the baseline fit to the data. The resulting observables817

are constructed using the data-driven nonlocal contributions from this anlysis and can be818

compared to the formal SM predictions from Ref. [29], as shown in Figs. 10b and 11b.819

The SM observable postdictions of this analysis have central values closer to those of the820

data, indicating that the data prefer larger nonlocal contributions than the formal SM821

computations. This is in agreement with the distributions of the nonlocal amplitudes822

shown in Fig. 9. Nevertheless, the SM postdictions also have di↵erent central values to823

the baseline fit that are closer to the SM predictions. The latter observation indicates that824

the nonlocal contributions, while important, are not su�cient to explain the deviation825

seen in the total observables.826
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Figure 10: Distributions of the observable P 0
5 constructed out of the signal parameters from

the baseline fit to data. In (a), the unbinned distribution is shown both with and without the
nonlocal contributions included in the amplitudes. In (b), the binned distribution is shown for
the baseline fit to data, and with the Wilson Coe�cients set to their SM values. These are
compared against SM predictions obtained from Ref. [29]

Overall, this set of results is consistent with those reported in recent global analyses827

of b ! s`+`� decays [20], which favour lepton flavour universal NP contributions to828

C9. Moreover, they are consistent with the findings of other complementary analyses829

investigating the e↵ect of the nonlocal contributions in B0! K⇤`+`� decays [5, 67] who830

also found them to be of only minor importance.831
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More angular observables (I)
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Figure 16: Plots of the binned angular observables in the standard basis shown for the both the
baseline fit to data, and with the Wilson Coe�cients (WCs)set to their SM values. These are
compared against Standard Model predictions from Ref. [30].
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Figure 16: Plots of the binned angular observables in the standard basis shown for the both the
baseline fit to data, and with the Wilson Coe�cients (WCs)set to their SM values. These are
compared against Standard Model predictions from Ref. [30].
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Figure 16: Plots of the binned angular observables in the standard basis shown for the both the
baseline fit to data, and with the Wilson Coe�cients (WCs)set to their SM values. These are
compared against Standard Model predictions from Ref. [30].
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Figure 16: Plots of the binned angular observables in the standard basis shown for the both the
baseline fit to data, and with the Wilson Coe�cients (WCs)set to their SM values. These are
compared against Standard Model predictions from Ref. [30].
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Figure 8: Angular observables (S-basis) obtained a posteriori from the fit results of the two fit
configurations; the subfigures isolate the contribution from non-local e↵ects to the given angular
observables. The LHCb result from Ref. [9] is overlaid for comparison, together with the SM
theory prediction from GRvDV [16].
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Figure 16: Plots of the binned angular observables in the standard basis shown for the both the
baseline fit to data, and with the Wilson Coe�cients (WCs)set to their SM values. These are
compared against Standard Model predictions from Ref. [30].
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Residual  dependenceq2
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- Cross check: 

‣ Dispersion analysis check for possible residual  dependence by allowing 
linearly varying  and  in the fit:

q2

C9 C10
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 dependence q2

Fit performed with linearly varying  
and :

C9
C10

Use alternative local  form 
factors - different LCSR inputs

B → K*

Form factor dependence  

Bharucha, Straub, & Zwicky [JHEP 08 (2016) 098]

 changes by 35% 

 changes by 90% 

C9 σstat
C10 σstat

Table 7: Results for the parameters of the two-particle and non-resonant nonlocal contributions.
The first uncertainty is statistical, while the second is systematic.

Nonlocal parameter results
<(AD0D̄0

k ) �0.07 ± 0.93 ± 0.69 =(AD0D̄0

k ) �0.44 ± 0.71 ± 0.73

<(AD0D̄0

? ) �0.12 ± 0.83 ± 0.71 =(AD0D̄0

? ) 0.02 ± 0.80 ± 0.74
<(AD0D̄0

0 ) �0.33 ± 0.91 ± 0.70 =(AD0D̄0

0 ) �0.27 ± 0.77 ± 0.81
<(AD⇤0D̄⇤0

k ) �0.06 ± 0.96 ± 0.63 =(AD⇤0D̄⇤0

k ) �0.25 ± 0.79 ± 0.67

<(AD⇤0D̄⇤0
? ) �0.16 ± 0.91 ± 0.66 =(AD⇤0D̄⇤0

? ) �0.03 ± 0.85 ± 0.70
<(AD⇤0D̄⇤0

0 ) �0.17 ± 0.95 ± 0.66 =(AD⇤0D̄⇤0
0 ) �0.28 ± 0.85 ± 0.78

<(AD⇤0D̄0

k ) 0.02 ± 0.42 ± 0.66 =(AD⇤0D̄0

k ) �0.46 ± 0.32 ± 0.58

<(AD⇤0D̄0

? ) �0.24 ± 0.42 ± 0.70 =(AD⇤0D̄0

? ) �0.11 ± 0.39 ± 0.61
<(AD⇤0D̄0

0 ) �0.51 ± 0.41 ± 0.68 =(AD⇤0D̄0

0 ) 0.12 ± 0.35 ± 0.58

<(�Ck
7) 0.00 ± 0.03 ± 0.02 =(�Ck

7) �0.10 ± 0.03 ± 0.01
<(�C?

7 ) �0.05 ± 0.03 ± 0.02 =(�C?
7 ) �0.04 ± 0.04 ± 0.01

<(�C0
7) 0.33 ± 0.33 ± 0.09 =(�C0

7) �0.19 ± 0.20 ± 0.09

following replacements are made,759

Cq2

9 = C9 + ↵(q2 � 8.95), Cq2

10 = C10 + �(q2 � 8.95).

Non-zero values of ↵ and/or � would imply an incorrect description of the nonlocal760

contributions since a q2 dependent shift is not consistent with being of local origin.761

Allowing for this linear dependence in the fit does not significantly alter the values for762

C9 and C10, and results in ↵ = 0.029 ± 0.082, � = �0.058 ± 0.026. No evidence for an763

incorrect description of the nonlocal contributions to C9 is observed while for C10, which764

receives only local contributions in the model, a 2.2� deviation from zero is observed in765

the � slope parameter. If this could point to an inconsistency in form factors between the766

low and high q2 regions has not been explored. No systematic uncertainty is assigned due767

to this e↵ect.768

The results of the fit are also cross-checked for di↵erent choices of the dispersion769

relation subtraction point, q20, which serves as additional validation of the nonlocal model.770

The subtraction constant Ycc̄(q20) enters Eq. 23 as a constant o↵set to C9 and is degenerate771

with a NP contribution. In principle, the dispersion relation of Eq. 23 is exact and should772

be independent of the number and location of subtractions, provided the subtraction point773

is within the region in which Ycc̄(q20) can be calculated reliably, i.e. q20 < 0. A deviation774

from this behaviour would reveal itself as a change in the C9 fit results dependent upon775

the chosen subtraction point. This would indicate a problem in either the calculation of776

Ycc̄(q20) or in the extrapolation to physical q2 values via the dispersive integral — that is, a777

problem with the parameterisation of the spectral densities used in this analysis. To check778

this, the fit is rerun twice with subtractions at q20 = �1GeV2/c4 and q20 = �10GeV2/c4779

and the results are compared to the baseline fit with the subtraction at q20 = �4.6 GeV2/c4.780

The change in C9 is found to be ⇠ 0.1 in both cases which is approximately 35% of the781

statistical uncertainty. Therefore, within the precision of this measurement, the choice of782

subtraction point is found to have a negligible impact on the results.783
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<(�C?

7 ) �0.05 ± 0.03 ± 0.02 =(�C?
7 ) �0.04 ± 0.04 ± 0.01

<(�C0
7) 0.33 ± 0.33 ± 0.09 =(�C0

7) �0.19 ± 0.20 ± 0.09

following replacements are made,759

Cq2

9 = C9 + ↵(q2 � 8.95), Cq2

10 = C10 + �(q2 � 8.95).

Non-zero values of ↵ and/or � would imply an incorrect description of the nonlocal760

contributions since a q2 dependent shift is not consistent with being of local origin.761

Allowing for this linear dependence in the fit does not significantly alter the values for762

C9 and C10, and results in ↵ = 0.029 ± 0.082, � = �0.058 ± 0.026. No evidence for an763

incorrect description of the nonlocal contributions to C9 is observed while for C10, which764

receives only local contributions in the model, a 2.2� deviation from zero is observed in765

the � slope parameter. If this could point to an inconsistency in form factors between the766

low and high q2 regions has not been explored. No systematic uncertainty is assigned due767

to this e↵ect.768

The results of the fit are also cross-checked for di↵erent choices of the dispersion769

relation subtraction point, q20, which serves as additional validation of the nonlocal model.770

The subtraction constant Ycc̄(q20) enters Eq. 23 as a constant o↵set to C9 and is degenerate771

with a NP contribution. In principle, the dispersion relation of Eq. 23 is exact and should772

be independent of the number and location of subtractions, provided the subtraction point773

is within the region in which Ycc̄(q20) can be calculated reliably, i.e. q20 < 0. A deviation774

from this behaviour would reveal itself as a change in the C9 fit results dependent upon775

the chosen subtraction point. This would indicate a problem in either the calculation of776

Ycc̄(q20) or in the extrapolation to physical q2 values via the dispersive integral — that is, a777

problem with the parameterisation of the spectral densities used in this analysis. To check778

this, the fit is rerun twice with subtractions at q20 = �1GeV2/c4 and q20 = �10GeV2/c4779

and the results are compared to the baseline fit with the subtraction at q20 = �4.6 GeV2/c4.780

The change in C9 is found to be ⇠ 0.1 in both cases which is approximately 35% of the781

statistical uncertainty. Therefore, within the precision of this measurement, the choice of782

subtraction point is found to have a negligible impact on the results.783

28

 deviation from zero for  is 
observed 
2.2σ C10

Subtraction point 

Dispersion relation should be 
independent of subtraction point 

Varying subtraction point between 
 and  

leads to variation of 35%  in 
q2

0 = − 1 GeV2/c4 q2
0 = − 10 GeV2/c4

σstat C9

2.s  deviation from 
zero is observed in  C10

2.2σ

tension in the FFs 
between low vs high-q2…?



What did we learn…
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Take home message #1

• Very compatible results between the 2 analyses
• alternative/complementary  model
• shift in  of order -0.7 

q2

C9

Take home message #2

• Still something to understand 
• Im part of non-local contribution larger 

than expected
• SM postdictions differ from formal SM 

predictions in different observables
• Let’s not forget about the form factors…

And what about:

• fit of  in bins of 

•   rescattering…?

Let’s hear from Arianna…

C9 q2

D−(*)D+(*)
s

7Arianna Tinari (University of Zürich)  |  Beyond the Flavour Anomalies @ Siegen, 9-11 April 2024

Charm rescattering in B → Kℓ̄ℓ
- We cannot exclude a sizable long-distance contribution with a 

reduced - or - dependence which would mimic a short-
distance effect. 


- For this reason, we tried to estimate the rescattering 
contribution from the leading two-body intermediate state  
and .

q2 λ

DsD*
D*s D

from data

from HHChiPT 
+ QED

from 
HHChiPT 

…

- We estimate this diagram using data on 
 and Heavy Hadron Chiral 

Perturbation Theory (valid for soft kaons).


- Our result is most reliable close to the  
end-point (small kaon momentum), and 
satisfies constraints from gauge invariance.


- The absorptive part is finite and “exact” (no 
approximations) at the end-point.

B → DD*

q2



Based on 2401.18007 in collaboration with M. Bordone, G. Isidori, S. Mächler and 
a work in progress in collaboration with G. Isidori and Z. Polonsky

Arianna Tinari (University of Zürich)  |  Beyond the Flavour Anomalies @ Siegen, 9-11 April 2024

Tests of Short-Distance 
Dynamics in b → sℓ̄ℓ

https://arxiv.org/abs/2401.18007
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Motivation
- There is a long-standing tension with the SM in the exclusive  in rates and angular 

distributions, especially in the low-  region. 

- The difficulty of performing precise SM tests lies in the difficulty of estimating non-perturbative 
contributions: form factors for the local  operators and non-local hadronic matrix 
elements of four-quark operators related to charm rescattering.


- Our goal is to try to disentangle a possible short-distance effect from long-distance dynamics.


- We parametrize the long-distance effects from charm resonances using dispersion relations in 
combination with data. After parametrizing these effects, we can determine a residual amplitude 
that can describe missing long-distance dynamics and possible short-distance dynamics.  

B → K(*)ℓ̄ℓ
q2

b → s
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Theoretical Framework

The (regular for  ) contributions of the non-local matrix elements of the four-quark operators can be 
effectively taken into account by the shift: 

q2 → 0

ℳ(B → Kℓℓ) |C1−6
= − i

32π2$
q2 ℓ̄γμℓ∫ d4xeiqx⟨Hλ |T{jem

μ (x), ∑
i=1,6

Ci&i(0)} |B⟩ = (Δλ
9(q2) + m2

B

q2 Δλ
7)⟨Hλ ℓ+ℓ− |&9 |B⟩

We want to extract information on the non-local matrix elements of the four-quark operators  from data. &1−6

λ = K, ⊥ , //, 0

Note that to all orders in , and to first order in , these matrix elements have the same structure as the matrix elements of  and :αs αem &7 &9

C9 → C9 + Yλ(q2)
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Theoretical Framework

C9 → Cλ
9(q2) + Y[0]

qq̄ (q2) + Y[0]
bb̄

(q2) + Yλ
cc̄(q2)

encodes (factorizable) 
perturbative contributions 

from 4-quark operators

encodes the perturbative 
charm-loop contributions 

and  resonancescc̄

More precisely, this shift includes:

To estimate the non-perturbative contributions generated by the  resonances, we use dispersive relations in combination with data:cc̄

Yλ
cc̄(q2) = Yλ

cc̄(q2
0) + 16π2

ℱλ(q2) Δℋλ
cc̄(q2), q2

0 = 0

C9 → C9 + Yλ(q2)

Δℋλ,1P
cc̄ = ∑

V
ηλ

Veiδλ
V

q2

m2
V

Ares
V (q2) Ares

V (q2) = mVΓV

m2
V − q2 − imVΓV

λ = K, ⊥ , //, 0

 B → Kℓ̄ℓ  B → K*ℓ̄ℓ



Extraction of C9
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- We perform a fit of  bin by bin using the measured branching ratio by LHCb + CMS

- Form factors from lattice QCD    

C9

- We perform a fit of  from the branching ratio and from the angular observables 
 measured by LHCb


- Form factors from light-cone sum rules + lattice 

C9
FL, S3, S4, S5, AFB, S7, S8, S9

B → Kℓ̄ℓ

B → K*ℓ̄ℓ

We extract the residual contribution to :
C9

C9 → Cλ
9(q2) + Y[0]

qq̄ (q2) + Y[0]
bb̄

(q2) + Yλ
cc̄(q2)

Parrott, W. G., et al., arXiv:2207.13371 and 2207.12468

Bharucha, Aoife, David M. Straub, and Roman Zwicky, 
arXiv:1503.05534

2014 LHCb,  
2023 CMS

2016 and 2020 LHCb

extract from data

Cλ
9(q2) = CSM

9 + CLD,λ
9 (q2) + CSD

9

Long-distance,             
no reason to assume it is 
independent of  or λ q2

Short-distance, 
independent of  and λ q2

Can we find this 
contribution from data?

Fit from data for 
every bin in  and 
every polarization

q2
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Results
B → Kℓ̄ℓ B → K*ℓ̄ℓ

[11, 12.5] [15, 17] [17, 19]
0
1
2
3
4
5
6

[1.1, 2.5] [2.5, 4] [4, 6] [6,8]
0
1
2
3
4
5
6

[15, 16] [16, 17] [17,18] [18, 19] [19, 20] [20, 21] [21, 22]

0

1

2

3

4

5

[1.1, 2] [2, 3] [3,4] [4, 5] [5, 6] [6, 7] [7, 8]

0

1

2

3

4

5

Compatible with 
LHCb analysis!

Low q2

High q2
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Results

0

1

2

3

4

5 - We find that the values of  are consistent 
throughout the different modes and 
polarizations, and that there is no significant 

-dependence.    

- This is in opposition to the expected 

behavior in the case of long-distance 
contributions beyond those already included 
-> Data provide no evidence of sizable 
unaccounted-for long-distance contributions.


- The discrepancy in the experimentally-
determined  value is consistent with a 
short-distance effect of non-SM origin.

C9

q2

C9

SM 

Independent determinations of   assuming it to be constant:C9
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Charm rescattering in B → Kℓ̄ℓ
- We cannot exclude a sizable long-distance contribution with a 

reduced - or - dependence which would mimic a short-
distance effect. 


- For this reason, we tried to estimate the rescattering 
contribution from the leading two-body intermediate state  
and .

q2 λ

DsD*
D*s D

from data

from HHChiPT 
+ QED

from 
HHChiPT 

…

- We estimate this diagram using data on 
 and Heavy Hadron Chiral 

Perturbation Theory (valid for soft kaons).


- Our result is most reliable close to the  
end-point (small kaon momentum), and 
satisfies constraints from gauge invariance.


- The absorptive part is finite and “exact” (no 
approximations) at the end-point.

B → DD*

q2
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Charm rescattering in B → Kℓ̄ℓ

(Preliminary)

ΔC9
C9

≤ 3 %

Not enough to explain the 
tension with the SM value (the 
shift needed is of order )≈ 25 %

We find that these contributions are not large 
enough to explain the bulk of the tension on 
the value of .C9

14 16 18 20 22 24 26 28

-0.02

0.00

0.02

0.04
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Conclusions
- Hard to explain the bulk of the tension with only long-distance QCD effects.


- Data provide no evidence of sizable unaccounted-for long-distance contributions, and 
our estimate of charm-rescattering contributions that mimic short-distance effects 
cannot explain all the tension.


- The discrepancy in the experimentally-determined  value is consistent with a short-
distance effect of non-SM origin.


- The uncertainties of the independently-determined  are still large.


- The method presented here has no theoretical limitations        with more precise data we 
can get more precise results (more accurate description of charm rescattering, as in 
recent LHCb analysis). 


- If the absence of - and - dependence survives with smaller uncertainty, the presence 
of long-distance unaccounted-for contributions would be more plausible.

