Confronting $B \rightarrow K \pi$ theory predictions with experimental data

Beyond the Flavour Anomalies V, 10 ${ }^{\text {th }}$ April 2024
Keri Vos (\dagger) \rightarrow Javier Virto, Alex Marshall

Setting the scene

$B^{0} \rightarrow K^{* 0}\left(\rightarrow K^{+} \pi^{-}\right) \mu^{+} \mu^{-}$a very important channelAs discussed yesterday multiple different analyses at LHCbVarying treatment of non-local contributionsVarying treatment of $m(K \pi)$ (and q^{2} regions measured)
diagram by T. Hadavizadeh

Setting the scene

The $B^{0} \rightarrow K^{* 0}\left(\rightarrow K^{+} \pi^{-}\right) \mu^{+} \mu^{-}$decay rate is dominated by a P-wave $K^{* 0}(892)$ contribution.P-wave decay rate of $B^{0} \rightarrow K^{* 0}\left(\rightarrow K^{+} \pi^{-}\right) \mu^{+} \mu^{-}$:$$
\begin{aligned}
\frac{\mathrm{d} \Gamma_{P}}{\mathrm{~d} m(K \pi) \mathrm{d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi}=\frac{9}{32 \pi} & {\left[J_{1 s} \sin ^{2} \theta_{K}+J_{1 c} \cos ^{2} \theta_{K}+J_{2 s} \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}+J_{2 c} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}\right.} \\
& +J_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi+J_{4} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi \\
& +J_{5} \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi+J_{6 s} \sin ^{2} \theta_{K} \cos \theta_{\ell} \\
& +J_{6 c} \cos ^{2} \theta_{K} \cos \theta_{\ell}+J_{7} \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi+J_{8} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi \\
& \left.+J_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi\right] \times\left|B W_{P}(m(K \pi))\right|^{2}
\end{aligned}
$$The angular coefficients J_{i} terms being bilinear combinations of amplitudes$m(K \pi)$ dependence provided by $\times\left|B W_{P}(m(K \pi))\right|^{2}$, no $m(K \pi)$ dependence in the rest of the decay rateLocal form factors effects are contained in the angular coefficients measured

Setting the scene

The next largest contribution is from the S-wave.\triangleright Note: The importance of this contribution depends on the $m(K \pi)$ window chosenThe S-wave + interference contributions to the decay rate are as follows:

$$
\begin{aligned}
\frac{\mathrm{d} \Gamma_{S}}{\mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi \mathrm{~d} m(K \pi)}=+\frac{1}{4 \pi} & {\left[\left(\tilde{J}_{1 a}^{c}+\tilde{J}_{2 a}^{c} \cos 2 \theta_{\ell}\right)\left|B W_{S}\right|^{2}\right.} \\
& +\left[\tilde{J}_{1 b}^{c, r} \operatorname{Re}\left(B W_{S} B W_{P}^{*}\right)-\tilde{J}_{1 b}^{c, i} \operatorname{Im}\left(B W_{S} B W_{P}^{*}\right)\right] \cos \theta_{K} \\
& +\left[\tilde{J}_{2 b}^{c, r} \operatorname{Re}\left(B W_{S} B W_{P}^{*}\right)-\tilde{J}_{2 b}^{c, i} \operatorname{Im}\left(B W_{S} B W_{P}^{*}\right)\right] \cos 2 \theta_{\ell} \cos \theta_{K} \\
& +\left[\tilde{J}_{4}^{r} \operatorname{Re}\left(B W_{S} B W_{P}^{*}\right)-\tilde{J}_{4}^{i} \operatorname{Im}\left(B W_{S} B W_{P}^{*}\right)\right] \sin 2 \theta_{l} \sin \theta_{K} \cos \phi \\
& +\left[\tilde{J}_{5}^{r} \operatorname{Re}\left(B W_{S} B W_{P}^{*}\right)-\tilde{J}_{5}^{i} \operatorname{Im}\left(B W_{S} B W_{P}^{*}\right)\right] \sin \theta_{l} \sin \theta_{K} \cos \phi \\
& +\left[\tilde{J}_{7}^{r} \operatorname{Im}\left(B W_{S} B W_{P}^{*}\right)+\tilde{J}_{7}^{i} \operatorname{Re}\left(B W_{S} B W_{P}^{*}\right)\right] \sin \theta_{l} \sin \theta_{K} \sin \phi \\
& \left.+\left[\tilde{J}_{8}^{r} \operatorname{Im}\left(B W_{S} B W_{P}^{*}\right)+\tilde{J}_{8}^{i} \operatorname{Re}\left(B W_{S} B W_{P}^{*}\right)\right] \sin 2 \theta_{l} \sin \theta_{K} \sin \phi\right]
\end{aligned}
$$

