Confronting $B \rightarrow K\pi$ theory predictions with experimental data

Beyond the Flavour Anomalies V, $10^{\rm th}$ April 2024

Keri Vos (†) \rightarrow Javier Virto, Alex Marshall

Setting the scene

 $\hfill\square \ B^0 \to K^{*0} (\to K^+ \pi^-) \mu^+ \mu^-$ a very important channel

As discussed yesterday multiple different analyses at LHCb

- □ Varying treatment of non-local contributions
- \Box Varying treatment of $m(K\pi)$ (and q^2 regions measured)

diagram by T. Hadavizadeh

Setting the scene

 $\label{eq:contribution} \begin{array}{l} \Box \ \, \mbox{The } B^0 \to K^{*0}(\to K^+\pi^-) \mu^+\mu^- \mbox{ decay rate is dominated by a } P\mbox{-wave } K^{*0}(892) \mbox{ contribution.} \\ \Box \ P\mbox{-wave decay rate of } B^0 \to K^{*0}(\to K^+\pi^-) \mu^+\mu^- \mbox{:} \end{array}$

$$\frac{\mathrm{d}\Gamma_P}{\mathrm{d}m(K\pi)\mathrm{d}\cos\theta_\ell\mathrm{d}\cos\theta_K\mathrm{d}\phi} = \frac{9}{32\pi} [J_{1s}\sin^2\theta_K + J_{1c}\cos^2\theta_K + J_{2s}\sin^2\theta_K\cos2\theta_\ell + J_{2c}\cos^2\theta_K\cos2\theta_\ell + J_{3}\sin^2\theta_K\sin^2\theta_\ell\cos2\phi + J_4\sin2\theta_K\sin2\theta_\ell\cos\phi + J_5\sin2\theta_K\sin^2\theta_\ell\cos\phi + J_{5s}\sin^2\theta_K\cos\phi + J_{6s}\sin^2\theta_K\cos\phi + J_{6s}\sin^2\theta_K\cos\phi + J_{6c}\cos^2\theta_K\cos\theta_\ell + J_{7}\sin2\theta_K\sin\theta_\ell\sin\phi + J_8\sin2\theta_K\sin2\theta_\ell\sin\phi + J_9\sin^2\theta_K\sin^2\theta_\ell\sin2\phi] \times |BW_P(m(K\pi))|^2$$

 \Box The angular coefficients J_i terms being bilinear combinations of amplitudes

- \square $m(K\pi)$ dependence provided by $\times |BW_P(m(K\pi))|^2$, no $m(K\pi)$ dependence in the rest of the decay rate
- $\hfill\square$ Local form factors effects are contained in the angular coefficients measured

K.K. Vos, (J.Virto), A. Marshall $B \rightarrow K\pi$ 3	os, (J.Virto), A. Marshall $B \to K\pi$	3/3
---	---	-----

Setting the scene

 \Box The next largest contribution is from the S-wave.

 $\triangleright~\textit{Note:}$ The importance of this contribution depends on the $m(K\pi)$ window chosen

 $\hfill\square$ The S-wave + interference contributions to the decay rate are as follows:

$$\begin{split} \frac{\mathrm{d}\Gamma_S}{\mathrm{d}\cos\theta_\ell\mathrm{d}\cos\theta_K\mathrm{d}\phi\mathrm{d}m(K\pi)} &= +\frac{1}{4\pi} \left[(\tilde{J}_{1a}^c + \tilde{J}_{2a}^c\cos 2\theta_\ell) |BW_S|^2 \\ &+ [\tilde{J}_{1b}^{c,r}\mathrm{Re}(BW_SBW_P^*) - \tilde{J}_{1b}^{c,i}\mathrm{Im}(BW_SBW_P^*)]\cos\theta_K \\ &+ [\tilde{J}_{2b}^{c,r}\mathrm{Re}(BW_SBW_P^*) - \tilde{J}_{2b}^{c,i}\mathrm{Im}(BW_SBW_P^*)]\cos2\theta_\ell\cos\theta_K \\ &+ [\tilde{J}_4^r\mathrm{Re}(BW_SBW_P^*) - \tilde{J}_4^i\mathrm{Im}(BW_SBW_P^*)]\sin2\theta_l\sin\theta_K\cos\phi \\ &+ [\tilde{J}_5^r\mathrm{Re}(BW_SBW_P^*) - \tilde{J}_5^i\mathrm{Im}(BW_SBW_P^*)]\sin\theta_l\sin\theta_K\cos\phi \\ &+ [\tilde{J}_7^r\mathrm{Im}(BW_SBW_P^*) + \tilde{J}_7^i\mathrm{Re}(BW_SBW_P^*)]\sin2\theta_l\sin\theta_K\sin\phi \\ &+ [\tilde{J}_8^r\mathrm{Im}(BW_SBW_P^*) + \tilde{J}_8^i\mathrm{Re}(BW_SBW_P^*)]\sin2\theta_l\sin\theta_K\sin\phi \\ \end{split}$$

 \Box Again there is no $m(K\pi)$ dependence in the angular terms which effectively include local form factor effects.