C9

C9

q2 λ



Thanks for your attention!
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Form factor results

8

- Fit results are found to require small 
adjustment in             ratio 

The main sources of systematic uncertainty for C 0
9 comes from ignoring the non-local392

hadronic contribution in the S-wave. In absence of any theoretical study on non-local393

hadronic e↵ects on K⇡-scalar amplitudes, pseudoexperiments are generated assuming a394

non-local hadronic component which is identical to the one of the longitudinal P-wave395

amplitude. Other sources of systematic uncertainties associated to the modelling of the S-396

wave amplitudes are related to the choice of the S-wave form factors and k2 parametrisation.397

The former is accessed by generating pseudoexperiments with the alternative model of398

Ref. [70], while the latter is assessed by replacing the LASS lineshape with an isobar399

model built from the sum of the K⇤
0(700) and K⇤

0(1430) resonances.400

For the combinatorial background modelling, three sources of systematic uncertainty401

are considered. The first is associated with the choice of second-order polynomials to402

model the background angular and q2 distributions. Since it is not possible to fit a403

more complex model to the data because of the small number of background candidates,404

the BDT requirement is relaxed and the background candidates selected in the upper405

mass-sideband are fitted with a fourth-order polynomial in each of the angles and q2. This406

model is used as an alternative model for the generation of pseudoexperiments. The second407

is associated with the modelling of the k2 distribution, where the value of the fraction of408

the resonant component introduced in Sec. 5.5 is varied within its uncertainty. The third409

is associated to the assumption of complete factorisation of the background distributions.410

This is studied in the upper mass-sideband. A mild non-factorisation between � and cos ✓`411

angles is observed and an alternative background model that does not assume factorisation412

in these two variables is used for the generation of pseudoexperiments. In addition,413

systematic uncertainties are assessed for the di↵erent sources of peaking background that414

are neglected in the analysis. The distribution of residual peaking-background events415

is studied in data, after removing PID information from the BDT and inverting the416

background vetoes. Events are then drawn from the selected background samples and417

injected into the pseudoexperiment data.418

Finally, two sources of systematic uncertainties are associated to the determination of419

the acceptance function: the first is related to the finite size of the simulated samples used420

to derive the acceptance coe�cients and is studied by sampling the obtained coe�cients421

within their covariance matrix; and the second is associated to the choice of the order422

of the Legendre polynomials used, and is investigated by considering a higher order423

acceptance parametrisation built from polynomials of order six, seven, eight and four for424

cos ✓`, cos ✓K , � and q2, respectively.425

8 Results426

8.1 Local form factors427

Form factor predictions are currently the limiting factor for the understanding of the428

tension observed in the branching fraction measurements of many b ! sµµ decay channels.429

Any further indication on the contribution of the form factors to the decay rate is therefore430

extremely valuable. Figure 3 shows the form factors posterior distributions obtained431

from the amplitude fit results in the two fit configurations. We observe a tendency of432

the fits to systematically prefer lower values of the form factors, especially for the fit433

result with theory. Similarly, the plot on the right of Fig. 3 presents the ratio F?,k/F0,434
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Figure 4: Form factor results as a function of q2 obtained from the amplitude fit in the two
fit configurations, compared to the predictions from Refs. [16, 58,59] that are used as external
constraint in the fit.

8 Results445

8.1 Local form factors446

Figure 4 shows the form factor results obtained from the amplitude fit in the two tested447

configurations. We observe a tendency of the fits to slightly adjust the ratio F?,k/F0 (Fig. 4448

right) towards lower values with respect to the theoretical predictions used as external449

input to the fit. Both the fit configurations with and without the q2 < 0 constraints450

manifest this behaviour coherently.451

8.2 Non-local hadronic contributions452

Figure 5 shows the real and imaginary parts of the non-local hadronic contributions453

obtained for the two fit configurations normalised to the size of the local form factors.454

The two results are compatible, however some discrepancy is visible in their imaginary455

parts, especially in Im(Hk). The theoretical predictions at q2 < 0 impose an extremely456

strong constraint on the shape of these contributions, which are in fact forced to be457

approximately constant (and have an imaginary part very close to zero) at negative q2.458

The size of Im(H�(q2)) is then found to rise in the physical region. At finite truncation459

order, the presence of the constraint at q2 < 0 limits the flexibility of Im(H�(q2)) in460

the physical region and overconstrains their contribution towards smaller values. The461

behaviour of these functions in the transition between the unphysical and physical regions462

of q2 is further investigated in Appendix B and the imaginary part of H�(q2) is found to463

rise more rapidly than the theoretical predictions. It is interesting to note that, while464

phase di↵erences between the amplitudes are predicted to be tiny at low q2, significant465

di↵erences are measured between the amplitudes for B0 ! J/ K⇤0 decays.466

One of the advantages of the parameterisation proposed in Refs. [16,24] is the introduc-467

tion of a dispersive bound to provide control over the systematic truncation errors on the468

z-expansion. This states that, under a particular choice of polynomial functions, the sum469
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configurations. We observe a tendency of the fits to slightly adjust the ratio F?,k/F0 (Fig. 4448

right) towards lower values with respect to the theoretical predictions used as external449

input to the fit. Both the fit configurations with and without the q2 < 0 constraints450

manifest this behaviour coherently.451

8.2 Non-local hadronic contributions452

Figure 5 shows the real and imaginary parts of the non-local hadronic contributions453

obtained for the two fit configurations normalised to the size of the local form factors.454

The two results are compatible, however some discrepancy is visible in their imaginary455

parts, especially in Im(Hk). The theoretical predictions at q2 < 0 impose an extremely456

strong constraint on the shape of these contributions, which are in fact forced to be457

approximately constant (and have an imaginary part very close to zero) at negative q2.458

The size of Im(H�(q2)) is then found to rise in the physical region. At finite truncation459

order, the presence of the constraint at q2 < 0 limits the flexibility of Im(H�(q2)) in460

the physical region and overconstrains their contribution towards smaller values. The461

behaviour of these functions in the transition between the unphysical and physical regions462

of q2 is further investigated in Appendix B and the imaginary part of H�(q2) is found to463

rise more rapidly than the theoretical predictions. It is interesting to note that, while464

phase di↵erences between the amplitudes are predicted to be tiny at low q2, significant465

di↵erences are measured between the amplitudes for B0 ! J/ K⇤0 decays.466
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tion of a dispersive bound to provide control over the systematic truncation errors on the468

z-expansion. This states that, under a particular choice of polynomial functions, the sum469
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Figure 8: Comparison of Form Factors (orange) pre-fit and (maroon) post-fit. The bands denote
the 68% intervals from varying the post-fit and pre-fit covariance matrices respectively. Only
the statistical uncertainty is accounted for in the post-fit intervals.
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z-expansion dispersion relation

Tom HadavizadehMoriond QCD

Cross checks

21

LHCb-PAPER-2024-011,  
in preparation  New

 dependence q2

Fit performed with linearly varying  
and :

C9
C10

Use alternative local  form 
factors - different LCSR inputs

B → K*

Form factor dependence  

Bharucha, Straub, & Zwicky [JHEP 08 (2016) 098]

 changes by 35% 

 changes by 90% 

C9 σstat
C10 σstat

Table 7: Results for the parameters of the two-particle and non-resonant nonlocal contributions.
The first uncertainty is statistical, while the second is systematic.

Nonlocal parameter results
<(AD0D̄0

k ) �0.07 ± 0.93 ± 0.69 =(AD0D̄0

k ) �0.44 ± 0.71 ± 0.73

<(AD0D̄0

? ) �0.12 ± 0.83 ± 0.71 =(AD0D̄0

? ) 0.02 ± 0.80 ± 0.74
<(AD0D̄0

0 ) �0.33 ± 0.91 ± 0.70 =(AD0D̄0

0 ) �0.27 ± 0.77 ± 0.81
<(AD⇤0D̄⇤0

k ) �0.06 ± 0.96 ± 0.63 =(AD⇤0D̄⇤0

k ) �0.25 ± 0.79 ± 0.67

<(AD⇤0D̄⇤0
? ) �0.16 ± 0.91 ± 0.66 =(AD⇤0D̄⇤0

? ) �0.03 ± 0.85 ± 0.70
<(AD⇤0D̄⇤0

0 ) �0.17 ± 0.95 ± 0.66 =(AD⇤0D̄⇤0
0 ) �0.28 ± 0.85 ± 0.78

<(AD⇤0D̄0

k ) 0.02 ± 0.42 ± 0.66 =(AD⇤0D̄0

k ) �0.46 ± 0.32 ± 0.58

<(AD⇤0D̄0

? ) �0.24 ± 0.42 ± 0.70 =(AD⇤0D̄0

? ) �0.11 ± 0.39 ± 0.61
<(AD⇤0D̄0

0 ) �0.51 ± 0.41 ± 0.68 =(AD⇤0D̄0

0 ) 0.12 ± 0.35 ± 0.58

<(�Ck
7) 0.00 ± 0.03 ± 0.02 =(�Ck

7) �0.10 ± 0.03 ± 0.01
<(�C?

7 ) �0.05 ± 0.03 ± 0.02 =(�C?
7 ) �0.04 ± 0.04 ± 0.01

<(�C0
7) 0.33 ± 0.33 ± 0.09 =(�C0

7) �0.19 ± 0.20 ± 0.09

following replacements are made,759

Cq2

9 = C9 + ↵(q2 � 8.95), Cq2

10 = C10 + �(q2 � 8.95).

Non-zero values of ↵ and/or � would imply an incorrect description of the nonlocal760

contributions since a q2 dependent shift is not consistent with being of local origin.761

Allowing for this linear dependence in the fit does not significantly alter the values for762

C9 and C10, and results in ↵ = 0.029 ± 0.082, � = �0.058 ± 0.026. No evidence for an763

incorrect description of the nonlocal contributions to C9 is observed while for C10, which764

receives only local contributions in the model, a 2.2� deviation from zero is observed in765

the � slope parameter. If this could point to an inconsistency in form factors between the766

low and high q2 regions has not been explored. No systematic uncertainty is assigned due767

to this e↵ect.768

The results of the fit are also cross-checked for di↵erent choices of the dispersion769

relation subtraction point, q20, which serves as additional validation of the nonlocal model.770

The subtraction constant Ycc̄(q20) enters Eq. 23 as a constant o↵set to C9 and is degenerate771

with a NP contribution. In principle, the dispersion relation of Eq. 23 is exact and should772

be independent of the number and location of subtractions, provided the subtraction point773

is within the region in which Ycc̄(q20) can be calculated reliably, i.e. q20 < 0. A deviation774

from this behaviour would reveal itself as a change in the C9 fit results dependent upon775

the chosen subtraction point. This would indicate a problem in either the calculation of776

Ycc̄(q20) or in the extrapolation to physical q2 values via the dispersive integral — that is, a777

problem with the parameterisation of the spectral densities used in this analysis. To check778

this, the fit is rerun twice with subtractions at q20 = �1GeV2/c4 and q20 = �10GeV2/c4779

and the results are compared to the baseline fit with the subtraction at q20 = �4.6 GeV2/c4.780

The change in C9 is found to be ⇠ 0.1 in both cases which is approximately 35% of the781

statistical uncertainty. Therefore, within the precision of this measurement, the choice of782

subtraction point is found to have a negligible impact on the results.783

28

Table 7: Results for the parameters of the two-particle and non-resonant nonlocal contributions.
The first uncertainty is statistical, while the second is systematic.

Nonlocal parameter results
<(AD0D̄0

k ) �0.07 ± 0.93 ± 0.69 =(AD0D̄0

k ) �0.44 ± 0.71 ± 0.73

<(AD0D̄0

? ) �0.12 ± 0.83 ± 0.71 =(AD0D̄0

? ) 0.02 ± 0.80 ± 0.74
<(AD0D̄0

0 ) �0.33 ± 0.91 ± 0.70 =(AD0D̄0

0 ) �0.27 ± 0.77 ± 0.81
<(AD⇤0D̄⇤0

k ) �0.06 ± 0.96 ± 0.63 =(AD⇤0D̄⇤0

k ) �0.25 ± 0.79 ± 0.67

<(AD⇤0D̄⇤0
? ) �0.16 ± 0.91 ± 0.66 =(AD⇤0D̄⇤0

? ) �0.03 ± 0.85 ± 0.70
<(AD⇤0D̄⇤0

0 ) �0.17 ± 0.95 ± 0.66 =(AD⇤0D̄⇤0
0 ) �0.28 ± 0.85 ± 0.78

<(AD⇤0D̄0

k ) 0.02 ± 0.42 ± 0.66 =(AD⇤0D̄0

k ) �0.46 ± 0.32 ± 0.58

<(AD⇤0D̄0

? ) �0.24 ± 0.42 ± 0.70 =(AD⇤0D̄0

? ) �0.11 ± 0.39 ± 0.61
<(AD⇤0D̄0

0 ) �0.51 ± 0.41 ± 0.68 =(AD⇤0D̄0

0 ) 0.12 ± 0.35 ± 0.58

<(�Ck
7) 0.00 ± 0.03 ± 0.02 =(�Ck

7) �0.10 ± 0.03 ± 0.01
<(�C?

7 ) �0.05 ± 0.03 ± 0.02 =(�C?
7 ) �0.04 ± 0.04 ± 0.01

<(�C0
7) 0.33 ± 0.33 ± 0.09 =(�C0

7) �0.19 ± 0.20 ± 0.09

following replacements are made,759

Cq2

9 = C9 + ↵(q2 � 8.95), Cq2

10 = C10 + �(q2 � 8.95).

Non-zero values of ↵ and/or � would imply an incorrect description of the nonlocal760

contributions since a q2 dependent shift is not consistent with being of local origin.761

Allowing for this linear dependence in the fit does not significantly alter the values for762

C9 and C10, and results in ↵ = 0.029 ± 0.082, � = �0.058 ± 0.026. No evidence for an763

incorrect description of the nonlocal contributions to C9 is observed while for C10, which764

receives only local contributions in the model, a 2.2� deviation from zero is observed in765

the � slope parameter. If this could point to an inconsistency in form factors between the766

low and high q2 regions has not been explored. No systematic uncertainty is assigned due767

to this e↵ect.768

The results of the fit are also cross-checked for di↵erent choices of the dispersion769

relation subtraction point, q20, which serves as additional validation of the nonlocal model.770

The subtraction constant Ycc̄(q20) enters Eq. 23 as a constant o↵set to C9 and is degenerate771

with a NP contribution. In principle, the dispersion relation of Eq. 23 is exact and should772

be independent of the number and location of subtractions, provided the subtraction point773

is within the region in which Ycc̄(q20) can be calculated reliably, i.e. q20 < 0. A deviation774

from this behaviour would reveal itself as a change in the C9 fit results dependent upon775

the chosen subtraction point. This would indicate a problem in either the calculation of776

Ycc̄(q20) or in the extrapolation to physical q2 values via the dispersive integral — that is, a777

problem with the parameterisation of the spectral densities used in this analysis. To check778

this, the fit is rerun twice with subtractions at q20 = �1GeV2/c4 and q20 = �10GeV2/c4779

and the results are compared to the baseline fit with the subtraction at q20 = �4.6 GeV2/c4.780

The change in C9 is found to be ⇠ 0.1 in both cases which is approximately 35% of the781

statistical uncertainty. Therefore, within the precision of this measurement, the choice of782

subtraction point is found to have a negligible impact on the results.783

28

Table 7: Results for the parameters of the two-particle and non-resonant nonlocal contributions.
The first uncertainty is statistical, while the second is systematic.

Nonlocal parameter results
<(AD0D̄0

k ) �0.07 ± 0.93 ± 0.69 =(AD0D̄0

k ) �0.44 ± 0.71 ± 0.73

<(AD0D̄0

? ) �0.12 ± 0.83 ± 0.71 =(AD0D̄0

? ) 0.02 ± 0.80 ± 0.74
<(AD0D̄0

0 ) �0.33 ± 0.91 ± 0.70 =(AD0D̄0

0 ) �0.27 ± 0.77 ± 0.81
<(AD⇤0D̄⇤0

k ) �0.06 ± 0.96 ± 0.63 =(AD⇤0D̄⇤0

k ) �0.25 ± 0.79 ± 0.67

<(AD⇤0D̄⇤0
? ) �0.16 ± 0.91 ± 0.66 =(AD⇤0D̄⇤0

? ) �0.03 ± 0.85 ± 0.70
<(AD⇤0D̄⇤0

0 ) �0.17 ± 0.95 ± 0.66 =(AD⇤0D̄⇤0
0 ) �0.28 ± 0.85 ± 0.78

<(AD⇤0D̄0

k ) 0.02 ± 0.42 ± 0.66 =(AD⇤0D̄0

k ) �0.46 ± 0.32 ± 0.58

<(AD⇤0D̄0

? ) �0.24 ± 0.42 ± 0.70 =(AD⇤0D̄0

? ) �0.11 ± 0.39 ± 0.61
<(AD⇤0D̄0

0 ) �0.51 ± 0.41 ± 0.68 =(AD⇤0D̄0

0 ) 0.12 ± 0.35 ± 0.58

<(�Ck
7) 0.00 ± 0.03 ± 0.02 =(�Ck

7) �0.10 ± 0.03 ± 0.01
<(�C?

7 ) �0.05 ± 0.03 ± 0.02 =(�C?
7 ) �0.04 ± 0.04 ± 0.01

<(�C0
7) 0.33 ± 0.33 ± 0.09 =(�C0

7) �0.19 ± 0.20 ± 0.09

following replacements are made,759

Cq2

9 = C9 + ↵(q2 � 8.95), Cq2

10 = C10 + �(q2 � 8.95).

Non-zero values of ↵ and/or � would imply an incorrect description of the nonlocal760

contributions since a q2 dependent shift is not consistent with being of local origin.761

Allowing for this linear dependence in the fit does not significantly alter the values for762

C9 and C10, and results in ↵ = 0.029 ± 0.082, � = �0.058 ± 0.026. No evidence for an763

incorrect description of the nonlocal contributions to C9 is observed while for C10, which764

receives only local contributions in the model, a 2.2� deviation from zero is observed in765

the � slope parameter. If this could point to an inconsistency in form factors between the766

low and high q2 regions has not been explored. No systematic uncertainty is assigned due767

to this e↵ect.768

The results of the fit are also cross-checked for di↵erent choices of the dispersion769

relation subtraction point, q20, which serves as additional validation of the nonlocal model.770

The subtraction constant Ycc̄(q20) enters Eq. 23 as a constant o↵set to C9 and is degenerate771

with a NP contribution. In principle, the dispersion relation of Eq. 23 is exact and should772

be independent of the number and location of subtractions, provided the subtraction point773

is within the region in which Ycc̄(q20) can be calculated reliably, i.e. q20 < 0. A deviation774

from this behaviour would reveal itself as a change in the C9 fit results dependent upon775

the chosen subtraction point. This would indicate a problem in either the calculation of776

Ycc̄(q20) or in the extrapolation to physical q2 values via the dispersive integral — that is, a777

problem with the parameterisation of the spectral densities used in this analysis. To check778

this, the fit is rerun twice with subtractions at q20 = �1GeV2/c4 and q20 = �10GeV2/c4779

and the results are compared to the baseline fit with the subtraction at q20 = �4.6 GeV2/c4.780

The change in C9 is found to be ⇠ 0.1 in both cases which is approximately 35% of the781

statistical uncertainty. Therefore, within the precision of this measurement, the choice of782

subtraction point is found to have a negligible impact on the results.783

28

Table 7: Results for the parameters of the two-particle and non-resonant nonlocal contributions.
The first uncertainty is statistical, while the second is systematic.