\square Again there is no $m(K \pi)$ dependence in the angular terms which effectively include local form factor effects.Higher partial waves can essentially be ignored in this region of $m(K \pi)$ ([1512.08627])

Setting the scene - three areas of discussion

S - and P-wave contributions have differing angular structures providing some separating power, however, the $m(K \pi)$ lineshape is still very important\triangleright Controlling the $m(K \pi)$ lineshape is especially important for gaining sensitivity to S-wave and interferenceTo avoid biases the $m_{K \pi}$ lineshape must be fit with an accurate description.
\square Multiple P-wave states? $K^{*}(1410)$?
\square At present it is assumed that $m(K \pi)$ factorises with q^{2}
\square Any $m_{K \pi}$ dependence in the $B \rightarrow K \pi$ local form factors is not included.
\square
Can we check the impact of this?
\square What S-wave $m(K \pi)$ lineshape parameterisation to use?

What can theory say about local form factors?

$B \rightarrow K \pi$ Form factors

Definition of Lorentz-Invariant Form Factors:

$$
\begin{aligned}
i\left\langle K^{-}\left(k_{1}\right) \pi^{+}\left(k_{2}\right)\right| \bar{s} \gamma^{\mu} b\left|\bar{B}^{0}(q+k)\right\rangle & =F_{\perp} k_{\perp}^{\mu} \\
-i\left\langle K^{-}\left(k_{1}\right) \pi^{+}\left(k_{2}\right)\right| \bar{s} \gamma^{\mu} \gamma_{5} b\left|\bar{B}^{0}(q+k)\right\rangle & =F_{t} k_{t}^{\mu}+F_{0} k_{0}^{\mu}+F_{\|} k_{\|}^{\mu} \\
\left\langle K^{-}\left(k_{1}\right) \pi^{+}\left(k_{2}\right)\right| \bar{s} \sigma^{\mu \nu} q_{\nu} b\left|\bar{B}^{0}(q+k)\right\rangle & =F_{\perp}^{T} k_{\perp}^{\mu} \\
\left\langle K^{-}\left(k_{1}\right) \pi^{+}\left(k_{2}\right)\right| \bar{s} \sigma^{\mu \nu} q_{\nu} \gamma_{5} b\left|\bar{B}^{0}(q+k)\right\rangle & =F_{0}^{T} k_{0}^{\mu}+F_{\|}^{T} k_{\|}^{\mu}
\end{aligned}
$$

Functions $F_{i}^{(T)}\left(k^{2}, q^{2}, q \cdot \bar{k}\right)$. Partial-wave expansion:

$$
\begin{aligned}
F_{0, t}\left(k^{2}, q^{2}, q \cdot \bar{k}\right) & =\sum_{\ell=0}^{\infty} \sqrt{2 \ell+1} F_{0, t}^{(\ell)}\left(k^{2}, q^{2}\right) P_{\ell}^{(0)}\left(\cos \theta_{K}\right) \\
F_{\perp, \|}\left(k^{2}, q^{2}, q \cdot \bar{k}\right) & =\sum_{\ell=1}^{\infty} \sqrt{2 \ell+1} F_{\perp, \|}^{(\ell)}\left(k^{2}, q^{2}\right) \frac{P_{\ell}^{(1)}\left(\cos \theta_{K}\right)}{\sin \theta_{K}}
\end{aligned}
$$

Theory for S and P-wave $B \rightarrow \pi K$ form factors

Two main approaches:\triangleright Lattice QCD at large q^{2}
\triangleright Light-cone sum rules at low q^{2}

Light-cone sum rule analyses

[J. Virto, A. Khodjamirian, S. Descotes-Genon JHEP 1912, 083 (2019)]
[J. Virto, A. Khodjamirian, S. Descotes-Genon, KKV JHEP 06, 034 (2023)]
\triangleright Only available in terms of B meson LCDA
\triangleright Improvement over assuming K^{*} is a stable state
\triangleright Finite width effects in P wave at 20% level for BR
\triangleright Higher resonances large impact \rightarrow can be constrained by moment analysisS wave even more challenging; generally broad resonancesRelevant for $B \rightarrow K^{*} \ell \ell$, but also $B \rightarrow K \pi \pi$!

