

Analysis of $B \to K^* \mu^+ \mu^-$ decays: experiment & theory

Beyond the flavour anomalies, Siegen

Imperial College

London

Mark Smith, Andrea Mauri, Arianna Tirani 9 April 2024

$$B \rightarrow \kappa^* \mu^+ \mu^-$$

$$\frac{\mathrm{d}^{4}\Gamma_{P}}{\mathrm{d}q^{2}\mathrm{d}\Omega} = \frac{9}{32\pi} \Big[J_{1s} \sin^{2}\theta_{K} + J_{1c} \cos^{2}\theta_{K} \\ + (J_{2s}) \sin^{2}\theta_{K} + J_{2c} \cos^{2}\theta_{K}) \cos 2\theta_{\ell} \\ + J_{3} \sin^{2}\theta_{K} \sin^{2}\theta_{\ell} \cos 2\phi + J_{4} \sin 2\theta_{K} \sin 2\theta_{\ell} \cos \phi \\ + (J_{5}) \sin 2\theta_{K} \sin \theta_{\ell} \cos \phi + J_{6s} \sin^{2}\theta_{K} \cos \theta_{l} \\ + J_{7} \sin 2\theta_{K} \sin \theta_{\ell} \sin \phi + J_{8} \sin 2\theta_{K} \sin 2\theta_{\ell} \sin \phi \\ + J_{9} \sin^{2}\theta_{K} \sin^{2}\theta_{\ell} \sin 2\phi \Big]$$

P_{5} LHCb Run 1 + 2016 SM from DHMV 0.5 0 /ψ(1S) ψ(2S) -0.5 _ $\frac{15}{q^2 \,[{\rm GeV}^2/c^4]}$ 10 5 0

$$B \rightarrow K^* \mu^+ \mu^-$$
 9 April 2024 2 / 5

- A measurement of *observables*
 - Unambiguous(ish), average, re-interpret
 - What is your $m_{K\pi}$ window?

$$B \rightarrow \kappa^* \mu^+ \mu^-$$
 9 April 2024 3 / 5

- A measurement of *observables*
 - Unambiguous(ish), average, re-interpret
 - What is your $m_{K\pi}$ window?
- (Almost) model independent
 - Scalars, tensors, *CP*-asymmetries

$$\begin{split} & \left[\text{PRD 87 (2013) 3} \right] \\ \frac{4}{3} J_{1s} &= \frac{(2+\beta_{\ell}^2)}{4} \left[|A_{\perp}^L|^2 + |A_{\parallel}^L|^2 + (L \to R) \right] + \frac{4m_{\ell}^2}{q^2} \text{Re} \left(A_{\perp}^L A_{\perp}^{R^*} + A_{\parallel}^L A_{\parallel}^{R^*} \right) \\ &\quad + 4\beta_{\ell}^2 (|A_{0\perp}|^2 + |A_{0\parallel}|^2) + 4 \left(4 - 3\beta_{\ell}^2 \right) \left(|A_{t\perp}|^2 + |A_{t\parallel}|^2 \right) \\ &\quad + 8\sqrt{2} \frac{m_{\ell}}{\sqrt{q^2}} \text{Re} \left[\left(A_{\parallel}^L + A_{\parallel}^R \right) A_{t\parallel}^* + \left(A_{\perp}^L + A_{\perp}^R \right) A_{t\perp}^* \right], \end{split}$$

$$\begin{split} \frac{4}{3} J_{1c} &= |A_0^L|^2 + |A_0^R|^2 + \frac{4m_{\ell}^2}{q^2} \left[|A_t|^2 + 2 \operatorname{Re}(A_0^L A_0^{R^*}) \right] + \beta_{\ell}^2 |A_S|^2 \\ &\quad + 8 \left(2 - \beta_{\ell}^2 \right) |A_{t0}|^2 + 8\beta_{\ell}^2 |A_{\parallel\perp}|^2 + 16 \frac{m_{\ell}}{\sqrt{q^2}} \operatorname{Re} \left[\left(A_0^L + A_0^R \right) A_{t0}^* \right], \end{split}$$

$$\begin{split} \frac{4}{3} J_{2s} &= \frac{\beta_{\ell}^2}{4} \left[|A_{\perp}^L|^2 + |A_{\parallel}^R|^2 + (L \to R) - 16 \left(|A_{t\perp}|^2 + |A_{t\parallel}|^2 + |A_{0\perp}|^2 + |A_{0\parallel}|^2 \right) \\ \frac{4}{3} J_{2c} &= -\beta_{\ell}^2 \left[|A_0^L|^2 + |A_0^R|^2 - 8 \left(|A_{t0}|^2 + |A_{\parallel\perp}|^2 \right) \right], \end{split}$$

$$B \rightarrow \kappa^* \mu^+ \mu^-$$
 9 April 2024 3 / 5

- A measurement of *observables*
 - Unambiguous(ish), average, re-interpret
 - What is your $m_{K\pi}$ window?
- (Almost) model independent
 - Scalars, tensors, CP-asymmetries
- What they lack:
 - Full value for the data
 - Binning inherently loses information

$$B \rightarrow K^* \mu^+ \mu^-$$
 9 April 2024 3 / 5

- A measurement of *observables*
 - Unambiguous(ish), average, re-interpret
 - What is your $m_{K\pi}$ window?
- (Almost) model independent
 - Scalars, tensors, CP-asymmetries