Nonlocal parameter results
<(AD0D̄0

k ) �0.07 ± 0.93 ± 0.69 =(AD0D̄0

k ) �0.44 ± 0.71 ± 0.73

<(AD0D̄0

? ) �0.12 ± 0.83 ± 0.71 =(AD0D̄0

? ) 0.02 ± 0.80 ± 0.74
<(AD0D̄0

0 ) �0.33 ± 0.91 ± 0.70 =(AD0D̄0

0 ) �0.27 ± 0.77 ± 0.81
<(AD⇤0D̄⇤0

k ) �0.06 ± 0.96 ± 0.63 =(AD⇤0D̄⇤0

k ) �0.25 ± 0.79 ± 0.67

<(AD⇤0D̄⇤0
? ) �0.16 ± 0.91 ± 0.66 =(AD⇤0D̄⇤0

? ) �0.03 ± 0.85 ± 0.70
<(AD⇤0D̄⇤0

0 ) �0.17 ± 0.95 ± 0.66 =(AD⇤0D̄⇤0
0 ) �0.28 ± 0.85 ± 0.78

<(AD⇤0D̄0

k ) 0.02 ± 0.42 ± 0.66 =(AD⇤0D̄0

k ) �0.46 ± 0.32 ± 0.58

<(AD⇤0D̄0

? ) �0.24 ± 0.42 ± 0.70 =(AD⇤0D̄0

? ) �0.11 ± 0.39 ± 0.61
<(AD⇤0D̄0

0 ) �0.51 ± 0.41 ± 0.68 =(AD⇤0D̄0

0 ) 0.12 ± 0.35 ± 0.58

<(�Ck
7) 0.00 ± 0.03 ± 0.02 =(�Ck

7) �0.10 ± 0.03 ± 0.01
<(�C?

7 ) �0.05 ± 0.03 ± 0.02 =(�C?
7 ) �0.04 ± 0.04 ± 0.01

<(�C0
7) 0.33 ± 0.33 ± 0.09 =(�C0

7) �0.19 ± 0.20 ± 0.09

following replacements are made,759

Cq2

9 = C9 + ↵(q2 � 8.95), Cq2

10 = C10 + �(q2 � 8.95).

Non-zero values of ↵ and/or � would imply an incorrect description of the nonlocal760

contributions since a q2 dependent shift is not consistent with being of local origin.761

Allowing for this linear dependence in the fit does not significantly alter the values for762

C9 and C10, and results in ↵ = 0.029 ± 0.082, � = �0.058 ± 0.026. No evidence for an763

incorrect description of the nonlocal contributions to C9 is observed while for C10, which764

receives only local contributions in the model, a 2.2� deviation from zero is observed in765

the � slope parameter. If this could point to an inconsistency in form factors between the766

low and high q2 regions has not been explored. No systematic uncertainty is assigned due767

to this e↵ect.768

The results of the fit are also cross-checked for di↵erent choices of the dispersion769

relation subtraction point, q20, which serves as additional validation of the nonlocal model.770

The subtraction constant Ycc̄(q20) enters Eq. 23 as a constant o↵set to C9 and is degenerate771

with a NP contribution. In principle, the dispersion relation of Eq. 23 is exact and should772

be independent of the number and location of subtractions, provided the subtraction point773

is within the region in which Ycc̄(q20) can be calculated reliably, i.e. q20 < 0. A deviation774

from this behaviour would reveal itself as a change in the C9 fit results dependent upon775

the chosen subtraction point. This would indicate a problem in either the calculation of776

Ycc̄(q20) or in the extrapolation to physical q2 values via the dispersive integral — that is, a777

problem with the parameterisation of the spectral densities used in this analysis. To check778

this, the fit is rerun twice with subtractions at q20 = �1GeV2/c4 and q20 = �10GeV2/c4779

and the results are compared to the baseline fit with the subtraction at q20 = �4.6 GeV2/c4.780

The change in C9 is found to be ⇠ 0.1 in both cases which is approximately 35% of the781

statistical uncertainty. Therefore, within the precision of this measurement, the choice of782

subtraction point is found to have a negligible impact on the results.783

28

 deviation from zero for  is 
observed 
2.2σ C10

Subtraction point 

Dispersion relation should be 
independent of subtraction point 

Varying subtraction point between 
 and  

leads to variation of 35%  in 
q2

0 = − 1 GeV2/c4 q2
0 = − 10 GeV2/c4

σstat C9

Tom HadavizadehMoriond QCD

Cross checks

21

LHCb-PAPER-2024-011,  
in preparation  New

 dependence q2

Fit performed with linearly varying  
and :

C9
C10

Use alternative local  form 
factors - different LCSR inputs

B → K*

Form factor dependence  

Bharucha, Straub, & Zwicky [JHEP 08 (2016) 098]

 changes by 35% 

 changes by 90% 

C9 σstat
C10 σstat

Table 7: Results for the parameters of the two-particle and non-resonant nonlocal contributions.
The first uncertainty is statistical, while the second is systematic.

Nonlocal parameter results
<(AD0D̄0

k ) �0.07 ± 0.93 ± 0.69 =(AD0D̄0

k ) �0.44 ± 0.71 ± 0.73

<(AD0D̄0

? ) �0.12 ± 0.83 ± 0.71 =(AD0D̄0

? ) 0.02 ± 0.80 ± 0.74
<(AD0D̄0

0 ) �0.33 ± 0.91 ± 0.70 =(AD0D̄0

0 ) �0.27 ± 0.77 ± 0.81
<(AD⇤0D̄⇤0

k ) �0.06 ± 0.96 ± 0.63 =(AD⇤0D̄⇤0

k ) �0.25 ± 0.79 ± 0.67

<(AD⇤0D̄⇤0
? ) �0.16 ± 0.91 ± 0.66 =(AD⇤0D̄⇤0

? ) �0.03 ± 0.85 ± 0.70
<(AD⇤0D̄⇤0

0 ) �0.17 ± 0.95 ± 0.66 =(AD⇤0D̄⇤0
0 ) �0.28 ± 0.85 ± 0.78

<(AD⇤0D̄0

k ) 0.02 ± 0.42 ± 0.66 =(AD⇤0D̄0

k ) �0.46 ± 0.32 ± 0.58

<(AD⇤0D̄0

? ) �0.24 ± 0.42 ± 0.70 =(AD⇤0D̄0

? ) �0.11 ± 0.39 ± 0.61
<(AD⇤0D̄0

0 ) �0.51 ± 0.41 ± 0.68 =(AD⇤0D̄0

0 ) 0.12 ± 0.35 ± 0.58

<(�Ck
7) 0.00 ± 0.03 ± 0.02 =(�Ck

7) �0.10 ± 0.03 ± 0.01
<(�C?

7 ) �0.05 ± 0.03 ± 0.02 =(�C?
7 ) �0.04 ± 0.04 ± 0.01

<(�C0
7) 0.33 ± 0.33 ± 0.09 =(�C0

7) �0.19 ± 0.20 ± 0.09

following replacements are made,759

Cq2

9 = C9 + ↵(q2 � 8.95), Cq2

10 = C10 + �(q2 � 8.95).

Non-zero values of ↵ and/or � would imply an incorrect description of the nonlocal760

contributions since a q2 dependent shift is not consistent with being of local origin.761

Allowing for this linear dependence in the fit does not significantly alter the values for762

C9 and C10, and results in ↵ = 0.029 ± 0.082, � = �0.058 ± 0.026. No evidence for an763

incorrect description of the nonlocal contributions to C9 is observed while for C10, which764

receives only local contributions in the model, a 2.2� deviation from zero is observed in765

the � slope parameter. If this could point to an inconsistency in form factors between the766

low and high q2 regions has not been explored. No systematic uncertainty is assigned due767

to this e↵ect.768

The results of the fit are also cross-checked for di↵erent choices of the dispersion769

relation subtraction point, q20, which serves as additional validation of the nonlocal model.770

The subtraction constant Ycc̄(q20) enters Eq. 23 as a constant o↵set to C9 and is degenerate771

with a NP contribution. In principle, the dispersion relation of Eq. 23 is exact and should772

be independent of the number and location of subtractions, provided the subtraction point773

is within the region in which Ycc̄(q20) can be calculated reliably, i.e. q20 < 0. A deviation774

from this behaviour would reveal itself as a change in the C9 fit results dependent upon775

the chosen subtraction point. This would indicate a problem in either the calculation of776

Ycc̄(q20) or in the extrapolation to physical q2 values via the dispersive integral — that is, a777

problem with the parameterisation of the spectral densities used in this analysis. To check778

this, the fit is rerun twice with subtractions at q20 = �1GeV2/c4 and q20 = �10GeV2/c4779

and the results are compared to the baseline fit with the subtraction at q20 = �4.6 GeV2/c4.780

The change in C9 is found to be ⇠ 0.1 in both cases which is approximately 35% of the781

statistical uncertainty. Therefore, within the precision of this measurement, the choice of782

subtraction point is found to have a negligible impact on the results.783

28

Table 7: Results for the parameters of the two-particle and non-resonant nonlocal contributions.
The first uncertainty is statistical, while the second is systematic.

Nonlocal parameter results
<(AD0D̄0

k ) �0.07 ± 0.93 ± 0.69 =(AD0D̄0

k ) �0.44 ± 0.71 ± 0.73

<(AD0D̄0

? ) �0.12 ± 0.83 ± 0.71 =(AD0D̄0

? ) 0.02 ± 0.80 ± 0.74
<(AD0D̄0

0 ) �0.33 ± 0.91 ± 0.70 =(AD0D̄0

0 ) �0.27 ± 0.77 ± 0.81
<(AD⇤0D̄⇤0

k ) �0.06 ± 0.96 ± 0.63 =(AD⇤0D̄⇤0

k ) �0.25 ± 0.79 ± 0.67

<(AD⇤0D̄⇤0
? ) �0.16 ± 0.91 ± 0.66 =(AD⇤0D̄⇤0

? ) �0.03 ± 0.85 ± 0.70
<(AD⇤0D̄⇤0

0 ) �0.17 ± 0.95 ± 0.66 =(AD⇤0D̄⇤0
0 ) �0.28 ± 0.85 ± 0.78

<(AD⇤0D̄0

k ) 0.02 ± 0.42 ± 0.66 =(AD⇤0D̄0

k ) �0.46 ± 0.32 ± 0.58

<(AD⇤0D̄0

? ) �0.24 ± 0.42 ± 0.70 =(AD⇤0D̄0

? ) �0.11 ± 0.39 ± 0.61
<(AD⇤0D̄0

0 ) �0.51 ± 0.41 ± 0.68 =(AD⇤0D̄0

0 ) 0.12 ± 0.35 ± 0.58

<(�Ck
7) 0.00 ± 0.03 ± 0.02 =(�Ck

7) �0.10 ± 0.03 ± 0.01
<(�C?

7 ) �0.05 ± 0.03 ± 0.02 =(�C?
7 ) �0.04 ± 0.04 ± 0.01

<(�C0
7) 0.33 ± 0.33 ± 0.09 =(�C0

7) �0.19 ± 0.20 ± 0.09

following replacements are made,759

Cq2

9 = C9 + ↵(q2 � 8.95), Cq2

10 = C10 + �(q2 � 8.95).

Non-zero values of ↵ and/or � would imply an incorrect description of the nonlocal760

contributions since a q2 dependent shift is not consistent with being of local origin.761

Allowing for this linear dependence in the fit does not significantly alter the values for762

C9 and C10, and results in ↵ = 0.029 ± 0.082, � = �0.058 ± 0.026. No evidence for an763

incorrect description of the nonlocal contributions to C9 is observed while for C10, which764

receives only local contributions in the model, a 2.2� deviation from zero is observed in765

the � slope parameter. If this could point to an inconsistency in form factors between the766

low and high q2 regions has not been explored. No systematic uncertainty is assigned due767

to this e↵ect.768

The results of the fit are also cross-checked for di↵erent choices of the dispersion769

relation subtraction point, q20, which serves as additional validation of the nonlocal model.770

The subtraction constant Ycc̄(q20) enters Eq. 23 as a constant o↵set to C9 and is degenerate771

with a NP contribution. In principle, the dispersion relation of Eq. 23 is exact and should772

be independent of the number and location of subtractions, provided the subtraction point773

is within the region in which Ycc̄(q20) can be calculated reliably, i.e. q20 < 0. A deviation774

from this behaviour would reveal itself as a change in the C9 fit results dependent upon775

the chosen subtraction point. This would indicate a problem in either the calculation of776

Ycc̄(q20) or in the extrapolation to physical q2 values via the dispersive integral — that is, a777

problem with the parameterisation of the spectral densities used in this analysis. To check778

this, the fit is rerun twice with subtractions at q20 = �1GeV2/c4 and q20 = �10GeV2/c4779

and the results are compared to the baseline fit with the subtraction at q20 = �4.6 GeV2/c4.780

The change in C9 is found to be ⇠ 0.1 in both cases which is approximately 35% of the781

statistical uncertainty. Therefore, within the precision of this measurement, the choice of782

subtraction point is found to have a negligible impact on the results.783

28

Table 7: Results for the parameters of the two-particle and non-resonant nonlocal contributions.
The first uncertainty is statistical, while the second is systematic.

Nonlocal parameter results
<(AD0D̄0

k ) �0.07 ± 0.93 ± 0.69 =(AD0D̄0

k ) �0.44 ± 0.71 ± 0.73

<(AD0D̄0

? ) �0.12 ± 0.83 ± 0.71 =(AD0D̄0

? ) 0.02 ± 0.80 ± 0.74
<(AD0D̄0

0 ) �0.33 ± 0.91 ± 0.70 =(AD0D̄0

0 ) �0.27 ± 0.77 ± 0.81
<(AD⇤0D̄⇤0

k ) �0.06 ± 0.96 ± 0.63 =(AD⇤0D̄⇤0

k ) �0.25 ± 0.79 ± 0.67

<(AD⇤0D̄⇤0
? ) �0.16 ± 0.91 ± 0.66 =(AD⇤0D̄⇤0

? ) �0.03 ± 0.85 ± 0.70
<(AD⇤0D̄⇤0

0 ) �0.17 ± 0.95 ± 0.66 =(AD⇤0D̄⇤0
0 ) �0.28 ± 0.85 ± 0.78

<(AD⇤0D̄0

k ) 0.02 ± 0.42 ± 0.66 =(AD⇤0D̄0

k ) �0.46 ± 0.32 ± 0.58

<(AD⇤0D̄0

? ) �0.24 ± 0.42 ± 0.70 =(AD⇤0D̄0

? ) �0.11 ± 0.39 ± 0.61
<(AD⇤0D̄0

0 ) �0.51 ± 0.41 ± 0.68 =(AD⇤0D̄0

0 ) 0.12 ± 0.35 ± 0.58

<(�Ck
7) 0.00 ± 0.03 ± 0.02 =(�Ck

7) �0.10 ± 0.03 ± 0.01
<(�C?

7 ) �0.05 ± 0.03 ± 0.02 =(�C?
7 ) �0.04 ± 0.04 ± 0.01

<(�C0
7) 0.33 ± 0.33 ± 0.09 =(�C0

7) �0.19 ± 0.20 ± 0.09

following replacements are made,759

Cq2

9 = C9 + ↵(q2 � 8.95), Cq2

10 = C10 + �(q2 � 8.95).

Non-zero values of ↵ and/or � would imply an incorrect description of the nonlocal760

contributions since a q2 dependent shift is not consistent with being of local origin.761

Allowing for this linear dependence in the fit does not significantly alter the values for762

C9 and C10, and results in ↵ = 0.029 ± 0.082, � = �0.058 ± 0.026. No evidence for an763

incorrect description of the nonlocal contributions to C9 is observed while for C10, which764

receives only local contributions in the model, a 2.2� deviation from zero is observed in765

the � slope parameter. If this could point to an inconsistency in form factors between the766

low and high q2 regions has not been explored. No systematic uncertainty is assigned due767

to this e↵ect.768

The results of the fit are also cross-checked for di↵erent choices of the dispersion769

relation subtraction point, q20, which serves as additional validation of the nonlocal model.770

The subtraction constant Ycc̄(q20) enters Eq. 23 as a constant o↵set to C9 and is degenerate771

with a NP contribution. In principle, the dispersion relation of Eq. 23 is exact and should772

be independent of the number and location of subtractions, provided the subtraction point773

is within the region in which Ycc̄(q20) can be calculated reliably, i.e. q20 < 0. A deviation774

from this behaviour would reveal itself as a change in the C9 fit results dependent upon775

the chosen subtraction point. This would indicate a problem in either the calculation of776

Ycc̄(q20) or in the extrapolation to physical q2 values via the dispersive integral — that is, a777

problem with the parameterisation of the spectral densities used in this analysis. To check778

this, the fit is rerun twice with subtractions at q20 = �1GeV2/c4 and q20 = �10GeV2/c4779

and the results are compared to the baseline fit with the subtraction at q20 = �4.6 GeV2/c4.780

The change in C9 is found to be ⇠ 0.1 in both cases which is approximately 35% of the781

statistical uncertainty. Therefore, within the precision of this measurement, the choice of782

subtraction point is found to have a negligible impact on the results.783

28

Table 7: Results for the parameters of the two-particle and non-resonant nonlocal contributions.
The first uncertainty is statistical, while the second is systematic.

Nonlocal parameter results
<(AD0D̄0

k ) �0.07 ± 0.93 ± 0.69 =(AD0D̄0

k ) �0.44 ± 0.71 ± 0.73

<(AD0D̄0

? ) �0.12 ± 0.83 ± 0.71 =(AD0D̄0

? ) 0.02 ± 0.80 ± 0.74
<(AD0D̄0

0 ) �0.33 ± 0.91 ± 0.70 =(AD0D̄0

0 ) �0.27 ± 0.77 ± 0.81
<(AD⇤0D̄⇤0

k ) �0.06 ± 0.96 ± 0.63 =(AD⇤0D̄⇤0

k ) �0.25 ± 0.79 ± 0.67

<(AD⇤0D̄⇤0
? ) �0.16 ± 0.91 ± 0.66 =(AD⇤0D̄⇤0

? ) �0.03 ± 0.85 ± 0.70
<(AD⇤0D̄⇤0

0 ) �0.17 ± 0.95 ± 0.66 =(AD⇤0D̄⇤0
0 ) �0.28 ± 0.85 ± 0.78

<(AD⇤0D̄0

k ) 0.02 ± 0.42 ± 0.66 =(AD⇤0D̄0

k ) �0.46 ± 0.32 ± 0.58

<(AD⇤0D̄0

? ) �0.24 ± 0.42 ± 0.70 =(AD⇤0D̄0

? ) �0.11 ± 0.39 ± 0.61
<(AD⇤0D̄0

0 ) �0.51 ± 0.41 ± 0.68 =(AD⇤0D̄0

0 ) 0.12 ± 0.35 ± 0.58

<(�Ck
7) 0.00 ± 0.03 ± 0.02 =(�Ck

7) �0.10 ± 0.03 ± 0.01
<(�C?