Light-Cone Sum Rules for S and P-wave $B \rightarrow K \pi$ Form Factors

$$
\int_{s_{\mathrm{th}}}^{s_{0}} d s e^{-s / M^{2}} \omega_{i}\left(s, q^{2}\right) \quad f_{0,+}^{\star}(s) \quad F_{i}^{(\ell)}\left(s, q^{2}\right)=\Pi_{i}^{\mathrm{OPE}}\left(q^{2}, \sigma_{0}, M^{2}\right)
$$$s_{0}$ - Effective threshold$\omega_{i}\left(s, q^{2}\right)-($ known $)$ kinematic factors$\left\langle K^{-}\left(k_{1}\right) \pi^{+}\left(k_{2}\right)\right| \bar{s} \gamma_{\mu} d|0\rangle=f_{+}\left(k^{2}\right) \bar{k}_{\mu}+\frac{m_{K}^{2}-m_{\pi}^{2}}{k^{2}} f_{0}\left(k^{2}\right) k_{\mu}$$\Pi_{i}^{(T), \text { OPE }}-$ OPE result for the correlation function (in terms of B-LCDAs)

\rightarrow No closed expression for FFs: use sume rules to contrain favourite model
$\rightarrow f_{+, 0}\left(k^{2}\right)$ from data
$\rightarrow s_{0}$ from two-point sum rule for $K \pi$ form factor.

QCD to constrain P and S-wave models

Use QCD sum rules to constrain $B \rightarrow(K \pi)_{P}$ and $B \rightarrow(K \pi)_{S}$ parametrizations/modelsSimple sum of Breit-wigners can be used for P wave, but not for S wave
Model requirements:

appropriate analytical propertiespoles corresponding to known resonancescuts for the relevant open channelssimple (linear) dependence on the parameters to be constrained by the sum rules
Light-cone sum rules for P-wave $B \rightarrow \pi K$ form factors

[S. Descotes-Genon, A. Khodjamirian, J. Virto, JHEP 1912, 083 (2019)] [arXiv:1908.02267];
$K \pi$ form factor $f_{+}(s)$ from $\tau \rightarrow K \pi \nu_{\tau}$

Light-cone sum rules for P-wave $B \rightarrow \pi K$ form factors

[S. Descotes-Genon, A. Khodjamirian, J. Virto, JHEP 1912, 083 (2019)] [arXiv:1908.02267];

$$
\mathcal{F}_{K^{*}(1410)}\left(q^{2}\right)=\alpha \mathcal{F}_{K^{*}(892)}\left(q^{2}\right) \quad \alpha \text { free parameter }
$$

Light-cone sum rules for S-wave $B \rightarrow \pi K$ form factors

Input: S-wave $K \pi$ form factors

L. Von Detten, F. No el, C. Hanhart, M. Hoferichter and B. Kubis, Eur. Phys. J. C 81,420 (2021) [arXiv:2103.01966 [hep-ph]].Uses Omnes coupled channel for $K \pi$ rescattering up to 1 GeVIncludes source terms for high-mass resonancesForm factor obtained from fitting to $\tau \rightarrow K_{S} \pi \nu_{\tau}$ spectrum (simultaneous with P wave)

Light-cone sum rules for S-wave $B \rightarrow \pi K$ form factors

LCSRs relate the $B \rightarrow \pi K$ form factor to the $K \pi$ form factor:$$
F_{i}^{(\ell=0)}\left(s, q^{2}\right)=\kappa_{i}\left(s, q^{2}\right) \rho_{i}\left(q^{2}\right) f_{0}(s)
$$$\rho$ determined from the LCSR OPE calculation, κ kinematic factorNo free parameter, relative contributions of resonances fixed

Light-cone sum rules for P versus S-wave (low $m(K \pi)$)

(a)

The form factors are integrated over a 100 MeV region around the $K^{*}(892)$ resonance: $(0.796 \mathrm{GeV})^{2}<s<(0.996 \mathrm{GeV})^{2}$.

Light-cone sum rules for P versus S-wave (high $m(K \pi)$)

In the higher s region containing the resonances $K^{*}(1410)$ and $K_{0}^{*}(1430)$: $(1.33 \mathrm{GeV})^{2}<s<(1.53 \mathrm{GeV})^{2}$.