What they lack:

- Full value for the data
 - Binning inherently loses information
- Too many observables

$\begin{bmatrix} \text{JHEP 12} (2021) 085 \end{bmatrix}$ I. From i = 0 in Eq.(3.12) one finds $|n_0|^2 = a_0(n_0^{\mathsf{T}}n_{\parallel}) + b_0(n_0^{\mathsf{T}}n_{\perp})$ yielding the first relation:

 $0 = +J_{2c}(16J_{2s}^2 - 4J_3^2 - \beta^2 J_{6s}^2 - 4J_9^2) + 2(J_3(4J_4^2 + \beta^2(-J_5^2 + J_7^2) - 4J_8^2)$ $+2J_{2s}(4J_4^2 + \beta^2(J_5^2 + J_7^2) + 4J_8^2) - 2(\beta^2(J_4J_5J_{6s} + J_{6s}J_7J_8 + J_5J_7J_9) - 4J_4J_8J_9)).$ (3.15)

$$B \rightarrow \kappa^* \mu^+ \mu^-$$
 9 April 2024 3 / 5

- A measurement of *observables*
 - Unambiguous(ish), average, re-interpret
 - What is your $m_{K\pi}$ window?
- (Almost) model independent
 - Scalars, tensors, CP-asymmetries

What they lack:

- Full value for the data
 - Binning inherently loses information
- Too many observables
- Nice statistical behaviour
 - Care for theory fits

[JHEP 12 (2021) 085] $1.1 < q^2 < 1.8 \text{ GeV}^2$

Expected LHCb Run 2 yield

$$B \rightarrow K^* \mu^+ \mu^-$$

- We quote a central value $\pm\sigma$ and correlation matrix
 - Implicitly assuming (symmetric) parabolic -2NLL up to $\infty\sigma$ around central value
 - What if we quote $y.yy_{-\sigma^{-}}^{+\sigma^{+}}$? Do the WC fits really use a bifurcated Gaussian?
- What if we know the central value is biased?
 - Estimate the size of the bias? It depends on the unknown true value
 - What does this mean for the correlation matrix?
- Coverage correction with Feldman-Cousins method?
 - How would a WC coefficient fit use a confidence interval?
 - What if the fitted central value is outside the quoted interval?
 - What about the correlation matrix?
 - Practically can only use Feldman-Cousins method for \leq 2 observables at once
 - Physical boundaries may be defined by the combination of several observables

 $B \rightarrow$

$$\kappa^* \mu^+ \mu^-$$
 9 April 2024 4 / 5

- Model independent $\frac{dB}{dq^2}$
- Complete CP-asymmetries
- Complete S-wave & interference
- Symmetry check
- and more...

$$\mu^{-}$$

from q^2 bins to q^2 -unbinned analyses

Different type of analysis

z-expansion vs dispersion relation

Commonalities

- Usual experimental treatment of B → K*mumu (acceptance, combinatorial, etc.)
- Local form factors (FFs)
 - Constrained to:
 - light-cone sum rules
 - Iattice QCD

Differences

- Modelling of the non-local contribution
- q^2 range
- dataset

2

z-expansion

based on: Bobeth, Chrzaszcz, van Dyk, Virto; EPJC 78 (2018) 451 Gubernari, van Dyk, Virto; JHEP 02 (2021) 088 Gubernari, Reboud, van Dyk, Virto; JHEP 09 (2022) 133

non-local

Decay amplitudes:

$$\mathcal{A}_{\lambda}^{L,R} = \mathcal{N}_{\lambda} \Big\{ \Big[(\mathcal{C}_{9} \pm \mathcal{C}_{9}') \mp (\mathcal{C}_{10} \pm \mathcal{C}_{10}') \Big] \mathcal{F}_{\lambda}(q^{2}, k^{2}) + \frac{2m_{b}M_{B}}{q^{2}} \Big[(\mathcal{C}_{7} \pm \mathcal{C}_{7}') \mathcal{F}_{\lambda}^{T}(q^{2}, k^{2}) - 16\pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}(q^{2}) \Big] \Big\}$$

$$\lambda = \perp, \parallel, 0$$
Polynomial expansion

$$\mathcal{H}_{\lambda}(z) = \frac{1 - z z_{J/\psi}^*}{z - z_{J/\psi}} \frac{1 - z z_{\psi(2S)}^*}{z - z_{\psi(2S)}} \times \dots \times \sum_n \alpha_{\lambda,n} z^n$$

- Add information to constrain non-local parameters
 - (1) experimental measurements on $B^0 o \psi_n K^{*0}$ decays
 - $\widehat{2}$ theory predictions at $q^2 < 0$
 - reliable for $q^2 \ll 4m_c^2$