 \Box Higher partial waves can essentially be ignored in this region of $m(K\pi)$ ([1512.08627])

K.K. Vos, (J.Virto), A. Marshall

 $B \rightarrow K \pi$ 4 / 34

Setting the scene - three areas of discussion

- \Box S- and P-wave contributions have differing angular structures providing some separating power, however, the $m(K\pi)$ lineshape is still very important
 - \triangleright Controlling the $m(K\pi)$ lineshape is especially important for gaining sensitivity to S-wave and interference
- $\Box\,$ To avoid biases the $m_{K\pi}$ lineshape must be fit with an accurate description.

 $\square Multiple P-wave states?$ $K^*(1410)?$

- □ At present it is assumed that $m(K\pi)$ factorises with q^2
- □ Any $m_{K\pi}$ dependence in the $B \to K\pi$ local form factors is not included.
- Can we check the impact of this?

□ What S-wave $m(K\pi)$ lineshape parameterisation to use? What can theory say about local form factors?

$B \to K\pi$ Form factors

Definition of Lorentz-Invariant Form Factors:

$$\begin{split} i\langle K^{-}(k_{1})\pi^{+}(k_{2})|\bar{s}\gamma^{\mu}b|\bar{B}^{0}(q+k)\rangle &= F_{\perp}\,k_{\perp}^{\mu} \\ -i\langle K^{-}(k_{1})\pi^{+}(k_{2})|\bar{s}\gamma^{\mu}\gamma_{5}b|\bar{B}^{0}(q+k)\rangle &= F_{t}\,k_{t}^{\mu}+F_{0}\,k_{0}^{\mu}+F_{\parallel}\,k_{\parallel}^{\mu} \\ \langle K^{-}(k_{1})\pi^{+}(k_{2})|\bar{s}\sigma^{\mu\nu}q_{\nu}b|\bar{B}^{0}(q+k)\rangle &= F_{\perp}^{T}\,k_{\perp}^{\mu} \\ \langle K^{-}(k_{1})\pi^{+}(k_{2})|\bar{s}\sigma^{\mu\nu}q_{\nu}\gamma_{5}b|\bar{B}^{0}(q+k)\rangle &= F_{0}^{T}\,k_{0}^{\mu}+F_{\parallel}^{T}\,k_{\parallel}^{\mu} \end{split}$$

Functions $F_i^{(T)}(k^2, q^2, q \cdot \bar{k})$. Partial-wave expansion:

$$F_{0,t}(k^2, q^2, q \cdot \bar{k}) = \sum_{\ell=0}^{\infty} \sqrt{2\ell+1} F_{0,t}^{(\ell)}(k^2, q^2) P_{\ell}^{(0)}(\cos \theta_K)$$

$$F_{\perp,\parallel}(k^2, q^2, q \cdot \bar{k}) = \sum_{\ell=1}^{\infty} \sqrt{2\ell+1} F_{\perp,\parallel}^{(\ell)}(k^2, q^2) \frac{P_{\ell}^{(1)}(\cos \theta_K)}{\sin \theta_K}$$

 $B \rightarrow K \pi$ 7 / 34

K.K. Vos, (J.Virto), A. Marshall

Theory for *S* and *P*-wave $B \rightarrow \pi K$ form factors

Two main approaches:

- \triangleright Lattice QCD at large q^2
- \triangleright Light-cone sum rules at low q^2

Light-cone sum rule analyses

[J. Virto, A. Khodjamirian, S. Descotes-Genon JHEP 1912, 083 (2019)]

[J. Virto, A. Khodjamirian, S. Descotes-Genon, KKV JHEP 06, 034 (2023)]

- Only available in terms of B meson LCDA
- > Improvement over assuming K^* is a stable state
- ▷ Finite width effects in P wave at 20% level for BR
- ▶ Higher resonances large impact → can be constrained by moment analysis
- □ S wave even more challenging; generally broad resonances

 \Box Relevant for $B \to K^* \ell \ell$, but also $B \to K \pi \pi!$

 $B \rightarrow K \pi$ 8 / 34

Light-Cone Sum Rules for S and P-wave $B \to K\pi$ Form Factors

$$\int_{s_{\rm th}}^{s_0} ds \ e^{-s/M^2} \ \omega_i(s,q^2) \ f_{0,+}^{\star}(s) \ F_i^{(\ell)}(s,q^2) = \Pi_i^{\sf OPE}(q^2,\sigma_0,M^2)$$

 \Box s₀ – Effective threshold

 $\Box \omega_i(s,q^2)$ – (known) kinematic factors

 $\Box \ \langle K^{-}(k_{1})\pi^{+}(k_{2})|\bar{s}\gamma_{\mu}d|0\rangle = f_{+}(k^{2}) \ \overline{k}_{\mu} + \frac{m_{K}^{2} - m_{\pi}^{2}}{k^{2}} f_{0}(k^{2}) \ k_{\mu}$

 $\Box \prod_{i}^{(T),OPE}$ – OPE result for the correlation function (in terms of *B*-LCDAs)

- \rightarrow No closed expression for FFs: use sume rules to contrain favourite model $\rightarrow f_{\pm,0}(k^2)$ from data
- $\rightarrow~s_0$ from two-point sum rule for $K\pi$ form factor.