What can data say? - Branching Ratios

Figure 8: Theory predictions for the $B \rightarrow(K \pi)_{P} \ell^{+} \ell^{-}$branching ratio within the $K \pi$ invariant mass bin $(0.796 \mathrm{GeV})^{2}<s<(0.996 \mathrm{GeV})^{2}$, for different values of α, compared to the $L H C b$ measurements of $B \rightarrow K^{*} \mu^{+} \mu^{-}$in Ref. [13].

What can data say? - Branching Ratios

What can data say? - S-wave fraction

Example: measured scalar contribution in low $m(K \pi)$ shows rapid fluctations?

from: [J. Virto, A. Khodjamirian, S. Descotes-Genon, KKV] [arXiv:2304.02973]Predictions for moments at low $m(K \pi)$ availableComparison of moments with experiment could give insight into S-wave componentCurrently S-wave is treated as nuisance parameter

What can data say? - Angular Moments

Example of use of the data to constrain higher-partial waves:

Moment $/ \tau_{B}$	Amplitude	Exp. Value $\times 10^{8}$	Theory $\times 10^{8}$		
$-\frac{\sqrt{5}}{2}\left(\tilde{\Gamma}_{3}+2 \tilde{\Gamma}_{6}\right)$	$\left.\left.\tau_{B}\langle \| \widehat{S}^{L}\right\|^{2}+\left\|\widehat{S}^{R}\right\|^{2}\right\rangle=\left\langle M_{S}\right\rangle$	2.16 ± 1.62	$[1.12,4.73]$		
$\frac{1}{2} \bar{\Gamma}_{2}$	$\tau_{B}\left\langle\operatorname{Re}\left(\widehat{A}_{0}^{L} \widehat{S}^{L *}+\widehat{A}_{0}^{R} \widehat{S}^{R *}\right)\right\rangle=\left\langle M_{0 \operatorname{Re}}\right\rangle$	-0.84 ± 0.29	$[-0.53,-1.24]$		
$-\sqrt{\frac{5}{3}} \tilde{\Gamma}_{11}$	$\tau_{B}\left\langle\operatorname{Re}\left(\widehat{A}_{\\|}^{L} \widehat{S}^{L *}+\widehat{A}_{\\|}^{R} \widehat{S}^{R *}\right)\right\rangle$	-0.31 ± 0.69	$[-0.23,-0.54]$		
$\sqrt{\frac{5}{3}} \tilde{\Gamma}_{15}$	$\tau_{B}\left\langle\operatorname{Im}\left(\widehat{A}_{\perp}^{L} \widehat{S}^{L *}+\widehat{A}_{\perp}^{R} \widehat{S}^{R *}\right)\right\rangle$	0.57 ± 0.69	$[-0.17,-0.36]$		
$\frac{1}{\sqrt{3}} \tilde{\Gamma}_{34}$	$\tau_{B}\left\langle\operatorname{Re}\left(\widehat{A}_{\perp}^{L} \widehat{S}^{L *}-\widehat{A}_{\perp}^{R} \widehat{S}^{R *}\right)\right\rangle$	0.35 ± 0.26	$[-0.14,-0.34]$		
$-\frac{1}{\sqrt{3}} \tilde{\Gamma}_{38}$	$\tau_{B}\left\langle\operatorname{Im}\left(\widehat{A}_{\\|}^{L} \widehat{S}^{L *}-\widehat{A}_{\\|}^{R} \widehat{S}^{R *}\right)\right\rangle$	0.14 ± 0.25	$[-0.29,-0.61]$		

from: [J. Virto, A. Khodjamirian, S. Descotes-Genon, KKV] [arXiv:2304.02973]Pure S wave moments already disfavor some S-wave modelsMixed S and P, depend on α and different models for SNo indication for large D wave contribution

Is it possible to improve the experimental analyses in the future?

Why is multiple P-wave states a problem?