7 ) �0.05 ± 0.03 ± 0.02 =(�C?
7 ) �0.04 ± 0.04 ± 0.01

<(�C0
7) 0.33 ± 0.33 ± 0.09 =(�C0

7) �0.19 ± 0.20 ± 0.09

following replacements are made,759

Cq2

9 = C9 + ↵(q2 � 8.95), Cq2

10 = C10 + �(q2 � 8.95).

Non-zero values of ↵ and/or � would imply an incorrect description of the nonlocal760

contributions since a q2 dependent shift is not consistent with being of local origin.761

Allowing for this linear dependence in the fit does not significantly alter the values for762

C9 and C10, and results in ↵ = 0.029 ± 0.082, � = �0.058 ± 0.026. No evidence for an763

incorrect description of the nonlocal contributions to C9 is observed while for C10, which764

receives only local contributions in the model, a 2.2� deviation from zero is observed in765

the � slope parameter. If this could point to an inconsistency in form factors between the766

low and high q2 regions has not been explored. No systematic uncertainty is assigned due767

to this e↵ect.768

The results of the fit are also cross-checked for di↵erent choices of the dispersion769

relation subtraction point, q20, which serves as additional validation of the nonlocal model.770

The subtraction constant Ycc̄(q20) enters Eq. 23 as a constant o↵set to C9 and is degenerate771

with a NP contribution. In principle, the dispersion relation of Eq. 23 is exact and should772

be independent of the number and location of subtractions, provided the subtraction point773

is within the region in which Ycc̄(q20) can be calculated reliably, i.e. q20 < 0. A deviation774

from this behaviour would reveal itself as a change in the C9 fit results dependent upon775

the chosen subtraction point. This would indicate a problem in either the calculation of776

Ycc̄(q20) or in the extrapolation to physical q2 values via the dispersive integral — that is, a777

problem with the parameterisation of the spectral densities used in this analysis. To check778

this, the fit is rerun twice with subtractions at q20 = �1GeV2/c4 and q20 = �10GeV2/c4779

and the results are compared to the baseline fit with the subtraction at q20 = �4.6 GeV2/c4.780

The change in C9 is found to be ⇠ 0.1 in both cases which is approximately 35% of the781

statistical uncertainty. Therefore, within the precision of this measurement, the choice of782

subtraction point is found to have a negligible impact on the results.783

28

 deviation from zero for  is 
observed 
2.2σ C10

Subtraction point 

Dispersion relation should be 
independent of subtraction point 

Varying subtraction point between 
 and  

leads to variation of 35%  in 
q2

0 = − 1 GeV2/c4 q2
0 = − 10 GeV2/c4

σstat C9

Tom HadavizadehMoriond QCD

Cross checks

21

LHCb-PAPER-2024-011,  
in preparation  New

 dependence q2

Fit performed with linearly varying  
and :

C9
C10

Use alternative local  form 
factors - different LCSR inputs

B → K*

Form factor dependence  

Bharucha, Straub, & Zwicky [JHEP 08 (2016) 098]

 changes by 35% 

 changes by 90% 

C9 σstat
C10 σstat

Table 7: Results for the parameters of the two-particle and non-resonant nonlocal contributions.
The first uncertainty is statistical, while the second is systematic.

Nonlocal parameter results
<(AD0D̄0

k ) �0.07 ± 0.93 ± 0.69 =(AD0D̄0

k ) �0.44 ± 0.71 ± 0.73

<(AD0D̄0

? ) �0.12 ± 0.83 ± 0.71 =(AD0D̄0

? ) 0.02 ± 0.80 ± 0.74
<(AD0D̄0

0 ) �0.33 ± 0.91 ± 0.70 =(AD0D̄0

0 ) �0.27 ± 0.77 ± 0.81
<(AD⇤0D̄⇤0

k ) �0.06 ± 0.96 ± 0.63 =(AD⇤0D̄⇤0

k ) �0.25 ± 0.79 ± 0.67

<(AD⇤0D̄⇤0
? ) �0.16 ± 0.91 ± 0.66 =(AD⇤0D̄⇤0

? ) �0.03 ± 0.85 ± 0.70
<(AD⇤0D̄⇤0

0 ) �0.17 ± 0.95 ± 0.66 =(AD⇤0D̄⇤0
0 ) �0.28 ± 0.85 ± 0.78

<(AD⇤0D̄0

k ) 0.02 ± 0.42 ± 0.66 =(AD⇤0D̄0

k ) �0.46 ± 0.32 ± 0.58

<(AD⇤0D̄0

? ) �0.24 ± 0.42 ± 0.70 =(AD⇤0D̄0

? ) �0.11 ± 0.39 ± 0.61
<(AD⇤0D̄0

0 ) �0.51 ± 0.41 ± 0.68 =(AD⇤0D̄0

0 ) 0.12 ± 0.35 ± 0.58

<(�Ck
7) 0.00 ± 0.03 ± 0.02 =(�Ck

7) �0.10 ± 0.03 ± 0.01
<(�C?

7 ) �0.05 ± 0.03 ± 0.02 =(�C?
7 ) �0.04 ± 0.04 ± 0.01

<(�C0
7) 0.33 ± 0.33 ± 0.09 =(�C0

7) �0.19 ± 0.20 ± 0.09

following replacements are made,759

Cq2

9 = C9 + ↵(q2 � 8.95), Cq2

10 = C10 + �(q2 � 8.95).

Non-zero values of ↵ and/or � would imply an incorrect description of the nonlocal760

contributions since a q2 dependent shift is not consistent with being of local origin.761

Allowing for this linear dependence in the fit does not significantly alter the values for762

C9 and C10, and results in ↵ = 0.029 ± 0.082, � = �0.058 ± 0.026. No evidence for an763

incorrect description of the nonlocal contributions to C9 is observed while for C10, which764

receives only local contributions in the model, a 2.2� deviation from zero is observed in765

the � slope parameter. If this could point to an inconsistency in form factors between the766

low and high q2 regions has not been explored. No systematic uncertainty is assigned due767

to this e↵ect.768

The results of the fit are also cross-checked for di↵erent choices of the dispersion769

relation subtraction point, q20, which serves as additional validation of the nonlocal model.770

The subtraction constant Ycc̄(q20) enters Eq. 23 as a constant o↵set to C9 and is degenerate771

with a NP contribution. In principle, the dispersion relation of Eq. 23 is exact and should772

be independent of the number and location of subtractions, provided the subtraction point773

is within the region in which Ycc̄(q20) can be calculated reliably, i.e. q20 < 0. A deviation774

from this behaviour would reveal itself as a change in the C9 fit results dependent upon775

the chosen subtraction point. This would indicate a problem in either the calculation of776

Ycc̄(q20) or in the extrapolation to physical q2 values via the dispersive integral — that is, a777

problem with the parameterisation of the spectral densities used in this analysis. To check778

this, the fit is rerun twice with subtractions at q20 = �1GeV2/c4 and q20 = �10GeV2/c4779

and the results are compared to the baseline fit with the subtraction at q20 = �4.6 GeV2/c4.780

The change in C9 is found to be ⇠ 0.1 in both cases which is approximately 35% of the781

statistical uncertainty. Therefore, within the precision of this measurement, the choice of782

subtraction point is found to have a negligible impact on the results.783

28

Table 7: Results for the parameters of the two-particle and non-resonant nonlocal contributions.
The first uncertainty is statistical, while the second is systematic.

Nonlocal parameter results
<(AD0D̄0

k ) �0.07 ± 0.93 ± 0.69 =(AD0D̄0

k ) �0.44 ± 0.71 ± 0.73

<(AD0D̄0

? ) �0.12 ± 0.83 ± 0.71 =(AD0D̄0

? ) 0.02 ± 0.80 ± 0.74
<(AD0D̄0

0 ) �0.33 ± 0.91 ± 0.70 =(AD0D̄0

0 ) �0.27 ± 0.77 ± 0.81
<(AD⇤0D̄⇤0

k ) �0.06 ± 0.96 ± 0.63 =(AD⇤0D̄⇤0

k ) �0.25 ± 0.79 ± 0.67

<(AD⇤0D̄⇤0
? ) �0.16 ± 0.91 ± 0.66 =(AD⇤0D̄⇤0

? ) �0.03 ± 0.85 ± 0.70
<(AD⇤0D̄⇤0

0 ) �0.17 ± 0.95 ± 0.66 =(AD⇤0D̄⇤0
0 ) �0.28 ± 0.85 ± 0.78

<(AD⇤0D̄0

k ) 0.02 ± 0.42 ± 0.66 =(AD⇤0D̄0

k ) �0.46 ± 0.32 ± 0.58

<(AD⇤0D̄0

? ) �0.24 ± 0.42 ± 0.70 =(AD⇤0D̄0

? ) �0.11 ± 0.39 ± 0.61
<(AD⇤0D̄0

0 ) �0.51 ± 0.41 ± 0.68 =(AD⇤0D̄0

0 ) 0.12 ± 0.35 ± 0.58

<(�Ck
7) 0.00 ± 0.03 ± 0.02 =(�Ck

7) �0.10 ± 0.03 ± 0.01
<(�C?

7 ) �0.05 ± 0.03 ± 0.02 =(�C?
7 ) �0.04 ± 0.04 ± 0.01

<(�C0
7) 0.33 ± 0.33 ± 0.09 =(�C0

7) �0.19 ± 0.20 ± 0.09

following replacements are made,759

Cq2

9 = C9 + ↵(q2 � 8.95), Cq2

10 = C10 + �(q2 � 8.95).

Non-zero values of ↵ and/or � would imply an incorrect description of the nonlocal760

contributions since a q2 dependent shift is not consistent with being of local origin.761

Allowing for this linear dependence in the fit does not significantly alter the values for762

C9 and C10, and results in ↵ = 0.029 ± 0.082, � = �0.058 ± 0.026. No evidence for an763

incorrect description of the nonlocal contributions to C9 is observed while for C10, which764

receives only local contributions in the model, a 2.2� deviation from zero is observed in765

the � slope parameter. If this could point to an inconsistency in form factors between the766

low and high q2 regions has not been explored. No systematic uncertainty is assigned due767

to this e↵ect.768

The results of the fit are also cross-checked for di↵erent choices of the dispersion769

relation subtraction point, q20, which serves as additional validation of the nonlocal model.770

The subtraction constant Ycc̄(q20) enters Eq. 23 as a constant o↵set to C9 and is degenerate771

with a NP contribution. In principle, the dispersion relation of Eq. 23 is exact and should772

be independent of the number and location of subtractions, provided the subtraction point773

is within the region in which Ycc̄(q20) can be calculated reliably, i.e. q20 < 0. A deviation774

from this behaviour would reveal itself as a change in the C9 fit results dependent upon775

the chosen subtraction point. This would indicate a problem in either the calculation of776

Ycc̄(q20) or in the extrapolation to physical q2 values via the dispersive integral — that is, a777

problem with the parameterisation of the spectral densities used in this analysis. To check778

this, the fit is rerun twice with subtractions at q20 = �1GeV2/c4 and q20 = �10GeV2/c4779

and the results are compared to the baseline fit with the subtraction at q20 = �4.6 GeV2/c4.780

The change in C9 is found to be ⇠ 0.1 in both cases which is approximately 35% of the781

statistical uncertainty. Therefore, within the precision of this measurement, the choice of782

subtraction point is found to have a negligible impact on the results.783

28

Table 7: Results for the parameters of the two-particle and non-resonant nonlocal contributions.
The first uncertainty is statistical, while the second is systematic.

Nonlocal parameter results
<(AD0D̄0

k ) �0.07 ± 0.93 ± 0.69 =(AD0D̄0

k ) �0.44 ± 0.71 ± 0.73

<(AD0D̄0

? ) �0.12 ± 0.83 ± 0.71 =(AD0D̄0

? ) 0.02 ± 0.80 ± 0.74
<(AD0D̄0

0 ) �0.33 ± 0.91 ± 0.70 =(AD0D̄0

0 ) �0.27 ± 0.77 ± 0.81
<(AD⇤0D̄⇤0

k ) �0.06 ± 0.96 ± 0.63 =(AD⇤0D̄⇤0

k ) �0.25 ± 0.79 ± 0.67

<(AD⇤0D̄⇤0
? ) �0.16 ± 0.91 ± 0.66 =(AD⇤0D̄⇤0

? ) �0.03 ± 0.85 ± 0.70
<(AD⇤0D̄⇤0

0 ) �0.17 ± 0.95 ± 0.66 =(AD⇤0D̄⇤0
0 ) �0.28 ± 0.85 ± 0.78

<(AD⇤0D̄0

k ) 0.02 ± 0.42 ± 0.66 =(AD⇤0D̄0

k ) �0.46 ± 0.32 ± 0.58

<(AD⇤0D̄0

? ) �0.24 ± 0.42 ± 0.70 =(AD⇤0D̄0

? ) �0.11 ± 0.39 ± 0.61
<(AD⇤0D̄0

0 ) �0.51 ± 0.41 ± 0.68 =(AD⇤0D̄0

0 ) 0.12 ± 0.35 ± 0.58

<(�Ck
7) 0.00 ± 0.03 ± 0.02 =(�Ck

7) �0.10 ± 0.03 ± 0.01
<(�C?

7 ) �0.05 ± 0.03 ± 0.02 =(�C?
7 ) �0.04 ± 0.04 ± 0.01

<(�C0
7) 0.33 ± 0.33 ± 0.09 =(�C0

7) �0.19 ± 0.20 ± 0.09

following replacements are made,759

Cq2

9 = C9 + ↵(q2 � 8.95), Cq2

10 = C10 + �(q2 � 8.95).

Non-zero values of ↵ and/or � would imply an incorrect description of the nonlocal760

contributions since a q2 dependent shift is not consistent with being of local origin.761

Allowing for this linear dependence in the fit does not significantly alter the values for762

C9 and C10, and results in ↵ = 0.029 ± 0.082, � = �0.058 ± 0.026. No evidence for an763

incorrect description of the nonlocal contributions to C9 is observed while for C10, which764

receives only local contributions in the model, a 2.2� deviation from zero is observed in765

the � slope parameter. If this could point to an inconsistency in form factors between the766

low and high q2 regions has not been explored. No systematic uncertainty is assigned due767

to this e↵ect.768

The results of the fit are also cross-checked for di↵erent choices of the dispersion769

relation subtraction point, q20, which serves as additional validation of the nonlocal model.770

The subtraction constant Ycc̄(q20) enters Eq. 23 as a constant o↵set to C9 and is degenerate771

with a NP contribution. In principle, the dispersion relation of Eq. 23 is exact and should772

be independent of the number and location of subtractions, provided the subtraction point773

is within the region in which Ycc̄(q20) can be calculated reliably, i.e. q20 < 0. A deviation774

from this behaviour would reveal itself as a change in the C9 fit results dependent upon775

the chosen subtraction point. This would indicate a problem in either the calculation of776

Ycc̄(q20) or in the extrapolation to physical q2 values via the dispersive integral — that is, a777

problem with the parameterisation of the spectral densities used in this analysis. To check778

this, the fit is rerun twice with subtractions at q20 = �1GeV2/c4 and q20 = �10GeV2/c4779

and the results are compared to the baseline fit with the subtraction at q20 = �4.6 GeV2/c4.780

The change in C9 is found to be ⇠ 0.1 in both cases which is approximately 35% of the781

statistical uncertainty. Therefore, within the precision of this measurement, the choice of782

subtraction point is found to have a negligible impact on the results.783

28

Table 7: Results for the parameters of the two-particle and non-resonant nonlocal contributions.
The first uncertainty is statistical, while the second is systematic.

Nonlocal parameter results
<(AD0D̄0

k ) �0.07 ± 0.93 ± 0.69 =(AD0D̄0

k ) �0.44 ± 0.71 ± 0.73

<(AD0D̄0

? ) �0.12 ± 0.83 ± 0.71 =(AD0D̄0

? ) 0.02 ± 0.80 ± 0.74
<(AD0D̄0

0 ) �0.33 ± 0.91 ± 0.70 =(AD0D̄0

0 ) �0.27 ± 0.77 ± 0.81
<(AD⇤0D̄⇤0

k ) �0.06 ± 0.96 ± 0.63 =(AD⇤0D̄⇤0

k ) �0.25 ± 0.79 ± 0.67

<(AD⇤0D̄⇤0
? ) �0.16 ± 0.91 ± 0.66 =(AD⇤0D̄⇤0

? ) �0.03 ± 0.85 ± 0.70
<(AD⇤0D̄⇤0

0 ) �0.17 ± 0.95 ± 0.66 =(AD⇤0D̄⇤0
0 ) �0.28 ± 0.85 ± 0.78

<(AD⇤0D̄0

k ) 0.02 ± 0.42 ± 0.66 =(AD⇤0D̄0

k ) �0.46 ± 0.32 ± 0.58

<(AD⇤0D̄0

? ) �0.24 ± 0.42 ± 0.70 =(AD⇤0D̄0

? ) �0.11 ± 0.39 ± 0.61
<(AD⇤0D̄0

0 ) �0.51 ± 0.41 ± 0.68 =(AD⇤0D̄0

0 ) 0.12 ± 0.35 ± 0.58

<(�Ck
7) 0.00 ± 0.03 ± 0.02 =(�Ck

7) �0.10 ± 0.03 ± 0.01
<(�C?

7 ) �0.05 ± 0.03 ± 0.02 =(�C?
7 ) �0.04 ± 0.04 ± 0.01

<(�C0
7) 0.33 ± 0.33 ± 0.09 =(�C0

7) �0.19 ± 0.20 ± 0.09

following replacements are made,759

Cq2

9 = C9 + ↵(q2 � 8.95), Cq2

10 = C10 + �(q2 � 8.95).