BR, pol. frac, phase diff. from B-factories

PRD 76 (2007) 031102] PRD 88 (2013) 074026] PRD 90 (2014) 112009] PRD 88 (2013) 052002] EPJC 72 (2012) 2118]

z-expansion

based on: Bobeth, Chrzaszcz, van Dyk, Virto; EPJC 78 (2018) 451 Gubernari, van Dyk, Virto; JHEP 02 (2021) 088 Gubernari, Reboud, van Dyk, Virto; JHEP 09 (2022) 133

non-local

Decay amplitudes:

$$\mathcal{A}_{\lambda}^{L,R} = \mathcal{N}_{\lambda} \Big\{ \Big[(\mathcal{C}_{9} \pm \mathcal{C}_{9}') \mp (\mathcal{C}_{10} \pm \mathcal{C}_{10}') \Big] \mathcal{F}_{\lambda}(q^{2}, k^{2}) + \frac{2m_{b}M_{B}}{q^{2}} \Big[(\mathcal{C}_{7} \pm \mathcal{C}_{7}') \mathcal{F}_{\lambda}^{T}(q^{2}, k^{2}) - 16\pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}(q^{2}) \Big] \Big\}$$

$$\lambda = \perp, \parallel, 0$$
Polynomial expansion

$$\mathcal{H}_{\lambda}(z) = \frac{1 - z z_{J/\psi}^*}{z - z_{J/\psi}} \frac{1 - z z_{\psi(2S)}^*}{z - z_{\psi(2S)}} \times \dots \times \sum_n \alpha_{\lambda,n} z^n$$

 Add information to constrain non-local parameters

(1) experimental measurements on $B^0 \to \psi_n K^{*0}$ decays

- (2) theory predictions at $q^2 < 0$
 - reliable for $q^2 \ll 4m_c^2$

BR, pol. frac, phase diff. from B-factories

```
[PRD 76 (2007) 031102]
[PRD 88 (2013) 074026]
[PRD 90 (2014) 112009]
[PRD 88 (2013) 052002]
[EPJC 72 (2012) 2118]
```

Two fit configurations:
$-q^2 < 0$ constraints
$-q^2 > 0$ only

Signal parameters

z-expansion

- $\mathscr{R}(C_9), \mathscr{R}(C_{10}), \mathscr{R}(C_9'), \mathscr{R}(C_{10}')$
- Real+Imag non-local parameters α_{λ}^{n} (18-30 pars)
- Form factors

- $\mathfrak{R}(C_9), \mathfrak{R}(C_{10}), \mathfrak{R}(C_9'), \mathfrak{R}(C_{10}'), \mathfrak{R}(C_9^{\tau})$
- Mag. and Phase of 1-particle resonances
- Real+Imag $D^{(*)}\overline{D}^{(*)}$ per helicity
- ΔC_7 per helicity
- Form factors

Fit projections

z-expansion

Non-local result

z-expansion

- Good agreement in the real part between the two fit configurations
- Small discrepancy in the imaginary part

In general, good agreement between the two analyses!

Wilson coefficients 2D

• Results consistent with current global analyses of $b \rightarrow s\mu^+\mu^-$ decays

dispersion relation

global fit from binned data

$\mathscr{B}(B^0 \to J/\psi K^{*0})$ dominate	s
systematic uncertainty	

Global significance	1.3	(1	l. 4))σ	
---------------------	-----	----	--------------	----	--

Non-local contribution to P5'

 From the fit result we can reproduce the classic angular observables

More angular observables (I)

We should NOT think in terms of bin by bin discrepancy in a single observable, but in terms of global significance

More angular observables (II)

Residual q^2 dependence

Cross check:

 Dispersion analysis check for possible residual q² dependence by allowing linearly varying C₉ and C₁₀ in the fit:

 $\begin{array}{ll} C_{9}^{q^{2}} = C_{9} + \alpha (q^{2} - 8.95) & \alpha = 0.029 \pm 0.082 \\ C_{10}^{q^{2}} = C_{10} + \beta (q^{2} - 8.95) & \beta = -0.058 \pm 0.026 & \longrightarrow \\ \end{array}$ $\begin{array}{ll} 2.2\sigma \text{ deviation from} \\ \text{zero is observed in } C_{10} \end{array}$

tension in the FFs between low vs high-q2...?

What did we learn...

Take home message #1

- Very compatible results between the 2 analyses
- alternative/complementary q^2 model
- shift in C_9 of order -0.7

And what about:

- fit of C_9 in bins of q^2
- $D^{-(*)}D_s^{+(*)}$ rescattering...?

Let's hear from Arianna...

Take home message #2

- Still something to understand
- Im part of non-local contribution larger than expected
- SM postdictions differ from formal SM predictions in different observables
- Let's not forget about the form factors...

Tests of Short-Distance Dynamics in $b \rightarrow s\bar{\ell}\ell$

Based on <u>2401.18007</u> in collaboration with M. Bordone, G. Isidori, S. Mächler and a work in progress in collaboration with G. Isidori and Z. Polonsky

Motivation

- There is a long-standing **tension** with the SM in the exclusive $B \to K^{(*)} \bar{\ell} \ell$ in rates and angular distributions, especially in the low- q^2 region.
- The difficulty of performing precise SM tests lies in the difficulty of estimating non-perturbative contributions: form factors for the local b → s operators and non-local hadronic matrix elements of four-quark operators related to charm rescattering.
- Our goal is to try to disentangle a possible short-distance effect from long-distance dynamics.
- We parametrize the long-distance effects from charm resonances using dispersion relations in combination with data. After parametrizing these effects, we can determine a residual amplitude that can describe missing long-distance dynamics and possible short-distance dynamics.