\square The angular distribution for each amplitude has, a short-/long-distance component $S\left(q^{2}\right)$, a local form factor component $f\left(q^{2}\right)$ and some $m(K \pi)$ dependence $g(m(K \pi))$.

$$
\underbrace{f\left(q^{2}\right) \cdot S\left(q^{2}\right)}_{\alpha \text { Angular terms }} \cdot g\left(m_{K} \pi\right)
$$With one only one $m(K \pi)$ contribution (say only $K^{* 0}(892)$), the above is fine

\triangleright Assuming no $m(K \pi)$ dependence in the angular coefficients: $\left(f\left(q^{2}\right) \cdot S\left(q^{2}\right)\right)$What happens if we have two contributions (g_{1} and g_{2}) to $m(K \pi)$ lineshape?

$$
\left(f_{1}\left(q^{2}\right) \cdot g_{1}\left(m_{K} \pi\right)+f_{2}\left(q^{2}\right) \cdot g_{2}\left(m_{K} \pi\right)\right) \cdot S\left(q^{2}\right)
$$The local form factors will be different for each contribution (f_{1} and f_{2})The above factorisation has broken down, and the local form factor effects can no longer be grouped with short-/long-distance components in our angular coefficients.

What options do we have?

Firstly, it is unclear how big this issue might be
The effect is likely negligible with current statistics and the current $m(K \pi)$ window.
However, this is something to consider going forward, the importance of these effects will only increase with more LHCb data.

If the effect is relevant, the options would be:Reduce the size of $m(K \pi)$ window, or at least don't continue to open it further.
\triangleright Note, in the upcoming LHCb binned analysis the $m(K \pi)$ window is widened to increase sensitivity to S-wave/interference observables (now is approx 0.746 to 1.10)Extreme solution: Fit a 2nd set of P-wave observables for the $K^{* 0}(1410)$

$$
f_{1}\left(q^{2}\right) \cdot S_{1}\left(q^{2}\right) \cdot g_{1}\left(m_{K} \pi\right)+f_{2}\left(q^{2}\right) \cdot S_{2}\left(q^{2}\right) \cdot g_{2}\left(m_{K} \pi\right)
$$

\triangleright Almost certainly a prohibitively large number of parameters?
\triangleright Moment analysis?
\triangleright What about any interference?

Can we use data to pin down the P-wave $m(K \pi)$ lineshape?

We hoped to isolate the P-wave lineshape using $B^{0} \rightarrow K^{* 0} \gamma$, where the photon forces the $K^{* 0}$ to be P-wave[1905.06284].
However, this would not quite be the same P-wave lineshape as we expect in $B^{0} \rightarrow K^{* 0}\left(\rightarrow K^{+} \pi^{-}\right) \mu^{+} \mu^{-}$
\triangleright Each decay channel has different levels of contributions from different helicity amplitudes, each of which has a different local form factor dependence (thanks to J. Virto for a useful discussion)
\triangleright Not possible to separate different contributions in $B^{0} \rightarrow K^{* 0} \gamma$ as we cannot measure the helicity of the photon.

Testing for $m(K \pi)$ dependence in local form factors

Floating $m(K \pi)$ dependence may not be possible in $B^{0} \rightarrow K^{* 0}\left(\rightarrow K^{+} \pi^{-}\right) \mu^{+} \mu^{-}$with the current LHCb datasetCan we look at other channels to see how big the effect might be? $D^{+} \rightarrow K^{-} \pi^{+} \ell^{+} \nu_{\ell}$ for example?Large BESIII $D^{+} \rightarrow K^{-} \pi^{+} \ell^{+} \nu_{\ell}$ data set and analysis completed [1512.08627]This analysis fits the data for $D \rightarrow K \pi$ form factor parameters assuming factorisation of $m(K \pi)$Can we re-analyse the data with a different model that allows for some $m(K \pi)$ dependence into FFs and compare results?\triangleright This is the equivalent to adding finite width to K^{*} state

Testing for $m(K \pi)$ dependence in local form factors

Some definitions for the z

parameterization,

$$
\begin{aligned}
t_{p} & =(m(B)+m(K)+m(\pi))^{2} \\
t_{m} & =(m(B)-m(K)-m(\pi))^{2}
\end{aligned}
$$

and

$$
t_{0}=t_{p}\left(1-\sqrt{1-\frac{t_{m}}{t_{p}}}\right)
$$

Define z as,

$$
z(s)=\frac{\sqrt{t_{p}-s}-\sqrt{t_{p}-t_{0}}}{\sqrt{t_{p}-s}+\sqrt{t_{p}-t 0}}
$$