Non-zero values of ↵ and/or � would imply an incorrect description of the nonlocal760

contributions since a q2 dependent shift is not consistent with being of local origin.761

Allowing for this linear dependence in the fit does not significantly alter the values for762

C9 and C10, and results in ↵ = 0.029 ± 0.082, � = �0.058 ± 0.026. No evidence for an763

incorrect description of the nonlocal contributions to C9 is observed while for C10, which764

receives only local contributions in the model, a 2.2� deviation from zero is observed in765

the � slope parameter. If this could point to an inconsistency in form factors between the766

low and high q2 regions has not been explored. No systematic uncertainty is assigned due767

to this e↵ect.768

The results of the fit are also cross-checked for di↵erent choices of the dispersion769

relation subtraction point, q20, which serves as additional validation of the nonlocal model.770

The subtraction constant Ycc̄(q20) enters Eq. 23 as a constant o↵set to C9 and is degenerate771

with a NP contribution. In principle, the dispersion relation of Eq. 23 is exact and should772

be independent of the number and location of subtractions, provided the subtraction point773

is within the region in which Ycc̄(q20) can be calculated reliably, i.e. q20 < 0. A deviation774

from this behaviour would reveal itself as a change in the C9 fit results dependent upon775

the chosen subtraction point. This would indicate a problem in either the calculation of776

Ycc̄(q20) or in the extrapolation to physical q2 values via the dispersive integral — that is, a777

problem with the parameterisation of the spectral densities used in this analysis. To check778

this, the fit is rerun twice with subtractions at q20 = �1GeV2/c4 and q20 = �10GeV2/c4779

and the results are compared to the baseline fit with the subtraction at q20 = �4.6 GeV2/c4.780

The change in C9 is found to be ⇠ 0.1 in both cases which is approximately 35% of the781

statistical uncertainty. Therefore, within the precision of this measurement, the choice of782

subtraction point is found to have a negligible impact on the results.783

28

 deviation from zero for  is 
observed 
2.2σ C10

Subtraction point 

Dispersion relation should be 
independent of subtraction point 

Varying subtraction point between 
 and  

leads to variation of 35%  in 
q2

0 = − 1 GeV2/c4 q2
0 = − 10 GeV2/c4

σstat C9

preliminarypreliminary

preliminary preliminary



Ang. obs (P-basis)

58

�0.5

0.0

0.5P 1

LHCb 4.7 fb�1

0.0 2.5 5.0 7.5 10.0 12.5
q2 [GeV2/c4]

�0.25
0.00
0.25

�
P 1

b!
sc

c̄

�0.5

0.0

0.5P 2
0.0 2.5 5.0 7.5 10.0 12.5

q2 [GeV2/c4]

�0.25

0.00

0.25

�
P 2

b!
sc

c̄

LHCb 4.7 fb�1

�0.2

0.0

0.2

0.4P 3

LHCb 4.7 fb�1

0.0 2.5 5.0 7.5 10.0 12.5
q2 [GeV2/c4]

�0.2

0.0

0.2

�
P 3

b!
sc

c̄

�0.5

0.0

P0 4

LHCb 4.7 fb�1

0.0 2.5 5.0 7.5 10.0 12.5
q2 [GeV2/c4]

�0.25

0.00

0.25

�
P0 4b!

sc
c̄

�1

0

P0 5

LHCb 4.7 fb�1 GRvDV
DHMV
q2 > 0 only
q2 < 0 prior
LHCb ’20

0.0 2.5 5.0 7.5 10.0 12.5
q2 [GeV2/c4]

�0.5

0.0

0.5

�
P0 5b!

sc
c̄

�0.4

�0.2

0.0

P0 6

LHCb 4.7 fb�1

0.0 2.5 5.0 7.5 10.0 12.5
q2 [GeV2/c4]

�0.25

0.00

0.25

�
P0 6b!

sc
c̄

�0.50

�0.25

0.00

0.25P0 8

LHCb 4.7 fb�1

0.0 2.5 5.0 7.5 10.0 12.5
q2 [GeV2/c4]

�0.25

0.00

0.25

�
P0 8b!

sc
c̄

Figure 9: Angular observables (P -basis) obtained a posteriori from the fit results of the two fit
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observables. The LHCb result from Ref. [9] is overlaid for comparison, together with the SM
theory prediction from DHMV [14,15] and (for P 0

5) GRvDV [16].
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Figure 8: Angular observables (S-basis) obtained a posteriori from the fit results of the two fit
configurations; the subfigures isolate the contribution from non-local e↵ects to the given angular
observables. The LHCb result from Ref. [9] is overlaid for comparison, together with the SM
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Figure 8: Angular observables (S-basis) obtained a posteriori from the fit results of the two fit
configurations; the subfigures isolate the contribution from non-local e↵ects to the given angular
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Figure 14: Plots of the unbinned angular observables in the standard basis showing both the
total and the contributions from local amplitudes only.
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Figure 14: Plots of the unbinned angular observables in the standard basis showing both the
total and the contributions from local amplitudes only.
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Figure 9: The nonlocal contributions from (maroon) this analysis that includes one- and two-
particle hadronic amplitudes expressed as shifts to C9. The contributions from the �C�

7 terms
are also included, but the tau-loop contribution is excluded. The results of z-expansion fits [37]
from the 4.7 fb�1 LHCb analysis [32] are also shown (pink) with and (yellow) without theory
input from q2 < 0. See text for more detail.
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Figure 9: The nonlocal contributions from (maroon) this analysis that includes one- and two-
particle hadronic amplitudes expressed as shifts to C9. The contributions from the �C�

7 terms
are also included, but the tau-loop contribution is excluded. The results of z-expansion fits [37]
from the 4.7 fb�1 LHCb analysis [32] are also shown (pink) with and (yellow) without theory
input from q2 < 0. See text for more detail.
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particle hadronic amplitudes expressed as shifts to C9. The contributions from the �C�
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are also included, but the tau-loop contribution is excluded. The results of z-expansion fits [37]
from the 4.7 fb�1 LHCb analysis [32] are also shown (pink) with and (yellow) without theory
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Table 5: Best fit value, confidence interval and deviation from the SM predictions [49,50] for the
four Wilson coe�cients for the two fit configurations. For each Wilson coe�cient, the likelihood
has been marginalised over the three other coe�cients. The SM predictions at the b-quark
energy-scale [49, 50] are also reported for reference.

q2 > 0 only
best fit
value

68% CL 95% CL SM value
deviation
from SM

C9 3.34 [ 2.77, 3.87] [ 2.30, 4.33] 4.273 1.9 �

C10 �3.69 [�4.00,�3.40] [�4.33,�3.12] �4.166 1.5 �

C 0
9 0.48 [�0.07, 0.97] [�0.62, 1.45] 0 0.9 �

C 0
10 0.38 [ 0.13, 0.66] [�0.14, 0.92] 0 1.5 �

q2 < 0 prior

C9 3.59 [ 3.13, 3.92] [ 2.75, 4.34] 4.273 1.8 �

C10 �3.93 [�4.21,�3.66] [�4.51,�3.40] �4.166 0.9 �

C 0
9 0.26 [�0.22, 0.66] [�0.68, 1.08] 0 0.5 �

C 0
10 0.27 [ 0.00, 0.52] [�0.26, 0.78] 0 1.0 �

8.3 Wilson coe�cients482

Table 5 reports the values of the Wilson coe�cients for the two fit configurations, together483

with their confidence intervals and compatibility with the Standard Model. For each484

of the four Wilson coe�cients, confidence intervals are built from the one-dimensional485

profile likelihood scans shown in Fig. 6. The 68% (95%) CL range is identified with the486

interval where the negative log-likelihood di↵erence, �NLL, is smaller than 0.5 (2). The487

remaining three coe�cients are marginalised over in the scan along with the other nuisance488

parameters, i.e. at each step �NLL is minimised with respect to all the other parameters.489

The di↵erence between the best fit values and the corresponding SM predictions obtained490

are491

�C9 = �0.93+0.53
�0.57 (�0.68+0.33

�0.46 )

�C10 = 0.48+0.29
�0.31 ( 0.24+0.27

�0.28 )

�C 0
9 = 0.48+0.49

�0.55 ( 0.26+0.40
�0.48 )

�C 0
10 = 0.38+0.28

�0.25 ( 0.27+0.25
�0.27 )

for the fit configuration without (with) constraints at negative q2, where the SM prediction492

at the b-quark energy-scale is taken to be CSM
9 = 4.273, CSM

10 = �4.166 and C 0 SM
9,10 = 0 [49,50].493

The coe�cient that shows the largest di↵erence with respect to the SM is C9, whose494

compatibility with the SM is found to be at the level of 1.9 and 1.8 standard deviations,495

for fit models using only q2 > 0 information and with q2 < 0 prior, respectively.496

Two-dimensional profile-likelihood contours for the Wilson coe�cients are shown in497

Fig. 7, where the 68% (95%) CL range is identified with the region where the �NLL is498

18

Table 5: Best fit value, confidence interval and deviation from the SM predictions [49,50] for the
four Wilson coe�cients for the two fit configurations. For each Wilson coe�cient, the likelihood
has been marginalised over the three other coe�cients. The SM predictions at the b-quark
energy-scale [49, 50] are also reported for reference.

q2 > 0 only
best fit
value

68% CL 95% CL SM value
deviation
from SM

C9 3.34 [ 2.77, 3.87] [ 2.30, 4.33] 4.273 1.9 �

C10 �3.69 [�4.00,�3.40] [�4.33,�3.12] �4.166 1.5 �

C 0
9 0.48 [�0.07, 0.97] [�0.62, 1.45] 0 0.9 �

C 0
10 0.38 [ 0.13, 0.66] [�0.14, 0.92] 0 1.5 �

q2 < 0 prior

C9 3.59 [ 3.13, 3.92] [ 2.75, 4.34] 4.273 1.8 �

C10 �3.93 [�4.21,�3.66] [�4.51,�3.40] �4.166 0.9 �

C 0
9 0.26 [�0.22, 0.66] [�0.68, 1.08] 0 0.5 �

C 0
10 0.27 [ 0.00, 0.52] [�0.26, 0.78] 0 1.0 �

8.3 Wilson coe�cients482

Table 5 reports the values of the Wilson coe�cients for the two fit configurations, together483

with their confidence intervals and compatibility with the Standard Model. For each484

of the four Wilson coe�cients, confidence intervals are built from the one-dimensional485

profile likelihood scans shown in Fig. 6. The 68% (95%) CL range is identified with the486

interval where the negative log-likelihood di↵erence, �NLL, is smaller than 0.5 (2). The487

remaining three coe�cients are marginalised over in the scan along with the other nuisance488

parameters, i.e. at each step �NLL is minimised with respect to all the other parameters.489

The di↵erence between the best fit values and the corresponding SM predictions obtained490

are491

�C9 = �0.93+0.53
�0.57 (�0.68+0.33

�0.46 )

�C10 = 0.48+0.29
�0.31 ( 0.24+0.27

�0.28 )

�C 0
9 = 0.48+0.49

�0.55 ( 0.26+0.40
�0.48 )

�C 0
10 = 0.38+0.28

�0.25 ( 0.27+0.25
�0.27 )

for the fit configuration without (with) constraints at negative q2, where the SM prediction492

at the b-quark energy-scale is taken to be CSM
9 = 4.273, CSM

10 = �4.166 and C 0 SM
9,10 = 0 [49,50].493

The coe�cient that shows the largest di↵erence with respect to the SM is C9, whose494

compatibility with the SM is found to be at the level of 1.9 and 1.8 standard deviations,495

for fit models using only q2 > 0 information and with q2 < 0 prior, respectively.496

Two-dimensional profile-likelihood contours for the Wilson coe�cients are shown in497

Fig. 7, where the 68% (95%) CL range is identified with the region where the �NLL is498

18

Table 5: Best fit value, confidence interval and deviation from the SM predictions [49,50] for the
four Wilson coe�cients for the two fit configurations. For each Wilson coe�cient, the likelihood
has been marginalised over the three other coe�cients. The SM predictions at the b-quark
energy-scale [49, 50] are also reported for reference.

q2 > 0 only
best fit
value

68% CL 95% CL SM value
deviation
from SM

C9 3.34 [ 2.77, 3.87] [ 2.30, 4.33] 4.273 1.9 �

C10 �3.69 [�4.00,�3.40] [�4.33,�3.12] �4.166 1.5 �

C 0
9 0.48 [�0.07, 0.97] [�0.62, 1.45] 0 0.9 �

C 0
10 0.38 [ 0.13, 0.66] [�0.14, 0.92] 0 1.5 �

q2 < 0 prior

C9 3.59 [ 3.13, 3.92] [ 2.75, 4.34] 4.273 1.8 �

C10 �3.93 [�4.21,�3.66] [�4.51,�3.40] �4.166 0.9 �

C 0
9 0.26 [�0.22, 0.66] [�0.68, 1.08] 0 0.5 �

C 0
10 0.27 [ 0.00, 0.52] [�0.26, 0.78] 0 1.0 �

8.3 Wilson coe�cients482

Table 5 reports the values of the Wilson coe�cients for the two fit configurations, together483

with their confidence intervals and compatibility with the Standard Model. For each484

of the four Wilson coe�cients, confidence intervals are built from the one-dimensional485

profile likelihood scans shown in Fig. 6. The 68% (95%) CL range is identified with the486

interval where the negative log-likelihood di↵erence, �NLL, is smaller than 0.5 (2). The487

remaining three coe�cients are marginalised over in the scan along with the other nuisance488

parameters, i.e. at each step �NLL is minimised with respect to all the other parameters.489

The di↵erence between the best fit values and the corresponding SM predictions obtained490

are491

�C9 = �0.93+0.53
�0.57 (�0.68+0.33

�0.46 )

�C10 = 0.48+0.29
�0.31 ( 0.24+0.27

�0.28 )

�C 0
9 = 0.48+0.49

�0.55 ( 0.26+0.40
�0.48 )

�C 0
10 = 0.38+0.28

�0.25 ( 0.27+0.25
�0.27 )

for the fit configuration without (with) constraints at negative q2, where the SM prediction492

at the b-quark energy-scale is taken to be CSM
9 = 4.273, CSM

10 = �4.166 and C 0 SM
9,10 = 0 [49,50].493

The coe�cient that shows the largest di↵erence with respect to the SM is C9, whose494

compatibility with the SM is found to be at the level of 1.9 and 1.8 standard deviations,495

for fit models using only q2 > 0 information and with q2 < 0 prior, respectively.496

Two-dimensional profile-likelihood contours for the Wilson coe�cients are shown in497

Fig. 7, where the 68% (95%) CL range is identified with the region where the �NLL is498

18

Table 5: Best fit value, confidence interval and deviation from the SM predictions [49,50] for the
four Wilson coe�cients for the two fit configurations. For each Wilson coe�cient, the likelihood
has been marginalised over the three other coe�cients. The SM predictions at the b-quark
energy-scale [49, 50] are also reported for reference.

q2 > 0 only
best fit
value

68% CL 95% CL SM value
deviation
from SM

C9 3.34 [ 2.77, 3.87] [ 2.30, 4.33] 4.273 1.9 �

C10 �3.69 [�4.00,�3.40] [�4.33,�3.12] �4.166 1.5 �

C 0
9 0.48 [�0.07, 0.97] [�0.62, 1.45] 0 0.9 �

C 0
10 0.38 [ 0.13, 0.66] [�0.14, 0.92] 0 1.5 �

q2 < 0 prior

C9 3.59 [ 3.13, 3.92] [ 2.75, 4.34] 4.273 1.8 �

C10 �3.93 [�4.21,�3.66] [�4.51,�3.40] �4.166 0.9 �

C 0
9 0.26 [�0.22, 0.66] [�0.68, 1.08] 0 0.5 �

C 0
10 0.27 [ 0.00, 0.52] [�0.26, 0.78] 0 1.0 �

8.3 Wilson coe�cients482

Table 5 reports the values of the Wilson coe�cients for the two fit configurations, together483

with their confidence intervals and compatibility with the Standard Model. For each484

of the four Wilson coe�cients, confidence intervals are built from the one-dimensional485

profile likelihood scans shown in Fig. 6. The 68% (95%) CL range is identified with the486

interval where the negative log-likelihood di↵erence, �NLL, is smaller than 0.5 (2). The487

remaining three coe�cients are marginalised over in the scan along with the other nuisance488

parameters, i.e. at each step �NLL is minimised with respect to all the other parameters.489

The di↵erence between the best fit values and the corresponding SM predictions obtained490

are491

�C9 = �0.93+0.53
�0.57 (�0.68+0.33

�0.46 )

�C10 = 0.48+0.29
�0.31 ( 0.24+0.27

�0.28 )

�C 0
9 = 0.48+0.49

�0.55 ( 0.26+0.40
�0.48 )

�C 0
10 = 0.38+0.28

�0.25 ( 0.27+0.25
�0.27 )

for the fit configuration without (with) constraints at negative q2, where the SM prediction492

at the b-quark energy-scale is taken to be CSM
9 = 4.273, CSM

10 = �4.166 and C 0 SM
9,10 = 0 [49,50].493

The coe�cient that shows the largest di↵erence with respect to the SM is C9, whose494

compatibility with the SM is found to be at the level of 1.9 and 1.8 standard deviations,495

for fit models using only q2 > 0 information and with q2 < 0 prior, respectively.496

Two-dimensional profile-likelihood contours for the Wilson coe�cients are shown in497

Fig. 7, where the 68% (95%) CL range is identified with the region where the �NLL is498

18

Table 5: Best fit value, confidence interval and deviation from the SM predictions [49,50] for the
four Wilson coe�cients for the two fit configurations. For each Wilson coe�cient, the likelihood
has been marginalised over the three other coe�cients. The SM predictions at the b-quark
energy-scale [49, 50] are also reported for reference.

q2 > 0 only
best fit
value

68% CL 95% CL SM value
deviation
from SM

C9 3.34 [ 2.77, 3.87] [ 2.30, 4.33] 4.273 1.9 �

C10 �3.69 [�4.00,�3.40] [�4.33,�3.12] �4.166 1.5 �

C 0
9 0.48 [�0.07, 0.97] [�0.62, 1.45] 0 0.9 �

C 0
10 0.38 [ 0.13, 0.66] [�0.14, 0.92] 0 1.5 �

q2 < 0 prior

C9 3.59 [ 3.13, 3.92] [ 2.75, 4.34] 4.273 1.8 �

C10 �3.93 [�4.21,�3.66] [�4.51,�3.40] �4.166 0.9 �

C 0
9 0.26 [�0.22, 0.66] [�0.68, 1.08] 0 0.5 �

C 0
10 0.27 [ 0.00, 0.52] [�0.26, 0.78] 0 1.0 �

8.3 Wilson coe�cients482

Table 5 reports the values of the Wilson coe�cients for the two fit configurations, together483

with their confidence intervals and compatibility with the Standard Model. For each484

of the four Wilson coe�cients, confidence intervals are built from the one-dimensional485

profile likelihood scans shown in Fig. 6. The 68% (95%) CL range is identified with the486

interval where the negative log-likelihood di↵erence, �NLL, is smaller than 0.5 (2). The487

remaining three coe�cients are marginalised over in the scan along with the other nuisance488

parameters, i.e. at each step �NLL is minimised with respect to all the other parameters.489