Theoretical Framework

$$\mathcal{L}_{\text{eff}}^{b \to s\bar{\ell}\ell} = -\frac{4G_F}{\sqrt{2}} \frac{\alpha_e}{4\pi} \left(V_{ts}^* V_{tb} \sum_{i=1}^{10} C_i \mathcal{O}_i + \text{h.c.} \right) + \mathcal{L}_{\text{QCD} \times \text{QED}}^{N_f = 5} \\ \mathcal{O}_1 = \frac{4\pi}{\alpha_e} (\bar{s}_L \gamma_\mu T^a c_L) (\bar{c}_L \gamma^\mu T^a b_L) \\ \mathcal{O}_3 = \frac{4\pi}{\alpha_e} (\bar{s}_L \gamma_\mu b_L) \sum_q (\bar{q}_L \gamma^\mu q_L) \\ \mathcal{O}_5 = \frac{4\pi}{\alpha_e} (\bar{s}_L \gamma_\mu \gamma_\nu \gamma_\rho b_L) \sum_q (\bar{q}_L \gamma^\mu \gamma^\nu \gamma^\rho q_R) \\ \mathcal{O}_5 = \frac{4\pi}{\alpha_e} (\bar{s}_L \gamma_\mu \gamma_\nu \gamma_\rho b_L) \sum_q (\bar{q}_L \gamma^\mu \gamma^\nu \gamma^\rho q_R) \\ \mathcal{O}_7 = \frac{m_b}{e} (\bar{s}_L \sigma^{\mu\nu} b_R) F_{\mu\nu} \\ \mathcal{O}_9 = (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \ell) \\ \mathcal{O}_{10} = (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \gamma_5 \ell) \\ \end{array}$$

We want to extract information on the non-local matrix elements of the four-quark operators \mathcal{O}_{1-6} from data. Note that to all orders in α_{s} , and to first order in α_{em} , these matrix elements have the same structure as the matrix elements of \mathcal{O}_{7} and \mathcal{O}_{9} :

$$\mathcal{M}(B \to K\ell\ell)|_{C_{1-6}} = -i\frac{32\pi^2\mathcal{N}}{q^2}\bar{\ell}\gamma^{\mu}\ell \int d^4x e^{iqx} \langle H_{\lambda} | T\{j_{\mu}^{\text{em}}(x), \sum_{i=1,6} C_i \mathcal{O}_i(0)\} | B \rangle = \left(\Delta_9^{\lambda}(q^2) + \frac{m_B^2}{q^2}\Delta_7^{\lambda}\right) \langle H_{\lambda} \ell^+\ell^- | \mathcal{O}_9 | B \rangle$$

The (regular for $q^2 \rightarrow 0$) contributions of the non-local matrix elements of the four-quark operators can be effectively taken into account by the shift:

$$C_9 \rightarrow C_9 + Y^{\lambda}(q^2)$$
 $\lambda = K, \perp, //, 0$

Arianna Tinari (University of Zürich) | Beyond the Flavour Anomalies @ Siegen, 9-11 April 2024

K(*) 127

Theoretical Framework

More precisely, this shift includes:

from 4-quark operators

and $c\bar{c}$ resonances

To estimate the non-perturbative contributions generated by the $c\bar{c}$ resonances, we use dispersive relations in combination with data:

Extraction of C_9

We extract the residual contribution to C_9 :

$$C_{9} \to \frac{C_{9}^{\lambda}(q^{2})}{\downarrow} + Y_{q\bar{q}}^{[0]}(q^{2}) + Y_{b\bar{b}}^{[0]}(q^{2}) + Y_{c\bar{c}}^{\lambda}(q^{2})$$

extract from data

 $B \to K \bar{\ell} \ell$

- We perform a fit of C_9 bin by bin using the measured branching ratio by LHCb + CMS $\frac{2014 \text{ LHCb}}{2023 \text{ CMS}}$

Form factors from lattice QCD Parrott, W. G., et al., arXiv:2207.13371 and 2207.12468

 $B \to K^* \bar{\ell} \ell$ - We perform a fit of C_9 from the branching ratio and from the angular observables 2016 and 2020 LHCb $F_L, S_3, S_4, S_5, A_{FB}, S_7, S_8, S_9$ measured by LHCb

 Form factors from light-cone sum rules + lattice
 Bharucha, Aoife, David M. Straub, and Roman Zwicky, arXiv:1503.05534

Results

Independent determinations of C_0 assuming it to be constant:

- We find that the values of C_9 are **consistent** throughout the different modes and polarizations, and that there is no significant q^2 -dependence.
- This is in opposition to the expected behavior in the case of long-distance contributions beyond those already included
 Data provide no evidence of sizable unaccounted-for long-distance contributions.
- The discrepancy in the experimentallydetermined C_9 value is consistent with a short-distance effect of non-SM origin.

Charm rescattering in $B \to K\bar{\ell}\ell$

- We cannot exclude a sizable long-distance contribution with a reduced q^2 or λ dependence which would mimic a short-distance effect.
- For this reason, we tried to estimate the rescattering contribution from the leading two-body intermediate state D_sD* and D_s*D.

- We estimate this diagram using data on $B \rightarrow DD^*$ and Heavy Hadron Chiral Perturbation Theory (valid for soft kaons).
- Our result is most reliable close to the q² end-point (small kaon momentum), and satisfies constraints from gauge invariance.
- The absorptive part is finite and "exact" (no approximations) at the end-point.

Charm rescattering in $B \to K\bar{\ell}\ell$

We find that these contributions are not large enough to explain the bulk of the tension on the value of C_9 .