and Δz

$$
\Delta z\left(q^{2}\right)=z\left(q^{2}\right)-z(0)
$$

Could define a P-wave general form factor expression for a set of coefficients a as,
$\mathcal{F}_{(p)}\left(q^{2}, m_{K \pi}, a\right)=\frac{B W}{1-\frac{q^{2}}{m(R)^{2}}}\left(a_{0}+a_{1} \Delta z\left(q^{2}\right)+a_{2} \Delta z\left(q^{2}\right)^{2}\right)$,
then add some $m(K \pi)$ dependence into the coefficients a_{i} :

$$
\begin{gathered}
a_{N}\left(a, m_{K \pi}\right)=a[N, 0]+\frac{m_{K \pi}^{2}}{\left(m_{K}+m_{\pi}\right)^{2}} a[N, 1] \\
a_{\|}=\left[\begin{array}{ll}
a_{\|}^{0,0} & a_{\|}^{0,1} \\
a_{\|}^{1,0} & a_{\|}^{1,1} \\
a_{\|}^{2,0} & a_{\|}^{2,1}
\end{array}\right]
\end{gathered}
$$

Fit the data with $a[N, 1]$ floating and $a[N, 1]=0$, and compare results

Testing for $m(K \pi)$ dependence in local form factors

Can we repeat the above $D^{+} \rightarrow K^{-} \pi^{+} \ell^{+} \nu_{\ell}$ study with $D^{+} \rightarrow \pi^{-} \pi^{+} \ell^{+} \nu_{\ell}$?The $D^{+} \rightarrow \pi^{-} \pi^{+} \ell^{+} \nu_{\ell}$ channel is CKM suppressed but we can study the $\rho(770) \rightarrow \pi^{+} \pi^{-}$ resonanceIncluding the flexibility in the local form factors for $m(K \pi)$ dependence is equivalent to giving a finite width to the mesonFinite width effects in P-wave at 20% level for BR of $K^{* 0}$The width of the $\rho(770)$ is larger than that of the $K^{* 0}(892)$ and so we can expect effects might be larger?Worth noting:Detector effects significantly contribute to the width of the experimental mass distributionTherefore it might be expected that effects are not quite as large as 20% ?

What S-wave parameterisation to use?

Upcoming LHCb binned analysis uses the LASS paramterstion for the S-wave\triangleright Note: LASS data starts at $m_{K \pi}=0.825 \mathrm{GeV}$, binned $m_{K \pi}$ window starts at 0.746 GeV .It is not completely clear what values to use in the LASS parameterisation

$$
\cot \delta_{B}=\frac{1}{a k}+\frac{r k}{2}
$$With more data we can look to float these parametersor perhaps we should look at model-independent approaches...

Model-independent S-wave fit?

For $B^{0} \rightarrow K^{* 0}\left(\rightarrow K^{+} \pi^{-}\right) \mu^{+} \mu^{-}$LHCb do not have enough statistics to further split our data set into bins of $m(K \pi)$ and run independent fits.Is it possible to fit the S-wave amplitude and phase with a generalised polynomial of some order?One could share P-wave information across all $m(K \pi)$ binsUsing Watson's theorem it would be possible to fix the S-wave phase in each $m(K \pi)$ bin certainly possible at low $m(K \pi)$?\triangleright BESIII $D^{+} \rightarrow K^{-} \pi^{+} e^{+} \nu_{e}$ use a model-independent approach [1512.08627], they find it the phase agrees with the LASS parameterisation
\triangleright Using Watson's theorem, for the same isospin and angular momentum the phase as measured in $K \pi$ elastic scattering and a decay channel will be equal in the elastic regime (low $m(K \pi)$)

Conclusion

\square Discussed light-cone sum rule predictions for the S-wave contribution to $B^{0} \rightarrow K^{* 0}\left(\rightarrow K^{+} \pi^{-}\right) \mu^{+} \mu^{-}$Highlighted some potential issues for $B^{0} \rightarrow K^{* 0}\left(\rightarrow K^{+} \pi^{-}\right) \mu^{+} \mu^{-}$relating to the $m(K \pi)$ lineshape
\triangleright Some of which may not yet be relevant in comparison to statistical uncertaintiesMade some suggestions of things that could be triedAre there any other channels from which we can extract information useful for $B^{0} \rightarrow K^{* 0}\left(\rightarrow K^{+} \pi^{-}\right) \mu^{+} \mu^{-}$analyses?