The di↵erence between the best fit values and the corresponding SM predictions obtained490

are491

�C9 = �0.93+0.53
�0.57 (�0.68+0.33

�0.46 )

�C10 = 0.48+0.29
�0.31 ( 0.24+0.27

�0.28 )

�C 0
9 = 0.48+0.49

�0.55 ( 0.26+0.40
�0.48 )

�C 0
10 = 0.38+0.28

�0.25 ( 0.27+0.25
�0.27 )

for the fit configuration without (with) constraints at negative q2, where the SM prediction492

at the b-quark energy-scale is taken to be CSM
9 = 4.273, CSM

10 = �4.166 and C 0 SM
9,10 = 0 [49,50].493

The coe�cient that shows the largest di↵erence with respect to the SM is C9, whose494

compatibility with the SM is found to be at the level of 1.9 and 1.8 standard deviations,495

for fit models using only q2 > 0 information and with q2 < 0 prior, respectively.496

Two-dimensional profile-likelihood contours for the Wilson coe�cients are shown in497

Fig. 7, where the 68% (95%) CL range is identified with the region where the �NLL is498

18

Table 5: Best fit value, confidence interval and deviation from the SM predictions [49,50] for the
four Wilson coe�cients for the two fit configurations. For each Wilson coe�cient, the likelihood
has been marginalised over the three other coe�cients. The SM predictions at the b-quark
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Figure 6: One-dimensional profile likelihood scan of the Wilson coe�cients. Shaded regions
correspond to the one (68% CL) and two (95% CL) sigma confidence intervals.

could expect that non-local hadronic contributions would only a↵ect C9, the experimental505

determination of the Wilson coe�cients is a↵ected by the strong correlations of the system:506

a modification of the non-local hadronic contributions is found to influence the result507

on the form factors (as shown in Fig. 4), which in turn have an impact on the Wilson508

coe�cients. This behaviour has been studied with pseudoexperiments, where the same509

generated dataset is fitted with and without the constraints at negative q2 replicating the510

procedure adopted on data, and the variation measured in data is found to be compatible511

with what is observed in the pseudoexperiments.512

Finally, the global compatibility with respect to the SM is evaluated by inspecting the513

likelihood di↵erence in the four-dimensional space given by the four considered Wilson514

coe�cients. Taking into account the systematic uncertainties, the observed di↵erence515

in twice the log-likelihood between the best fit and SM point is found to be 2.99 (3.25).516

Considering the four degrees of freedom of the system, this corresponds to 1.3 (1.4) standard517

deviations with respect to the SM, for fit without (with) the negative q2 constraints.518

8.4 Comparison to binned observables519

Conventional angular observables accessed by binned angular analyses [7–9] can be deter-520

mined from the fit results by dividing the angular coe�cients, Ii(q2, k2), by the di↵erential521
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- From the fit result we can reproduce the classic binned observables

‣ Lower BR compared to 
LHCb Run1 due to updated 
normalisation inputs
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Figure 10: Branching fraction and S-wave fraction obtained a posteriori from the fit results of
the two fit configurations. The published Run1 measurement from LHCb [1] has been overlaid
for comparison. The SM branching fraction prediction from GRvDV [16] is also reported.
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Figure 11: Distributions of the P-wave di↵erential branching fraction, d�/dq2, constructed out
of the signal parameters from the baseline fit to data. In (a), the unbinned distribution is shown
both with and without the nonlocal contributions included in the amplitudes. In (b), the binned
distribution is shown for the baseline fit to data, and with the Wilson Coe�cients (WCs) set to
their SM values. These are compared against SM predictions obtained from Ref. [30].

8 Conclusion849

An amplitude analysis of the decay B0! K⇤0µ+µ� in the complete dimuon mass region850

has been performed for the first time using LHCb data. The result is using all available851

information in the final state and can not be combined with any other LHCb measurement852

of the angular observables or the branching fraction of the same or partially the same853

dataset. The measurement employs a model of one- and two-particle nonlocal amplitudes854

to explicitly isolate the local and nonlocal contributions to the decay and capture the855

interference between them. In doing so, direct measurements of the b ! sµ+µ� Wilson856

Coe�cients C(0)
9,10 are obtained, as well as a first ever direct measurement of C9⌧ . The857

values of C 0
9, C10, C 0

10, and C9⌧ are all found to be consistent with the SM, while a 2.1�858

deviation is observed in C9. The observed shift in C9 is found to be independent of q2, but859

has a slight dependence on the local form factor constraints used. These results agree860

with the interpretations of previous binned angular analyses, so although the nonlocal861

contributions play a clear role in the angular distribution of B0! K⇤0µ+µ� decays, the862

tension in C9 persist. There is also agreement with the findings of other complementary863

analyses focusing on the e↵ect of the nonlocal contributions in B0! K⇤0`+`�.864
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‣ Sharp variation in               between  
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‣ require high polynomial order

q2 < 0
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Non-local result : z-expansion
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- Good agreement between 
the two configurations 
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Im ∥q2 = �1GeV2/c4 can be used to test the compatibility of the fit result with the theoretical652

prediction. Figure 11 shows a zoom of the obtained H�(q2) function at low q2. While653

the real part of H�/F� nicely embraces the theory prediction at q2 = �1GeV2/c4, the654

imaginary part tents to raise stronger than the theoretical predictions. Note that all theory655

points are strongly correlated, hence the compatibility with the point at q2 = �1GeV2/c4656

is poor. In fact, in order to include the theory point at q2 = �1GeV2/c4 as part of the657

constraints to the amplitude fit, it is found to be necessary to further increase the trunca-658

tion of the polynomial expansion by one additional order. However, this additional degree659

of freedom is found to uniquely modify the behaviour of the functions H� around that660

point, without providing any significant changes to the quality of the fit to data. Hence,661

no additional information are provided by the inclusion of the point at q2 = �1GeV2/c4662

and all conclusions remain unchanged.663
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Figure 11: Results for the ratio H�(q2)/F�(q2) obtained from the amplitude fit model with
theory. The theoretical prediction at q2 < 0 are overlaid for comparison.
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.

of the coe�cients squared over all b ! s`` processes must be below unity. However, the470

dispersive bound is found to be irrelevant for this analysis since it is very far from being471

fulfilled, as the sum of the coe�cients squared, after the appropriate basis transformation,472

is found to be of the order of O(10�3), for the fit result without the constraints at negative473

q2.474

Finally, a good compatibility between the input values and corresponding fit results475

is observed on all the B0 !  nK⇤0 observables. Moreover, in addition to the di↵erences476

of phases provided by B0 !  nK⇤0 external measurements, this analysis introduces477

another phase di↵erence that can be determined from the model, the di↵erence between478

the phase of A n
0 and the local amplitudes. The phase di↵erence of the J/ longitudinal479

amplitude (at the J/ mass pole) with respect to the rare mode is found to be �1.55+0.22
�0.18480

for the fit result with the q2 < 0 constraints and �1.61+0.22
�0.20 for the one without these481

constraints,3 showing a good agreement between the two fit configurations. This result is482

also compatible with one of the two solutions obtained in the measurement of the phase483

di↵erence between B+ ! K+µ+µ� and B+ ! J/ K+ decays [21], which are ruled by484

the same rare-electroweak and tree-level underlying transitions, respectively, but with a485

di↵erent spectator quark. The phase di↵erence of A (2S)
0 with respect to the rare mode486

shows an almost complete degeneracy and cannot be determined precisely from the fit.487

3The fit result with q2 > 0 only information shows a second solution at about �J/ 0 7! �J/ 0 + ⇡, which is
however excluded at more than 3�.
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.

of the coe�cients squared over all b ! s`` processes must be below unity. However, the470

dispersive bound is found to be irrelevant for this analysis since it is very far from being471

fulfilled, as the sum of the coe�cients squared, after the appropriate basis transformation,472

is found to be of the order of O(10�3), for the fit result without the constraints at negative473

q2.474

Finally, a good compatibility between the input values and corresponding fit results475

is observed on all the B0 !  nK⇤0 observables. Moreover, in addition to the di↵erences476

of phases provided by B0 !  nK⇤0 external measurements, this analysis introduces477

another phase di↵erence that can be determined from the model, the di↵erence between478

the phase of A n
0 and the local amplitudes. The phase di↵erence of the J/ longitudinal479

amplitude (at the J/ mass pole) with respect to the rare mode is found to be �1.55+0.22
�0.18480

for the fit result with the q2 < 0 constraints and �1.61+0.22
�0.20 for the one without these481

constraints,3 showing a good agreement between the two fit configurations. This result is482

also compatible with one of the two solutions obtained in the measurement of the phase483

di↵erence between B+ ! K+µ+µ� and B+ ! J/ K+ decays [21], which are ruled by484

the same rare-electroweak and tree-level underlying transitions, respectively, but with a485

di↵erent spectator quark. The phase di↵erence of A (2S)
0 with respect to the rare mode486

shows an almost complete degeneracy and cannot be determined precisely from the fit.487

3The fit result with q2 > 0 only information shows a second solution at about �J/ 0 7! �J/ 0 + ⇡, which is
however excluded at more than 3�.

17

�5 0 5 10
q2 [GeV2/c4]

�15

�10

�5

0

5

10

15

R
e(
H
�)
/
F �

[1
0�

4 ]

LHCb 4.7 fb�1

q2 > 0 only
q2 < 0 constr.

�5 0 5 10
q2 [GeV2/c4]

�10

�5

0

5

10

R
e(
H
�)
/
F �

[1
0�

4 ]

LHCb 4.7 fb�1

�5 0 5 10
q2 [GeV2/c4]

�20

�10

0

10

R
e(
H

0)
/
F 0

[1
0�

4 ]

LHCb 4.7 fb�1

�5 0 5 10
q2 [GeV2/c4]

�10

0

10

20

Im
(H
�)
/
F �

[1
0�

4 ]

LHCb 4.7 fb�1

�5 0 5 10
q2 [GeV2/c4]

�10

�5

0

5

10

15

Im
(H
�)
/
F �

[1
0�

4 ]

LHCb 4.7 fb�1

�5 0 5 10
q2 [GeV2/c4]

�20

�10

0

10

20

Im
(H

0)
/
F 0

[1
0�

4 ]

LHCb 4.7 fb�1

Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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also compatible with one of the two solutions obtained in the measurement of the phase483

di↵erence between B+ ! K+µ+µ� and B+ ! J/ K+ decays [21], which are ruled by484

the same rare-electroweak and tree-level underlying transitions, respectively, but with a485

di↵erent spectator quark. The phase di↵erence of A (2S)
0 with respect to the rare mode486

shows an almost complete degeneracy and cannot be determined precisely from the fit.487

3The fit result with q2 > 0 only information shows a second solution at about �J/ 0 7! �J/ 0 + ⇡, which is
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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q2 = �1GeV2/c4 can be used to test the compatibility of the fit result with the theoretical652

prediction. Figure 11 shows a zoom of the obtained H�(q2) function at low q2. While653

the real part of H�/F� nicely embraces the theory prediction at q2 = �1GeV2/c4, the654

imaginary part tents to raise stronger than the theoretical predictions. Note that all theory655

points are strongly correlated, hence the compatibility with the point at q2 = �1GeV2/c4656

is poor. In fact, in order to include the theory point at q2 = �1GeV2/c4 as part of the657

constraints to the amplitude fit, it is found to be necessary to further increase the trunca-658

tion of the polynomial expansion by one additional order. However, this additional degree659

of freedom is found to uniquely modify the behaviour of the functions H� around that660

point, without providing any significant changes to the quality of the fit to data. Hence,661

no additional information are provided by the inclusion of the point at q2 = �1GeV2/c4662

and all conclusions remain unchanged.663
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Figure 11: Results for the ratio H�(q2)/F�(q2) obtained from the amplitude fit model with
theory. The theoretical prediction at q2 < 0 are overlaid for comparison.

29

5200 5300 5400 5500 5600 5700
m(K+��µ+µ�) [MeV/c2]

0

200

400

600

Ev
en

ts
/(1

0.
60

[M
eV
/c

2 ])

LHCb 4.7fb�1

total
signal
combinatorial
data

2 4 6 8 10 12
q2 [GeV2/c4]

0

50

100

150

200

Ev
en

ts
/(0

.3
0

G
eV

2 /
c4 )

LHCb 4.7fb�1

�1.0 �0.5 0.0 0.5 1.0
cos �l

0

20

40

60

80

100

120

Ev
en

ts
/(0

.0
4)

LHCb 4.7fb�1

�1.0 �0.5 0.0 0.5 1.0
cos �K

0

25

50

75

100

125

150

Ev
en

ts
/(0

.0
4)

LHCb 4.7fb�1

�3 �2 �1 0 1 2 3
�

0

20

40

60

80

100

Ev
en

ts
/(0

.1
3)

LHCb 4.7fb�1

0.7 0.8 0.9
k2 [GeV2/c4]

0

50

100

150

200

Ev
en

ts
/(0

.0
1

G
eV

2 /
c4 )

LHCb 4.7fb�1

Figure 2: Distribution of events in the combined Run1 and 2016 data sets. The distributions of
the three angles, q2, and k2 are given for candidates within a window of ±50MeV/c2 around the
known B0 mass. Overlaid are the total fit projections together with the individual signal and
background components.

Table 3: Log-likelihood di↵erences between the fits to data with di↵erent truncation orders of
the non-local hadronic parametrisation H�[zn] for the two considered fit configurations.

2� logL
q2 < 0 prior q2 > 0 only

H�[z3]�H�[z2] 3.6
H�[z4]�H�[z3] 21.22 -
H�[z5]�H�[z4] 8.64 -

sources of systematic uncertainties are discussed in detail below and are summarised in362

Table 4. The size of each systematic uncertainty is estimated using pseudoexperiments363

generated from the observed signal and background yields in which one or more parameters364

are varied. The parameters of interest are determined from these pseudoexperiments using365

the nominal model and the systematically varied model. In most of the cases, the average366

di↵erence between the results of the fit in the two models is taken as an estimation of the367

systematic uncertainty. The exception to this are systematic uncertainties associated to368

the use of external inputs and the statistical uncertainty of the e�ciency correction, where369

the standard deviation of the di↵erence between the two results in each pseudoexperiment370

is used instead.371

The main sources of systematic uncertainty on the size of the Wilson coe�cients372

C9 and C10 arise from the use of the external inputs in the determination of the signal373

branching fraction of Eq. 13. This primarily concerns the uncertainty on the normalisation374

branching fraction B(B0 ! J/ K+⇡�) = (1.15± 0.01± 0.05) · 10�3 [65] and the fraction375
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- Analysis o!ers a large set of results 

- Strong interplay between theory and 
experiment 

- Publish set of bootstrapped fit 
parameters to favour future 
reinterpretation of the analysis 

‣ non-trivial correlations 

‣ allow to reproduce confidence 
intervals for any desired quantity 

‣ can transform fit results to di!erent 
models



Branching ratio constraint
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- Di!erential decay rate can only access the relative size 
of the Wilson coe"cients 

‣ Scale of Wilson coe!. set by branching ratio

- Extended fit allows to link the observed yield to the signal 
branching fraction

is parametrised over the range [1, 14]GeV2/c4 using the sum over the product of four86

one-dimensional Legendre polynomials, each depending on one angle or q2. No dependence87

of the e�ciency on k2 is observed. Moreover, the relative e�ciency between rare and88

control modes are obtained from these simulations in order to access the branching ratio89

information. The e�ciency model is validated by comparing the branching fraction of the90

decay B0
!  (2S)K⇤0 to its known value [50] in di↵erent data-taking periods.91

An extended unbinned maximum-likelihood fit to the five-dimensional di↵erential92

decay-rate, in q2, k2 and the three decay angles, and the B -candidate invariant mass93

distribution is performed using the TensorFlow library [51] with an interface to the94

Minuit minimisation algorithm [52, 53]. The fit is performed simultaneously on each95

data-taking period and each q2 region. The real part of the C
(0)
9 and C

(0)
10 coe�cients are96

allowed to vary in the fit, while the C
(0)
7 WCs, which are strongly constrained by radiative97

B decays [54] are fixed to their SM values. The B -candidate invariant mass distribution98

is used in the fit to to discriminate signal from background.99

The signal model is developed by systematically assessing the impact of the polynomial100

expansion of the non-local FF contributions. Due to the strong correlations amongst the101

predictions at q2 < 0, the expansion is performed around q2 = 0. The truncation point of102

the expansion is chosen by repeating the fit with increasing orders of polynomials, and103

the Akaike information criterion [55] is used to decide on the statistical relevance of each104

additional set of coe�cients. A fourth order expansion is found to be su�cient when fitting105

the data. The B -candidate mass distribution is parameterised by a Gaussian function106

with power-law tails on both sides of the distribution. Finally, the signal component in107

the k2 distribution is modelled using a relativistic Breit-Wigner function and the LASS108

parameterisation [56] for the S-wave component.109

The background is independently modelled for each run period by second-order110

polynomials for the decay angles and q2, with coe�cients allowed to vary in the fit. The111

k2 distribution is described by the sum of a linear function and a Breit-Wigner amplitude112

squared in order to accommodate possible genuine K⇤0 resonances associated with random113

µ+ and µ� tracks. The B-candidate mass distribution is parameterised by an exponential114

function. A significant correlation between the cos ✓K , q2 and the B invariant mass is115

observed due to a veto used to reject B+
! K+µ+µ� decays. This distortion is accounted116

in the combinatorial background lineshape by introducing a three-dimensional data-driven117

correction factor in the background parametrisation.118

The observed yield is related to the branching ratio for the decay through119

Nsig = NJ/ K⇡ ⇥
B(B0

! K⇤0µ+µ�)⇥ 2
3

B(B0 ! J/ K+⇡�)⇥ fJ/ K⇡ ⇥ B(J/ ! µ+µ�)
⇥R" , (3)

where NJ/ K⇡ corresponds to the yield of the control channel obtained directly from a120

mass fit, the resonant and charmonium branching ratios B(B0
! J/ K+⇡�) = (1.15±121

0.01 ± 0.01)10�3 and B(J/ ! µ+µ�) = (5.96 ± 0.03 ± 0.05)10�2 are obtained from122

Refs. [57] and [50], respectively, fJ/ K⇡ = 0.644 ± 0.010 is a numerical factor to scale123

the total B ! J/ K+⇡� branching ratio in the k2 range considered, R✏ is the relative124

e�ciency between the signal and control modes obtained by simulated samples, and the125

signal decay width is given in Eq. 2.126

A series of external constraints are further imposed on the signal model in order to127

ensure the stability of the amplitude fit in a similar fashion to Refs. [36, 37]: the values of128
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Figure 3: Distribution of events in the combined Run1 and 2016 datasets. The distributions of
the three angles, q2, and k2 are given for candidates within a window of ±50MeV/c2 around the
known B0 mass. The total fit projections together with the individual signal and background
components are overlaid.