Not enough to explain the tension with the SM value (the shift needed is of order $\,\approx\,25\,\%$)

Conclusions

- Hard to explain the bulk of the tension with **only long-distance** QCD effects.
- Data provide no evidence of sizable unaccounted-for long-distance contributions, and our estimate of charm-rescattering contributions that mimic short-distance effects cannot explain all the tension.
- The discrepancy in the experimentally-determined C_9 value is consistent with a shortdistance effect of non-SM origin.
- The uncertainties of the independently-determined C_9 are still large.
- The method presented here has no theoretical limitations → with more precise data we can get more precise results (more accurate description of charm rescattering, as in recent LHCb analysis).
- If the absence of q^2 and λ dependence survives with smaller uncertainty, the presence of long-distance unaccounted-for contributions would be more plausible.

Thanks for your attention!

Form factor results

z-expansion

 F_{\perp} LHCb 4.7 fb-1 GKvD'18 + LQCD 0.5 Fit result $q^2 > 0$ only Fit result $q^2 < 0$ prior 0.4 ${}^{0}_{H}_{H} = 1.4$ i≝0.7 LHCb 4.7 fb⁻¹ 0.6 1.2 0.5 $E_{\parallel}^{0}/E_{\parallel}^{0}$ F_0 0.4 1.4 0.3 10 10 5 5 $q^2 \,[{
m GeV}^2/c^4]$ $q^2 \,[{\rm GeV^2}/c^4]$

> Fit results are found to require small adjustment in $\mathcal{F}_{\perp,\parallel}/\mathcal{F}_0$ ratio

Ang. obs (P-basis)

Ang. obs (S-basis)

Ang. obs (S-basis)

Non-local amplitudes

Wilson coefficients 1D

 Uncertainty obtained from neg. log-likelihood profile

	$q^2 > 0$ only					
	Fit result	deviation from SM				
$\Delta \mathcal{C}_9$	$-0.93^{+0.53}_{-0.57}$	1.9σ				
ΔC_{10}	$0.48^{+0.29}_{-0.31}$	1.5 σ				
$\Delta C'_9$	$0.48^{+0.49}_{-0.55}$	$0.9 \ \sigma$				
$\Delta C'_{10}$	$0.38\substack{+0.28\\-0.25}$	1.5 σ				
	$q^2 < 0$ p	$q^2 < 0$ prior				
$\Delta \mathcal{C}_9$	$-0.68\substack{+0.33\\-0.46}$	1.8σ				
$\Delta \mathcal{C}_{10}$	$0.24_{-0.28}^{+0.27}$	0.9σ				
$\Delta \mathcal{C}_9'$	$0.26\substack{+0.40\\-0.48}$	$0.5~\sigma$				
$\Delta C'_{10}$	$0.27^{+0.25}_{-0.27}$	1.0σ				

Br

- From the fit result we can reproduce the classic binned observables

 Lower BR compared to LHCb Run1 due to updated normalisation inputs

Non-local result : z-expansion

Auxiliary files

- Analysis offers a large set of results
- Strong interplay between theory and experiment
- Publish set of bootstrapped fit parameters to favour future reinterpretation of the analysis
 - non-trivial correlations
 - allow to reproduce confidence intervals for any desired quantity
 - can transform fit results to different models

Branching ratio constraint

- Differential decay rate can only access the relative size of the Wilson coefficients
 - Scale of Wilson coeff. set by branching ratio

 Extended fit allows to link the observed yield to the signal branching fraction

$$\mathcal{B}(B^{0} \to K^{*0}\mu^{+}\mu^{-}) = \frac{\tau_{B}}{\hbar} \int_{q_{\min}^{2}}^{q_{\max}^{2}} \int_{k_{\min}^{2}}^{k_{\max}^{2}} \frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}q^{2}\mathrm{d}k^{2}} \mathrm{d}q^{2}\mathrm{d}k^{2}$$

$$N_{sig} = N_{J/\psi K\pi} \times \frac{\mathcal{B}(B^{0} \to K^{*0}\mu^{+}\mu^{-}) \times \frac{2}{3}}{\mathcal{B}(B^{0} \to J/\psi K^{+}\pi^{-}) \times f_{\pm 100\mathrm{MeV}}^{J/\psi K\pi} \times \mathcal{B}(J/\psi \to \mu^{+}\mu^{-})} \times R_{\varepsilon}$$

$$Wilson \text{ coefficients enter here}$$

Normalised to $B^0 \rightarrow J/\psi K^+\pi^-$ control channel to reduce systematic

[Greljo, Salko, Smolkovic, Stangl; JHEP 05 (2023) 087]

Input for BR determination

Systematic uncertainties

Systematics due to the amplitude model

Largest systematic for C_9 , C_{10} comes from BR external inputs

Systematics related to exp. effects are in common with binned BR/angular analyses