Thanks for listening

Backup

S-wave $B \rightarrow K \pi$ form factors

Generated by the axial-vector and pseudotensor $b \rightarrow s$ transition currents$$
j_{A}^{\mu}=\bar{s} \gamma^{\mu} \gamma_{5} b, \quad j_{T}^{\mu}=\bar{s} \sigma^{\mu \nu} q_{\nu} \gamma_{5} b
$$Form factors $F_{i}\left(k^{2}, q^{2}, q \cdot \bar{k}\right)$ defined as

$$
\begin{aligned}
-i\left\langle K^{-}\left(k_{1}\right) \pi^{+}\left(k_{2}\right)\right| \bar{s} \gamma^{\mu} \gamma_{5} b\left|\bar{B}^{0}(p)\right\rangle & =F_{t} k_{t}^{\mu}+F_{0} k_{0}^{\mu}+\ldots, \\
\left\langle K^{-}\left(k_{1}\right) \pi^{+}\left(k_{2}\right)\right| \bar{s} \sigma^{\mu \nu} q_{\nu} \gamma_{5} b\left|\bar{B}^{0}(p)\right\rangle & =F_{0}^{T} k_{0}^{\mu}+\ldots
\end{aligned}
$$$S$-wave isolated via partial wave expansion:

$$
F_{0, t}\left(k^{2}, q^{2}, q \cdot \bar{k}\right)=F_{0, t}^{(\ell=0)}\left(k^{2}, q^{2}\right)+\sum_{\ell=1}^{\infty} \sqrt{2 \ell+1} F_{0, t}^{(\ell)}\left(k^{2}, q^{2}\right) P_{\ell}^{(0)}\left(\cos \theta_{K}\right)
$$In progress: LCSR expressions for $B \rightarrow(K \pi)_{S}$ form factors $F_{0, t}^{(\ell=0)}$ and $F_{0}^{T(\ell=0)}$

LCSR I

Start with correlation function:$$
\Pi_{b}(k, q)=i \int d^{4} x e^{i k \cdot x}\langle 0| \mathrm{T}\left\{j_{S}(x), j_{b}(0)\right\}\left|\bar{B}^{0}(q+k)\right\rangle
$$Use dispersion relation in the variable k^{2} :

$$
\Pi^{(\mathrm{OPE})}\left(k^{2}, q^{2}\right)=\frac{1}{\pi} \int_{\left(m_{K}+m_{\pi}\right)^{2}}^{\infty} d s \frac{\operatorname{Im} \Pi\left(s, q^{2}\right)}{s-k^{2}}
$$Obtain spectral density by inserting a full set of states

$$
\begin{gathered}
2 \operatorname{Im} \Pi_{b}^{(K \pi)}(k, q)=\sum_{K \pi} \int d \tau_{K \pi}\langle 0| j_{S}\left|K\left(k_{1}\right) \pi\left(k_{2}\right)\right\rangle^{*}\left\langle K\left(k_{1}\right) \pi\left(k_{2}\right)\right| j_{b}\left|\bar{B}^{0}(q+k)\right\rangle \\
\operatorname{Im} \Pi^{\left(s, q^{2}\right)}==\operatorname{Im} \Pi^{(K \pi)}\left(s, q^{2}\right)+\operatorname{Im} \Pi^{(h)}\left(s, q^{2}\right) \theta\left(s-s_{h}\right)
\end{gathered}
$$

LCSR II

[Analyticity + Unitarity + Duality]

Assume quark-hadron duality$$
\int_{s_{h}}^{\infty} d s \frac{\operatorname{Im} \Pi^{(h)}\left(s, q^{2}\right)}{s-k^{2}}=\int_{s_{0}}^{\infty} d s \frac{\operatorname{Im} \Pi^{(O P E)}\left(s, q^{2}\right)}{s-k^{2}}
$$Perform Borel transformation in the variable k^{2}

$$
\frac{1}{\pi} \int_{\left(m_{K}+m_{\pi}\right)^{2}}^{s_{0}} d s e^{-s / M^{2}} \operatorname{Im} \Pi^{(K \pi)}\left(s, q^{2}\right)=\frac{1}{\pi} \int_{m_{s}^{2}}^{s_{0}} d s e^{-s / M^{2}} \operatorname{Im} \Pi^{(\mathrm{OPE})}\left(s, q^{2}\right)
$$$\Pi^{\mathrm{OPE}}\left(q^{2}, s_{0}, M^{2}\right)$ OPE expression after subtracting the above-threshold contribution from the dispersive integral