di↵erence between the results of the fit in the two models is taken as an estimation of the373

systematic uncertainty. The exception to this are systematic uncertainties associated to374

the use of external inputs and the statistical uncertainty of the e�ciency correction, where375

the standard deviation of the di↵erence between the two results in each pseudoexperiment376

is used instead.377

The main sources of systematic uncertainty on the size of the Wilson coe�cients378

C9 and C10 arise from the use of the external inputs in the determination of the signal379

branching fraction of Eq. 14. This primarily concerns the uncertainty on the normalisation380

branching fraction B(B0 ! J/ K+⇡�) = (1.15± 0.01± 0.05) · 10�3 [65] and the fraction381

of B0 ! J/ K+⇡� decays that fall in the mK⇡ window of the analysis fB0!J/ K⇡
±100MeV =382

13

right-hand chirality of the dimuon current, N is a normalization factor and mb and MB40

are the masses of the b quark (in the MS scheme) and the B meson [44]. Finally, all41

non-perturbative e↵ects are contained within the local, F (T )
� , and non-local, H�, form-42

factors (FF). The numerical values for the Wilson coe�cients at the b-quark energy scale of43

µb = 4.2GeV/c2 are calculated in the SM as CSM
7 = �0.337, CSM

9 = 4.27, CSM
10 = �4.17, and44

C
0 SM
7,9,10 ' 0 [45, 46]. Local form-factors can be assessed by light-cone sum rules [22–26] and45

lattice QCD [27–31] techniques. Non-local contributions from b ! cc̄s operators are more46

di�cult to calculate reliably from first principles and only recently a rigorous approach47

that relies on the analytical structure of these matrix elements has been formulated [16,37].48

This isolates the  n resonance poles, where  n is a J/ or  (2S) state, and constructs a49

series expansion for the remainder function in terms of a conformal variable, z(q2). In order50

to acquire control over the size of the coe�cients of the expansion, data on B0
!  nK⇤0

51

decays as well as SM predictions for the ratios H�/F� at negative q2 [36] are employed.52

In this Letter, the role of the theoretical inputs on the determination of non-local e↵ects53

(H�) is examined, as well as their impact on the estimation of short-distance physics54

parameters (C(0)
i and F�).55

The K+⇡� system can also be in an S-wave configuration, which introduces an56

additional pair of decay amplitudes. The current knowledge of the FFs for these scalar57

amplitudes is limited [35]; in this analysis the local FFs are assumed to have the same q258

dependence as the B ! K transition whereas non-local terms are ignored.59

The absolute scale of the Wilson coe�cients is set by the branching fraction of the60

decay, which is related to the integral of the di↵erential decay rate over the desired q261

and k2 ranges through62

B(B0
! K⇤0µ+µ�) =

⌧B
~

Z q2max

q2min

Z k2max

k2min

d2�

dq2dk2
dq2dk2 , (2)

where ⌧B is the lifetime of the B0 meson.63

The dataset used in this analysis corresponds to an integrated luminosity of 4.7 fb�1 of64

proton-proton collisions collected with the LHCb experiment during 2011, 2012 and 2016.65

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range66

2 < ⌘ < 5, described in detail in Refs. [47, 48]. Simulated events are used to determine67

the reconstruction and selection e�ciencies of signal candidates, and to estimate the68

contamination from residual backgrounds. The simulated samples are produced using the69

software described in Refs. [49–52]. Residual mismodeling in simulation is corrected for70

using control samples from data.71

The same dataset analysed in Ref. [10] is considered for this measurement. The K⇤0
72

candidates are selected withK+⇡� invariant mass within 100MeV/c2 of its known mass [44].73

Signal candidates are only considered in two q2 regions, [1.1, 8.0] and [11.0, 12.5]GeV2/c4.74

Candidates with q2 < 1.1GeV2/c4 are excluded, to remove contributions from light-quark75

resonances, while those with q2 > 15.0GeV2/c4 are not used to remove contributions76

from charmonium states beyond the open-charm threshold whose treatment goes beyond77

the validity of the current H� parameterisation. The tree-level decays B0
! J/ K⇤0

78

and B0
!  (2S)K⇤0, where the charmonium resonance decays to µ+µ�, are retained as79

control regions in the intervals [8.0, 11.0] and [12.5, 15.0]GeV2/c4, respectively, in order80

to validate several procedures of the analysis. A total of 2568 ± 60 signal decays and81

approximately 677 000 B0
! J/ K⇤0 and 43 700 B0

!  (2S)K⇤0 decays are selected.82
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Input for BR determination

33

- BR determination requires several external inputs:

is parametrised over the range [1, 14]GeV2/c4 using the sum over the product of four86

one-dimensional Legendre polynomials, each depending on one angle or q2. No dependence87

of the e�ciency on k2 is observed. Moreover, the relative e�ciency between rare and88

control modes are obtained from these simulations in order to access the branching ratio89

information. The e�ciency model is validated by comparing the branching fraction of the90

decay B0
!  (2S)K⇤0 to its known value [50] in di↵erent data-taking periods.91

An extended unbinned maximum-likelihood fit to the five-dimensional di↵erential92

decay-rate, in q2, k2 and the three decay angles, and the B -candidate invariant mass93

distribution is performed using the TensorFlow library [51] with an interface to the94

Minuit minimisation algorithm [52, 53]. The fit is performed simultaneously on each95

data-taking period and each q2 region. The real part of the C
(0)
9 and C

(0)
10 coe�cients are96

allowed to vary in the fit, while the C
(0)
7 WCs, which are strongly constrained by radiative97

B decays [54] are fixed to their SM values. The B -candidate invariant mass distribution98

is used in the fit to to discriminate signal from background.99

The signal model is developed by systematically assessing the impact of the polynomial100

expansion of the non-local FF contributions. Due to the strong correlations amongst the101

predictions at q2 < 0, the expansion is performed around q2 = 0. The truncation point of102

the expansion is chosen by repeating the fit with increasing orders of polynomials, and103

the Akaike information criterion [55] is used to decide on the statistical relevance of each104

additional set of coe�cients. A fourth order expansion is found to be su�cient when fitting105

the data. The B -candidate mass distribution is parameterised by a Gaussian function106

with power-law tails on both sides of the distribution. Finally, the signal component in107

the k2 distribution is modelled using a relativistic Breit-Wigner function and the LASS108

parameterisation [56] for the S-wave component.109

The background is independently modelled for each run period by second-order110

polynomials for the decay angles and q2, with coe�cients allowed to vary in the fit. The111

k2 distribution is described by the sum of a linear function and a Breit-Wigner amplitude112

squared in order to accommodate possible genuine K⇤0 resonances associated with random113

µ+ and µ� tracks. The B-candidate mass distribution is parameterised by an exponential114

function. A significant correlation between the cos ✓K , q2 and the B invariant mass is115

observed due to a veto used to reject B+
! K+µ+µ� decays. This distortion is accounted116

in the combinatorial background lineshape by introducing a three-dimensional data-driven117

correction factor in the background parametrisation.118

The observed yield is related to the branching ratio for the decay through119

Nsig = NJ/ K⇡ ⇥
B(B0

! K⇤0µ+µ�)⇥ 2
3

B(B0 ! J/ K+⇡�)⇥ fJ/ K⇡ ⇥ B(J/ ! µ+µ�)
⇥R" , (3)

where NJ/ K⇡ corresponds to the yield of the control channel obtained directly from a120

mass fit, the resonant and charmonium branching ratios B(B0
! J/ K+⇡�) = (1.15±121

0.01 ± 0.01)10�3 and B(J/ ! µ+µ�) = (5.96 ± 0.03 ± 0.05)10�2 are obtained from122

Refs. [57] and [50], respectively, fJ/ K⇡ = 0.644 ± 0.010 is a numerical factor to scale123

the total B ! J/ K+⇡� branching ratio in the k2 range considered, R✏ is the relative124

e�ciency between the signal and control modes obtained by simulated samples, and the125

signal decay width is given in Eq. 2.126

A series of external constraints are further imposed on the signal model in order to127

ensure the stability of the amplitude fit in a similar fashion to Refs. [36, 37]: the values of128
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Figure 3: Distribution of events in the combined Run1 and 2016 datasets. The distributions of
the three angles, q2, and k2 are given for candidates within a window of ±50MeV/c2 around the
known B0 mass. The total fit projections together with the individual signal and background
components are overlaid.

di↵erence between the results of the fit in the two models is taken as an estimation of the373

systematic uncertainty. The exception to this are systematic uncertainties associated to374

the use of external inputs and the statistical uncertainty of the e�ciency correction, where375

the standard deviation of the di↵erence between the two results in each pseudoexperiment376

is used instead.377

The main sources of systematic uncertainty on the size of the Wilson coe�cients378

C9 and C10 arise from the use of the external inputs in the determination of the signal379

branching fraction of Eq. 14. This primarily concerns the uncertainty on the normalisation380

branching fraction B(B0 ! J/ K+⇡�) = (1.15± 0.01± 0.05) · 10�3 [65] and the fraction381

of B0 ! J/ K+⇡� decays that fall in the mK⇡ window of the analysis fB0!J/ K⇡
±100MeV =382

13
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Figure 2: Distribution of events in the combined Run1 and 2016 data sets. The distributions of
the three angles, q2, and k2 are given for candidates within a window of ±50MeV/c2 around the
known B0 mass. Overlaid are the total fit projections together with the individual signal and
background components.

Table 3: Log-likelihood di↵erences between the fits to data with di↵erent truncation orders of
the non-local hadronic parametrisation H�[zn] for the two considered fit configurations.

2� logL
q2 < 0 prior q2 > 0 only

H�[z3]�H�[z2] 3.6
H�[z4]�H�[z3] 21.22 -
H�[z5]�H�[z4] 8.64 -

sources of systematic uncertainties are discussed in detail below and are summarised in362

Table 4. The size of each systematic uncertainty is estimated using pseudoexperiments363

generated from the observed signal and background yields in which one or more parameters364

are varied. The parameters of interest are determined from these pseudoexperiments using365

the nominal model and the systematically varied model. In most of the cases, the average366

di↵erence between the results of the fit in the two models is taken as an estimation of the367

systematic uncertainty. The exception to this are systematic uncertainties associated to368

the use of external inputs and the statistical uncertainty of the e�ciency correction, where369

the standard deviation of the di↵erence between the two results in each pseudoexperiment370

is used instead.371

The main sources of systematic uncertainty on the size of the Wilson coe�cients372

C9 and C10 arise from the use of the external inputs in the determination of the signal373

branching fraction of Eq. 13. This primarily concerns the uncertainty on the normalisation374

branching fraction B(B0 ! J/ K+⇡�) = (1.15± 0.01± 0.05) · 10�3 [65] and the fraction375
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Figure 3: Distribution of events in the combined Run1 and 2016 datasets. The distributions of
the three angles, q2, and k2 are given for candidates within a window of ±50MeV/c2 around the
known B0 mass. The total fit projections together with the individual signal and background
components are overlaid.

di↵erence between the results of the fit in the two models is taken as an estimation of the373

systematic uncertainty. The exception to this are systematic uncertainties associated to374

the use of external inputs and the statistical uncertainty of the e�ciency correction, where375

the standard deviation of the di↵erence between the two results in each pseudoexperiment376

is used instead.377

The main sources of systematic uncertainty on the size of the Wilson coe�cients378

C9 and C10 arise from the use of the external inputs in the determination of the signal379

branching fraction of Eq. 14. This primarily concerns the uncertainty on the normalisation380

branching fraction B(B0 ! J/ K+⇡�) = (1.15± 0.01± 0.05) · 10�3 [65] and the fraction381

of B0 ! J/ K+⇡� decays that fall in the mK⇡ window of the analysis fB0!J/ K⇡
±100MeV =382

13

Table 4: Summary of the systematic uncertainties on the Wilson coe�cients. The individual
sources are described in the text. The subtotals and total are obtained by adding individual
sources in quadrature.

C9 C10 C 0
9 C 0

10

Amplitude model

S-wave form factors < 0.01 < 0.01 < 0.01 < 0.01
S-wave non-local hadronic 0.02 0.02 0.14 0.04
S-wave k2 model < 0.01 < 0.01 0.05 0.03

Subtotal 0.02 0.02 0.15 0.05

External inputs on BR

B(B0 ! J/ K+⇡�) 0.05 0.08 0.02 0.01

fB0!J/ K⇡
±100MeV 0.03 0.03 0.01 < 0.01
Others 0.03 0.04 0.03 0.01

Subtotal 0.07 0.09 0.04 0.01

Background model

Chebyshev polynomial order 0.01 0.01 0.01 < 0.01
Combinatorial shape in k2 0.02 < 0.01 0.02 < 0.01
Background factorisation 0.01 0.01 0.01 0.01
Peaking background 0.01 < 0.01 0.02 0.01

Subtotal 0.03 0.02 0.03 0.01

Experimental e↵ects

Acceptance parametrisation < 0.01 < 0.01 < 0.01 < 0.01
Statistical uncertainty on acceptance 0.02 < 0.01 0.02 < 0.01

Subtotal 0.02 < 0.01 0.02 < 0.01

Total systematic uncertainty 0.08 0.10 0.16 0.05

0.644 ± 0.010. The systematic uncertainties associated to the use of these external383

inputs are provided separately in view of possible future improvement on these quantities.384

Contributions from the uncertainty on the branching fraction of the J/ ! µ+µ� decay,385

B(J/ ! µ+µ�) = (5.96±0.03±0.05) ·10�2 [61], the uncertainty on the e�ciency ratio R",386

and the uncertainty on the observed yield of the control channel NJ/ K⇡ are also considered387

and reported together under “others” in Tab. 4. The uncertainty on R" is due to the388

finite size of the simulation samples and assumptions in the simulation model. The model389

dependence of the simulation is studied by varying the signal model in multiple ways:390

hadronic parameters are extensively varied within and beyond the SM prediction, large391

variations of the Wilson coe�cients are artificially inserted, and an S-wave component392

compatible with what is observed in the fit to data is added. The di↵erent sources are393
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Systematic uncertainties

34

Statistical uncertainty (q2 < 0 constr.) 0.40        0.28         0.40        0.24

Table 4: Summary of the systematic uncertainties on the Wilson Coe�cients. The individual
sources are described in the text. The subtotals and total are obtained by adding individual
sources in quadrature.

C9 C10 C 0
9 C 0

10

Amplitude model
S-wave form factors < 0.01 < 0.01 < 0.01 < 0.01
S-wave non-local hadronic 0.02 0.02 0.14 0.04
S-wave k2 model < 0.01 < 0.01 0.05 0.03

Subtotal 0.02 0.02 0.15 0.05

External inputs on BR
B(B0 ! J/ K+⇡�) 0.05 0.08 0.02 0.01

fB0!J/ K⇡
±100MeV 0.03 0.03 0.01 < 0.01
Others 0.03 0.04 0.03 0.01

Subtotal 0.07 0.09 0.04 0.01

Background model
Chebyshev polynomial order 0.01 0.01 0.01 < 0.01
Combinatorial shape in k2 0.02 < 0.01 0.02 < 0.01
Background factorisation 0.01 0.01 0.01 0.01
Peaking background 0.01 < 0.01 0.02 0.01

Subtotal 0.03 0.02 0.03 0.01

Experimental e↵ects
Acceptance parametrisation < 0.01 < 0.01 < 0.01 < 0.01
Statistical uncertainty on acceptance 0.02 < 0.01 0.02 < 0.01

Subtotal 0.02 < 0.01 0.02 < 0.01

Total systematic uncertainty 0.08 0.10 0.16 0.05

of B0 ! J/ K+⇡� decays that fall in the mK⇡ window of the analysis fB0!J/ K⇡
±100MeV .375

These uncertainties are provided separately in view of possible future improvement on376

these quantities. Contributions from the uncertainty on the branching fraction of the377

J/ ! µ+µ� decay, B(J/ ! µ+µ�) = (5.96± 0.03± 0.05) · 10�2 [60], the uncertainty378

on the e�ciency ratio R" and the uncertainty on the observed yield of the control channel379

NJ/ K⇡ are also considered. The uncertainty on R" is is due to the finite size of the380

simulation sample and assumptions in the simulation model. The model dependence381

of the simulation is studied by varying the signal model in multiple ways: hadronic382

parameters are extensively varied within and beyond the SM prediction, large variations of383

the Wilson coe�cients are artificially inserted and an S-wave component compatible with384

what observed in the fit to data is added. The di↵erent sources are found to contribute385

to the relative uncertainty on R" at the level of 1-2%. Finally, the measurement of386

the observed yield in the control channel is found to be systematically dominated, with387

the prime sources of uncertainty associated to the choice of the signal mass model and388

assumptions about the residual background contribution from ⇤b ! pKJ/ decays. The389

di↵erent sources contribute to the relative uncertainty on NJ/ K⇡ at a level below 1%.390
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Choice of the z order
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- Data driven determination of the truncation order: 

‣ fit repeated with increasing polynomial order 

‣ till no significant improvement in the likelihood is found

Table 3: Log-likelihood di↵erences between the fits to data with di↵erent truncation orders of
the non-local hadronic parametrisation H�[zn] for the two considered fit configurations.

2� logL
q2 < 0 constr. q2 > 0 only

H�[z3]�H�[z2] - 3.6
H�[z4]�H�[z3] 21.22 -
H�[z5]�H�[z4] 8.64 -

investigated as a source of systematic uncertainty in Sec. 7. Finally, the parametrisation346

of the combinatorial background is treated separately for the Run1 and 2016 datasets as347

well as for the two considered q2 regions [1.1, 8.0] and [11.0, 12.5]GeV2/c4. All coe�cients348

are allowed to vary in the fit.349

6 Fit to data350

The polynomial expansion introduced in Eq. 6 used to parametrise the non-local hadronic351

matrix elements H� must be truncated at a certain order zn. Furthermore, the central352

point of the expansion t0 is a free parameter of the model and its choice can have an353

impact on how fast the polynomial expansion converges. In general, a sensible choice is a354

value of t0 that minimises |z| on the domain of the expansion. As originally proposed by355

Ref. [23], the choice of356

t0 = t+ �
q

t+(t+ �M2
 (2S))

is the one that minimises |z| in the interval �7GeV2/c4  q2  M2
 (2S); this value is taken357

as the default for the fit configuration with q2 > 0 information only. However, due to the358

strong constraints provided by the three q2 points, t0 is fixed to t0 = 0GeV2/c4 for the fit359

model with the q2 < 0 constraints in order to best accommodate the theoretical inputs in360

the negative q2 region. Following this choice, the truncation order zn is determined based361

on a data-driven procedure: fits are repeated with increasing truncation order for the362

polynomial sums, i.e. n = 2, 3, 4, 5, and the Akaike information criterion [69] is used to363

infer the importance of each additional set of coe�cients. The improvement between two364

subsequent orders is considered to be significant if 2� logL > 2�Npars, where Npars is the365

number of parameters of the model and each additional order zn+1 brings one complex366

coe�cient for each of the three polarisations, for a total of six additional parameters. For367

the fit model using only inputs at q2 > 0, it is found that a polynomial expansion truncated368

at z2 is su�cient to describe the data. For fits with q2 < 0 constraints, a significant369

improvement is found with the inclusion of terms up to z4, as shown in Tab. 3. The370

quality of the fit is assessed using an unbinned goodness of fit test based on point-to-point371

dissimilarity methods [70] and the p-value is found to be better than 10%.372

Figure 3 shows the combined dataset for Run1 and 2016, with the fit result overlaid.373

No di↵erence between the fit configurations with q2 < 0 constraints and q2 > 0 only374

information is visible in the projections.375
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Table 3: Log-likelihood di↵erences between the fits to data with di↵erent truncation orders of
the non-local hadronic parametrisation H�[zn] for the two considered fit configurations.