Total syst. negligible w.r.t. statistical uncertainty

	\mathcal{C}_9	\mathcal{C}_{10}	\mathcal{C}_9'	\mathcal{C}_{10}'
Amplitude model				
S-wave form factors	< 0.01	< 0.01	< 0.01	< 0.01
S-wave non-local hadronic	0.02	0.02	0.14	0.04
S-wave k^2 model	< 0.01	< 0.01	0.05	0.03
Subtotal	0.02	0.02	0.15	0.05
External inputs on BR				
$\mathcal{B}(B^0 \to J/\psi K^+\pi^-)$	0.05	0.08	0.02	0.01
$f_{\pm 100 \text{MeV}}^{B^0 \rightarrow J/\psi K \pi}$	0.03	0.03	0.01	< 0.01
Others (R_{ε})	0.03	0.04	0.03	0.01
Subtotal	0.07	0.09	0.04	0.01
Background model				
Chebyshev polynomial order	0.01	0.01	0.01	< 0.01
Combinatorial shape in k^2	0.02	< 0.01	0.02	< 0.01
Background factorisation	0.01	0.01	0.01	0.01
Peaking background	0.01	< 0.01	0.02	0.01
Subtotal	0.03	0.02	0.03	0.01
Experimental effects				
Acceptance parametrisation	< 0.01	< 0.01	< 0.01	< 0.01
Statistical uncertainty on acceptance	0.02	< 0.01	0.02	< 0.01
Subtotal	0.02	< 0.01	0.02	< 0.01
Total systematic uncertainty	0.08	0.10	0.16	0.05
Statistical uncertainty $(q^2 < 0 \text{ constr.})$	0.40	0.28	0.40	0.24

Choice of the *z* order

- Data driven determination of the truncation order:
 - fit repeated with increasing polynomial order $\mathcal{H}_{\lambda}[z^2, z^3, z^4, ...]$
 - till no significant improvement in the likelihood is found

(each *z*-order brings six additional parameters)

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk." J. von Neumann

	$2\Delta \log \mathcal{L}$			
	$q^2 < 0$ constr.	$q^2 > 0$ only		
$\mathcal{H}_{\lambda}[z^3] - \mathcal{H}_{\lambda}[z^2]$	-	3.6		
$\mathcal{H}_{\lambda}[z^4] - \mathcal{H}_{\lambda}[z^3]$	21.22	-		
$\mathcal{H}_{\lambda}[z^5] - \mathcal{H}_{\lambda}[z^4]$	8.64	-		

$$\begin{array}{|c|c|c|} \blacktriangleright & \mathcal{H}_{\lambda}[z^2] \ \text{for } q^2 > 0 \ \text{only fit} \\ \hline & \mathcal{H}_{\lambda}[z^4] \ \text{for } q^2 < 0 \ \text{constr. fit} \end{array}$$

S-wave

- $B^0 \rightarrow K^+ \pi^- \mu^+ \mu^-$ decays can also proceed though a scalar $K^+ \pi^-$ configuration (S-wave)

- $\blacktriangleright \text{ require additional scalar amplitudes } \mathcal{A}_{S0}^{L,R} = -\mathcal{N} \frac{\sqrt{\lambda(M_B^2, q^2, k^2)}}{M_B \sqrt{q^2}} \Big\{ \Big[(\mathcal{C}_9 \mathcal{C}_9') \mp (\mathcal{C}_{10} \mathcal{C}_{10}') \Big] f_+(q^2, k^2) + \frac{2m_b M_B}{q^2} (\mathcal{C}_7 \mathcal{C}_7') f_T(q^2, k^2) \Big\} \Big\}$
- extend the fit to $k^2 = m^2(K^+\pi^-)$ [Descontes-Genon, Khodjamirian, Virto; JHEP 12 (2019) 083]

P-wave:
$$\mathcal{A}_{0,\perp,\parallel,t}^{L,R} \mapsto \mathcal{A}_{0,\perp,\parallel,t}^{L,R} \times \hat{f}_{BW}(k^2)$$
,
S-wave: $\mathcal{A}_{S\,0,S\,t}^{L,R} \mapsto \mathcal{A}_{S\,0,S\,t}^{L,R} \times \boxed{|g_S| e^{i\delta_S}} \hat{f}_{LASS}(k^2)$

relative magnitude and phase between P and S-wave

Wilson coefficients 2D

Non-local hadronic results (J/ψ)

Form factors

$$\begin{split} \mathcal{F}_{\perp} &\mapsto \frac{\sqrt{2\lambda(M_B^2, q^2, k^2)}}{M_B(M_B + M_{K^{*0}})} V \,, \\ \mathcal{F}_{\parallel} &\mapsto \frac{\sqrt{2}(M_B + M_{K^{*0}})}{M_B} A_1 \,, \\ \mathcal{F}_0 &\mapsto \frac{(M_B^2 - q^2 - M_{K^{*0}}^2)(M_B + M_{K^{*0}})^2 A_1 - \lambda(M_B^2, q^2, k^2) A_2}{2M_{K^{*0}} M_B^2(M_B + M_{K^{*0}})} \,, \\ \mathcal{F}_{\perp}^T &\mapsto \frac{\sqrt{2\lambda(M_B^2, q^2, k^2)}}{M_B^2} T_1 \,, \\ \mathcal{F}_{\parallel}^T &\mapsto \frac{\sqrt{2}(M_B^2 - M_{K^{*0}}^2)}{M_B^2} T_2 \,, \\ \mathcal{F}_0^T &\mapsto \frac{q^2(M_B^2 + 3M_{K^{*0}}^2 - q^2)}{2M_B^3 M_{K^{*0}}} T_2 - \frac{q^2\lambda(M_B^2, q^2, k^2)}{2M_B^3 M_{K^{*0}}} T_3 \,, \\ \mathcal{F}_t &\mapsto \frac{\sqrt{\lambda(M_B^2, q^2, k^2)}}{M_B \sqrt{q^2}} A_0 \,. \end{split}$$