2� logL
q2 < 0 constr. q2 > 0 only

H�[z3]�H�[z2] - 3.6
H�[z4]�H�[z3] 21.22 -
H�[z5]�H�[z4] 8.64 -

investigated as a source of systematic uncertainty in Sec. 7. Finally, the parametrisation346

of the combinatorial background is treated separately for the Run1 and 2016 datasets as347

well as for the two considered q2 regions [1.1, 8.0] and [11.0, 12.5]GeV2/c4. All coe�cients348

are allowed to vary in the fit.349

6 Fit to data350

The polynomial expansion introduced in Eq. 6 used to parametrise the non-local hadronic351

matrix elements H� must be truncated at a certain order zn. Furthermore, the central352

point of the expansion t0 is a free parameter of the model and its choice can have an353

impact on how fast the polynomial expansion converges. In general, a sensible choice is a354

value of t0 that minimises |z| on the domain of the expansion. As originally proposed by355

Ref. [23], the choice of356

t0 = t+ �
q
t+(t+ �M2

 (2S))

is the one that minimises |z| in the interval �7GeV2/c4  q2  M2
 (2S); this value is taken357

as the default for the fit configuration with q2 > 0 information only. However, due to the358

strong constraints provided by the three q2 points, t0 is fixed to t0 = 0GeV2/c4 for the fit359

model with the q2 < 0 constraints in order to best accommodate the theoretical inputs in360

the negative q2 region. Following this choice, the truncation order zn is determined based361

on a data-driven procedure: fits are repeated with increasing truncation order for the362

polynomial sums, i.e. n = 2, 3, 4, 5, and the Akaike information criterion [69] is used to363

infer the importance of each additional set of coe�cients. The improvement between two364

subsequent orders is considered to be significant if 2� logL > 2�Npars, where Npars is the365

number of parameters of the model and each additional order zn+1 brings one complex366

coe�cient for each of the three polarisations, for a total of six additional parameters. For367

the fit model using only inputs at q2 > 0, it is found that a polynomial expansion truncated368

at z2 is su�cient to describe the data. For fits with q2 < 0 constraints, a significant369

improvement is found with the inclusion of terms up to z4, as shown in Tab. 3. The370

quality of the fit is assessed using an unbinned goodness of fit test based on point-to-point371

dissimilarity methods [70] and the p-value is found to be better than 10%.372

Figure 3 shows the combined dataset for Run1 and 2016, with the fit result overlaid.373

No di↵erence between the fit configurations with q2 < 0 constraints and q2 > 0 only374

information is visible in the projections.375
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Figure 2: Distribution of events in the combined Run1 and 2016 data sets. The distributions of
the three angles, q2, and k2 are given for candidates within a window of ±50MeV/c2 around the
known B0 mass. Overlaid are the total fit projections together with the individual signal and
background components.

Table 3: Log-likelihood di↵erences between the fits to data with di↵erent truncation orders of
the non-local hadronic parametrisation H�[zn] for the two considered fit configurations.

2� logL
q2 < 0 prior q2 > 0 only

H�[z3]�H�[z2] 3.6
H�[z4]�H�[z3] 21.22 -
H�[z5]�H�[z4] 8.64 -

sources of systematic uncertainties are discussed in detail below and are summarised in362

Table 4. The size of each systematic uncertainty is estimated using pseudoexperiments363

generated from the observed signal and background yields in which one or more parameters364

are varied. The parameters of interest are determined from these pseudoexperiments using365

the nominal model and the systematically varied model. In most of the cases, the average366

di↵erence between the results of the fit in the two models is taken as an estimation of the367

systematic uncertainty. The exception to this are systematic uncertainties associated to368

the use of external inputs and the statistical uncertainty of the e�ciency correction, where369

the standard deviation of the di↵erence between the two results in each pseudoexperiment370

is used instead.371

The main sources of systematic uncertainty on the size of the Wilson coe�cients372

C9 and C10 arise from the use of the external inputs in the determination of the signal373

branching fraction of Eq. 13. This primarily concerns the uncertainty on the normalisation374

branching fraction B(B0 ! J/ K+⇡�) = (1.15± 0.01± 0.05) · 10�3 [65] and the fraction375
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Figure 2: Distribution of events in the combined Run1 and 2016 data sets. The distributions of
the three angles, q2, and k2 are given for candidates within a window of ±50MeV/c2 around the
known B0 mass. Overlaid are the total fit projections together with the individual signal and
background components.

Table 3: Log-likelihood di↵erences between the fits to data with di↵erent truncation orders of
the non-local hadronic parametrisation H�[zn] for the two considered fit configurations.

2� logL
q2 < 0 prior q2 > 0 only

H�[z3]�H�[z2] 3.6
H�[z4]�H�[z3] 21.22 -
H�[z5]�H�[z4] 8.64 -

sources of systematic uncertainties are discussed in detail below and are summarised in362

Table 4. The size of each systematic uncertainty is estimated using pseudoexperiments363

generated from the observed signal and background yields in which one or more parameters364

are varied. The parameters of interest are determined from these pseudoexperiments using365

the nominal model and the systematically varied model. In most of the cases, the average366

di↵erence between the results of the fit in the two models is taken as an estimation of the367

systematic uncertainty. The exception to this are systematic uncertainties associated to368

the use of external inputs and the statistical uncertainty of the e�ciency correction, where369

the standard deviation of the di↵erence between the two results in each pseudoexperiment370

is used instead.371

The main sources of systematic uncertainty on the size of the Wilson coe�cients372

C9 and C10 arise from the use of the external inputs in the determination of the signal373

branching fraction of Eq. 13. This primarily concerns the uncertainty on the normalisation374

branching fraction B(B0 ! J/ K+⇡�) = (1.15± 0.01± 0.05) · 10�3 [65] and the fraction375
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-  decays can also proceed though a scalar  configuration (S-wave) 

‣ require additional scalar amplitudes 

‣ extend the fit to 

B0 → K+π−μ+μ− K+π−

k2 = m2(K+π−)
In order to better separate the contribution of the S-wave amplitudes from those of89

the P-wave, the k2 dependence is included in the model. This is achieved by multiplying90

the decay amplitudes of Eq. 2 by a relativistic Breit-Wigner function for the resonant91

P-wave [31] and the scalar amplitudes of Eq. 7 by the LASS parameterisation [32] for the92

slowly varying S-wave, i.e.93

AL,R
0,?,k,t 7! AL,R

0,?,k,t ⇥ fP (k
2) ,

AL,R
S 0, S t 7! AL,R

S 0, S t ⇥ fS(k
2) ,

(8)

where fP and fS encode the P- and S-wave k2 dependence, respectively. In principle, the94

proportion between P- and S-waves can be determined from the normalisation of the decay95

amplitudes, however, an accurate prediction of the two relative contributions involves a96

complete analysis of the B0 ! K+⇡� form factors in the full K+⇡� spectrum [31, 33].97

Given the limited k2 range analysed around the K⇤0 mass, it is therefore practical to98

decouple the normalisation of the P- and S-wave amplitudes and introduce an additional99

complex coe�cient to control the relative magnitude and phase between the two. A100

detailed definition of fP and fS is given in Appendix A.3.101

Finally, when taking into account the full set of P-wave and S-wave amplitudes, the102

total B0 ! K+⇡�µ+µ� di↵erential decay rate reads as103

32⇡
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d5�
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+
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Ĩ7 sin ✓` + Ĩ8 sin 2✓`
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sin ✓K sin� ,

where the first term corresponds to the P-wave di↵erential decay rate of Eq. 1 extended104

to the k2 dimension via Eq. 8, ISi are pure S-wave angular coe�cients and Ĩi denote105

interference terms between the S- and P-wave amplitudes, as defined in Appendix A.1.106

3 LHCb detector and simulation107

The LHCb detector [34, 35] is a single-arm forward spectrometer covering the108

pseudorapidity range 2 < ⌘ < 5, designed for the study of particles containing b or109

c quarks. The detector includes a high-precision tracking system consisting of a silicon-110

strip vertex detector surrounding the pp interaction region, a large-area silicon-strip111

detector located upstream of a dipole magnet with a bending power of about 4Tm, and112

three stations of silicon-strip detectors and straw drift tubes placed downstream of the113

magnet. The tracking system provides a measurement of the momentum, p, of charged114

particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at115

200GeV/c. The minimum distance of a track to a primary pp collision vertex (PV), the116

impact parameter (IP), is measured with a resolution of (15 + 29/pT)µm, where pT is117

the component of the momentum transverse to the beam, in GeV/c. Di↵erent types of118

charged hadrons are distinguished using information from two ring-imaging Cherenkov119
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where �K⇡ = �(k2,M2
K ,M

2
⇡), m892 is the pole mass of the K⇤0 resonance, p (p892) is the653

momentum of the K+ in the rest frame of the resonance evaluated at a given k2 (m2
892),654

the running width �892(k) is given by655

�892(k) = �892B
02
L=1(p, p892, d)

✓
p

p892

◆3 ⇣m892

k

⌘
, (21)

and B0
L is the Blatt-Weisskopf barrier function [78] that depends on the momentum of656

the decay products and on the size of the decaying particle, known as meson radius657

parameter, which is fixed to d = 1.6GeV�1~c [65]. The systematic uncertainty associated658

with the choice of this value is negligible. In Eq. 20, the first term is a pure kinematic659

phase space factor while (B0
Lp

L) is the orbital angular momentum barrier factor that660

accounts for spin-dependent e↵ects in the conservation of the angular momentum for the661

K⇤0 ! K+⇡� decay. The angular momentum between the K⇤0 meson and the dimuon662

system is considered to be zero.663

The S-wave component of the signal is modelled using the LASS parametrisation [32],664

given by665

fLASS(k
2) =

�1/4
K⇡

k

"
k

p cot �B � ip
+ e2i�B

m0�0
m0
p0

(m2
0 � k2)� im0�0

p
k
m0
p0

#
, (22)

where m0 and �0 are the pole mass and width of the K⇤
0(1430)

0 resonance and666

cot �B =
1

ak
+

rk

2
, (23)

where a and r are empirical parameters whose values are fixed to a = 1.95GeV�1~c and667

r = 1.78GeV�1~c as from the LASS experiment [32]. In order to assess the systematic e↵ect668

of this choice, these parameters are also fixed to values used in Ref. [1], a = 3.83GeV�1~c669

and r = 2.86GeV�1~c and the resulting systematic uncertainty is found to be negligible.670

The second term of Eq. 22 is equivalent to a Breit–Wigner function for the K⇤
0(1430)671

resonance. Phase-space and orbital angular momentum barrier factors associated to672

B0 ! K+⇡�µ+µ� decays employed in Refs. [1, 8] have been omitted in Eqs. 20 and 22673

since these terms are already included in the form factors and amplitude normalisation of674

Eqs. 2, 3 and 7.675

Finally, the P- and S-wave k2-dependent lineshapes to be included in the decay676

amplitudes are defined as677

fP (k
2) = f̂BW(k2) ,

fS(k
2) = |gS| ei�S f̂LASS(k

2) ,
(24)

where f̂BW (f̂LASS) is the the Breit–Wigner (LASS) function of Eq. 20(22) normalised to678

unity and the coe�cients gS and �S determine respectively the relative magnitude and679

phase between the two P- and S-wave contributions.680

B Non-local contributions at q2
= �1GeV

2/c4681

The nominal fit with theory includes only three of the four q2 points where SM predic-682
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where fP and fS encode the P- and S-wave k2 dependence, respectively. In principle, the94
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to the k2 dimension via Eq. 8, ISi are pure S-wave angular coe�cients and Ĩi denote105
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charged hadrons are distinguished using information from two ring-imaging Cherenkov119

4

where �K⇡ = �(k2,M2
K ,M

2
⇡), m892 is the pole mass of the K⇤0 resonance, p (p892) is the653

momentum of the K+ in the rest frame of the resonance evaluated at a given k2 (m2
892),654

the running width �892(k) is given by655

�892(k) = �892B
02
L=1(p, p892, d)

✓
p

p892

◆3 ⇣m892

k

⌘
, (21)
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L is the Blatt-Weisskopf barrier function [78] that depends on the momentum of656
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with the choice of this value is negligible. In Eq. 20, the first term is a pure kinematic659

phase space factor while (B0
Lp

L) is the orbital angular momentum barrier factor that660

accounts for spin-dependent e↵ects in the conservation of the angular momentum for the661

K⇤0 ! K+⇡� decay. The angular momentum between the K⇤0 meson and the dimuon662

system is considered to be zero.663

The S-wave component of the signal is modelled using the LASS parametrisation [32],664

given by665

fLASS(k
2) =

�1/4
K⇡

k

"
k

p cot �B � ip
+ e2i�B

m0�0
m0
p0

(m2
0 � k2)� im0�0

p
k
m0
p0

#
, (22)
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where a and r are empirical parameters whose values are fixed to a = 1.95GeV�1~c and667
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where the functions F (T )
� (form factors) and H� encode the local and non-local hadronic66

matrix elements, respectively, and mb and MB correspond to the b-quark and B0 meson67

masses. The coe�cient N is a normalisation factor given by68
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2, Vtb and V ⇤

ts are elements of the Cabibbo-Kobayashi-Maskawa (CKM)70

quark-mixing matrix, GF is the Fermi constant and ↵e is the fine structure constant.71

The exact definition of the form factors F (T )
� (q2, k2) is given in Appendix A.2, while72

the definition of the non-local functions H�(q2) follows what has been proposed in73

Refs. [16, 23–25] where the analytic properties of the hadronic matrix elements are74
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where t+ = 4M2
D, with MD the D0 meson mass, and t0 can be arbitrarily chosen such76

that z(q2 = t0) = 0. After this transformation,2 the non-local hadronic functions can be77

expressed as78

H�(z) =
1� zzJ/ 
z � zJ/ 

1� zz (2S)
z � z (2S)
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where the first and second terms remove the singularities due to the J/ and  (2S) poles.79

The Ĥ�(z) are analytic functions which can be further decomposed as80

Ĥ�(z) = ��1
� (z)

X

k

↵�,kz
k , (6)

where ��1
� (z) are so-called outer functions that ensure the correct kinematic depen-81

dence [24], e.g. H0(q2 = 0) = 0, and ↵�,k are the coe�cients of a polynomial expansion.82

The K+⇡� system in the final state can also appear in a scalar (S-wave) configuration,83

which introduces two additional amplitudes [30],84
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with three new form factors, f+, fT and f0 whose definitions can be found in Appendix A.2.85

In the following, contributions from non-local hadronic matrix elements to the scalar86

amplitudes are ignored. This assumption is studied as a source of systematic uncertainty87

in Sec. 7.88

2The functional form of H� defined in Eq. 5 is defined as function of the variable z. Throughout this
article, the expression H�(q2) implies H�(z(q2)), where the contracted form is used to improve legibility.
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Figure 7: Two-dimensional profile likelihood scan of the Wilson coe�cients. Shaded areas
correspond to the one (68% CL) and two (95% CL) sigma contour regions. Dotted contours
in the top left plot assume right-handed Wilson coe�cients fixed to their SM values, i.e.
C0
9 = C0

10 = 0.

decay rate, d2�P/dq2dk2, both integrated over the k2. The determination of these angular522

observables o↵ers an important perspective for the validation and interpretation of the523

results. Figures 8 and 9 show the q2-dependent angular observables derived from the524

amplitude fit results. The contributions from non-local e↵ects to the so-called CP -averaged525

Si [27] and corresponding optimised Pi [13] series of observables, �S(P )bscc̄i , is also il-526

lustrated in the plots. In general, the post-fit determination of the angular observables527

agrees very well with the dedicated measurement of Ref. [9] and the overall impact of528

non-local hadronic contributions on the angular observables is found to be compatible529

between the two tested fit configurations. The only exception is observed in the S7 (P 0
6)530

observable, which is related to the imaginary part of the product of the longitudinal and531

parallel amplitudes, where the fit result that includes the theory points at q2 < 0 does532

not have enough freedom to fully accommodate the shape observed in the physical region.533

This is a reflection of the di↵erent behaviour of the imaginary part of H�(q2) between the534

two fit configurations observed in Sec. 8.2. In addition, a closer look at the P 0
5 observable535

20



Figure 13: Reconstructed K+⇡�µ+µ� invariant mass for B0 ! J/ K⇤0 decays for (left) Run1
and (right) 2016 datasets.

�3 �2 �1 0 1 2 3
argAJ/�

0

0

2

4

6

8

10

�
N

LL

LHCb 4.7 fb�1

q2 > 0 only
q2 < 0 constr.

Figure 14: Likelihood scan of the phase di↵erence of the B0 ! J/ K⇤0 longitudinal amplitude
with respect to the rare mode.
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where the first two are pure S-wave contributions while the ones denoted Ĩi raise from inter-640

ference terms. As above, the negative sign in front of Ĩ4,7 results from the transformation641

from the theory to the LHCb angular convention.642

A.2 Form factors parametrisation643

The form-factor basis employed in this analysis follows closely the one proposed in Ref. [24]644

which can be translated to the one commonly used in the literature (see e.g. Refs. [76,77])645

via646
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The definition of the scalar form factors f+, fT and f0 follows Ref. [30] with the exception647

of the transformation fT 7! q2

MB(MB+k)fT .648

A.3 P and S-waves k2 lineshapes649

The k2 invariant-mass distribution of the signal candidates is modelled separately for650

the P- and S-wave contributions. For the P-wave component, a relativistic Breit-Wigner651

function is used, given by652

fBW(k2) =
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k
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