(i) with C_9^{eff} defined as in eq. (7.2.4)

(ii) with C_9^{eff} defined in eq. (7.3.9)

(iii) with eq. (7.3.9) with $\tilde{Y}(q^2)$ replaced by $Y(q^2)$.

$$C_7^{\text{eff}} = C_7 - \frac{1}{3} \left(C_3 + \frac{4}{3}C_4 + 20C_5 + \frac{80}{3}C_6 \right)$$

and an effective C_9

$$C_9^{\text{eff}} = C_9 + Y\left(q^2\right)$$

with

$$Y\left(q^{2}
ight) = rac{4}{3}C_{3} + rac{64}{9}C_{5} + rac{64}{27}C_{6} - rac{1}{2}h\left(q^{2},0
ight)\left(C_{3} + rac{4}{3}C_{4} + 16C_{5} + rac{64}{3}C_{6}
ight)
onumber \ + h\left(q^{2},m_{c}
ight)\left(rac{4}{3}C_{1} + C_{2} + 6C_{3} + 60C_{5}
ight)
onumber \ - rac{1}{2}h\left(q^{2},m_{b}
ight)\left(7C_{3} + rac{4}{3}C_{4} + 76C_{5} + rac{64}{3}C_{6}
ight),$$

$$h\left(q^{2},m\right) = -\frac{4}{9}\left(\ln\frac{m^{2}}{\mu^{2}} - \frac{2}{3} - x\right) - \frac{4}{9}\left(2 + x\right) \begin{cases} \sqrt{x - 1} \arctan\frac{1}{\sqrt{x - 1}}, \ x > 1\\ \sqrt{1 - x}\left(\ln\frac{1 + \sqrt{1 - x}}{\sqrt{x}} - \frac{i\pi}{2}\right), \ x \ge 1 \end{cases}$$

$$\mathcal{M}\left(B \to K\ell^{+}\ell^{-}\right)\Big|_{C_{7,9}} = 2\mathcal{N}\left[C_{9}\langle K|\bar{s}_{L}\gamma_{\mu}b_{L}|B\rangle - \frac{2m_{b}}{q^{2}}C_{7}\langle K|\bar{s}_{L}i\sigma_{\mu\nu}q^{\nu}b_{R}|B\rangle\right]\ell\gamma^{\mu}\ell$$
$$= \mathcal{N}C_{9}\left[f_{+}(q^{2})(p_{B}+p_{K})^{\mu} + f_{-}(q^{2})q^{\mu}\right]\ell\gamma^{\mu}\ell$$
$$+ \mathcal{N}C_{7}\frac{f_{T}(q^{2})}{(m_{B}+m_{K})}\left[q^{2}(p_{B}+p_{K})^{\mu} - (m_{B}^{2}-m_{K}^{2})q^{\mu}\right]\left(\frac{2m_{b}}{q^{2}}\right)\ell\gamma^{\mu}\ell$$
(2.5)

and

$$\mathcal{M}\left(B \to K^{*}\ell^{+}\ell^{-}\right)\Big|_{C_{7,9}} = \mathcal{N}C_{9}\left[-2i\epsilon_{\mu\nu\rho\sigma}(\epsilon^{*})^{\nu}p_{B}^{\rho}p_{K^{*}}^{\sigma}\frac{V(q^{2})}{m_{B}+m_{K^{*}}}\right]$$

$$+q_{\mu}\left(\epsilon^{*}\cdot q\right)\frac{2m_{K^{*}}}{q^{2}}A_{0}(q^{2}) + \left(\epsilon_{\mu}^{*}-q_{\mu}\frac{\epsilon^{*}\cdot q}{q^{2}}\right)(m_{B}+m_{K^{*}})A_{1}(q^{2})$$

$$-\left(\left(p_{B}+p_{K^{*}}\right)_{\mu}-q_{\mu}\frac{m_{B}^{2}-m_{K^{*}}^{2}}{q^{2}}\right)\frac{\epsilon^{*}\cdot q}{m_{B}+m_{K^{*}}}A_{2}(q^{2})\right]\bar{\ell}\gamma^{\mu}\ell$$

$$+\mathcal{N}C_{7}\left[-2i\epsilon_{\mu\nu\rho\sigma}(\epsilon^{*})^{\nu}p_{B}^{\rho}p_{K^{*}}^{\sigma}T_{1}(q^{2}) + (\epsilon^{*}\cdot q)\left(q_{\mu}-\frac{q^{2}}{m_{B}^{2}-m_{K^{*}}^{2}}\left(p_{B}+p_{K^{*}}\right)_{\mu}\right)T_{3}(q^{2})\right)$$

$$+\left(\epsilon_{\mu}^{*}(m_{B}^{2}-m_{K^{*}}^{2}) - (\epsilon^{*}\cdot q)\left(p_{B}+p_{K^{*}}\right)_{\mu}\right)T_{2}(q^{2})\left(\frac{2m_{b}}{q^{2}}\right)\ell\gamma^{\mu}\ell,\qquad(2.6)$$

where

$$q^{\mu} = p^{\mu}_{B} - p^{\mu}_{K^{(*)}}, \qquad \mathcal{N} = \sqrt{2}G_{\rm F}\alpha_{\rm em}V_{tb}V^{*}_{ts}/(4\pi), \qquad (2.7)$$

$$\mathcal{M}\left(B \to K\ell^{+}\ell^{-}\right)\Big|_{C_{7,9}} = \mathcal{N}\left[C_{9} + \frac{2m_{b}}{m_{B} + m_{K}}\frac{f_{T}(q^{2})}{f_{+}(q^{2})}C_{7}\right]f_{+}(q^{2})(p_{B} + p_{K})_{\mu}\bar{\ell}\gamma^{\mu}\ell$$

$$\mathcal{M}\left(B \to K^{*}\ell^{+}\ell^{-}\right)\Big|_{C_{7,9}} = \mathcal{N}\left\{-\left[C_{9} + \frac{2m_{b}(m_{B} + m_{K^{*}})}{q^{2}}\frac{T_{1}(q^{2})}{V(q^{2})}C_{7}\right]\frac{2V(q^{2})}{m_{B} + m_{K^{*}}}i\epsilon_{\mu\nu\rho\sigma}(\epsilon^{*})^{\nu}p_{B}^{\rho}p_{K^{*}}^{\sigma}$$

$$-\left[C_{9} + \frac{2m_{b}(m_{B} + m_{K^{*}})}{q^{2}}\frac{T_{2}(q^{2})}{A_{2}(q^{2})}C_{7}\left(1 + O\left(\frac{q^{2}}{m_{B}^{2}}\right)\right)\right]\frac{A_{2}(q^{2})}{m_{B} + m_{K^{*}}}(\epsilon^{*} \cdot q)(p_{B} + p_{K^{*}})_{\mu}$$

$$+\left[C_{9} + \frac{2m_{b}(m_{B}^{2} - m_{K^{*}})}{q^{2}}\frac{T_{2}(q^{2})}{A_{1}(q^{2})}C_{7}\right]A_{1}(q^{2})(m_{B} + m_{K^{*}})\epsilon_{\mu}^{*}\right\}\bar{\ell}\gamma^{\mu}\ell,$$
(2.8)

q^2 region	Amplitude	C_9 values				
Low q^2	$B \to K$	2.4	$^{+0.4}_{-0.5}$			
	$B \to K^*(\epsilon_{\parallel})$	$3.1^{+0.6}_{-0.6}$	$2.8^{+0.2}_{-0.2}$	27+0.2		
	$B \to K^*(\epsilon_\perp)$	$2.8^{+0.7}_{-0.7}$		$2.8^{+0.2}_{-0.2}$	$\chi^{2}/dof = 1.27 \ (0.10))$	
	$B \to K^*(\epsilon_0)$	$2.7^{+0.7}_{-0.8}$			$3.1^{+0.1}_{-0.1}$	
High q^2	$B \to K$	$2.6^{+0.4}_{-0.4}$			$\chi^2/dof = 1.33 \ (0.02)$	
	$B \to K^*(\epsilon_{\parallel})$	$3.3^{+0.5}_{-0.5}$	$3.4^{+0.3}_{-0.3}$	$3.1^{\pm0.2}$		
	$B \to K^*(\epsilon_\perp)$	$3.5_{-0.4}^{+0.4}$		$3.4^{+0.3}_{-0.3}$	$\begin{array}{c} 3.1_{-0.2} \\ (\chi^2/\text{dof}=1.04 \ (0.40)) \end{array}$	
	$B \to K^*(\epsilon_0)$	$3.5_{-0.6}^{+0.6}$				

Table 4.1: Best-fit points assuming constant C_9 values in the low- and high- q^2 regions, separating or combining the different decay amplitudes, or considering the same value over the full q^2 spectrum for all the decay amplitudes (last column).

$$Y^{\lambda}(q^{2})\big|_{\alpha_{s}^{0}} = Y^{[0]}_{q\bar{q}}(q^{2}) + Y^{[0]}_{c\bar{c}}(q^{2}) + Y^{[0]}_{b\bar{b}}(q^{2}), \qquad (2.14)$$

where

$$\begin{split} Y_{q\bar{q}}^{[0]}(q^2) &= \frac{4}{3}C_3 + \frac{64}{9}C_5 + \frac{64}{27}C_6 - \frac{1}{2}h(q^2,0)\left(C_3 + \frac{4}{3}C_4 + 16C_5 + \frac{64}{3}C_6\right), \\ Y_{c\bar{c}}^{[0]}(q^2) &= h(q^2,m_c)\left(\frac{4}{3}C_1 + C_2 + 6C_3 + 60C_5\right), \\ Y_{b\bar{b}}^{[0]}(q^2) &= -\frac{1}{2}h(q^2,m_b)\left(7C_3 + \frac{4}{3}C_4 + 76C_5 + \frac{64}{3}C_6\right), \end{split}$$

with

$$h(q^2, m) = -\frac{4}{9} \left(\ln \frac{m^2}{\mu^2} - \frac{2}{3} - x \right) - \frac{4}{9} (2+x) \begin{cases} \sqrt{x-1} \arctan \frac{1}{\sqrt{x-1}}, & x = \frac{4m^2}{q^2} > 1, \\ \sqrt{1-x} \left(\ln \frac{1+\sqrt{1-x}}{\sqrt{x}} - \frac{i\pi}{2} \right), & x = \frac{4m^2}{q^2} \le 1. \end{cases}$$