K.K. Vos, (J.Virto), A. Marshall

QCD to constrain *P* and *S*-wave models

 \Box Use QCD sum rules to constrain $B o (K\pi)_P$ and $B o (K\pi)_S$ parametrizations/models

 \Box Simple sum of Breit-wigners can be used for P wave, but not for S wave

Model requirements:

- appropriate analytical properties
- poles corresponding to known resonances
- cuts for the relevant open channels
- □ simple (linear) dependence on the parameters to be constrained by the sum rules

Light-cone sum rules for *P*-wave $B \rightarrow \pi K$ form factors

[S. Descotes-Genon, A. Khodjamirian, J. Virto, JHEP 1912, 083 (2019)] [arXiv:1908.02267];

 $K\pi$ form factor $f_+(s)$ from $\tau \to K\pi\nu_{\tau}$

K.K. Vos, (J.Virto), A. Marshall

 $B \rightarrow K \pi$ 11 / 34

Light-cone sum rules for *P*-wave $B \rightarrow \pi K$ form factors

[S. Descotes-Genon, A. Khodjamirian, J. Virto, JHEP 1912, 083 (2019)] [arXiv:1908.02267];

$$\mathcal{F}_{K^*(1410)}(q^2) = \alpha \, \mathcal{F}_{K^*(892)}(q^2) \qquad \qquad \alpha \text{ free parameter}$$

K.K. Vos, (J.Virto), A. Marshall

 $B \rightarrow K \pi$ 12 / 34

Light-cone sum rules for *S*-wave $B \rightarrow \pi K$ form factors

κ

L. Von Detten, F. No el, C. Hanhart, M. Hoferichter and B. Kubis, Eur. Phys. J. C 81,420 (2021) [arXiv:2103.01966 [hep-ph]].

- \Box Uses Omnes coupled channel for $K\pi$ rescattering up to 1 GeV
- Includes source terms for high-mass resonances
- \Box Form factor obtained from fitting to $\tau \to K_S \pi \nu_\tau$ spectrum (simultaneous with P wave)

K. Vos. (.	J.Virto), A. Marshall	$B \rightarrow K \pi$	13 / 34
	, virco, / c. marshan	10 / 11 //	10/01

Light-cone sum rules for *S*-wave $B \rightarrow \pi K$ form factors

 \Box LCSRs relate the $B \rightarrow \pi K$ form factor to the $K\pi$ form factor:

$$F_i^{(\ell=0)}(s,q^2) = \kappa_i(s,q^2)\rho_i(q^2)f_0(s)$$

 $\Box~\rho$ determined from the LCSR OPE calculation, κ kinematic factor

□ No free parameter, relative contributions of resonances fixed

 $B \rightarrow K \pi$ 14 / 34

Light-cone sum rules for P versus S-wave (low $m(K\pi)$)

The form factors are integrated over a $100~{\rm MeV}$ region around the $K^*(892)$ resonance: $(0.796~{\rm GeV})^2 < s < (0.996~{\rm GeV})^2$.

```
K.K. Vos, (J.Virto), A. Marshall B \rightarrow K \pi 15 / 34
```

Light-cone sum rules for P versus S-wave (high $m(K\pi)$)

In the higher s region containing the resonances $K^*(1410)$ and $K_0^*(1430)$: $(1.33 \text{ GeV})^2 < s < (1.53 \text{ GeV})^2$.

K.K. Vos, (J.Virto), A. Marshall

 $B \rightarrow K \pi$ 16 / 34

What can data say? - Branching Ratios

Figure 8: Theory predictions for the $B \to (K\pi)_P \ell^+ \ell^-$ branching ratio within the $K\pi$ invariant mass bin (0.796 GeV)² < $s < (0.996 \text{ GeV})^2$, for different values of α , compared to the LHCb measurements of $B \to K^* \mu^+ \mu^-$ in Ref. [13].

K.K. Vos, (J.Virto), A. Marshall

```
B \rightarrow K \pi 17 / 34
```

What can data say? - Branching Ratios

What can data say? - S-wave fraction

Example: measured scalar contribution in low $m(K\pi)$ shows rapid fluctations?

from: [J. Virto, A. Khodjamirian, S. Descotes-Genon, KKV] [arXiv:2304.02973]

- \Box Predictions for moments at low $m(K\pi)$ available
- $\hfill\square$ Comparison of moments with experiment could give insight into S-wave component
- $\hfill\square$ Currently S-wave is treated as nuisance parameter

```
K.K. Vos, (J.Virto), A. Marshall
```

 $B \rightarrow K \pi$ 19 / 34

What can data say? - Angular Moments

Example of use of the data to constrain higher-partial waves:

Moment/τ_B	Amplitude	Exp. Value $\times 10^8$	Theory $\times 10^8$
$-\frac{\sqrt{5}}{2}(\tilde{\Gamma}_3+2\tilde{\Gamma}_6)$	$\tau_B \langle \widehat{S}^L ^2 + \widehat{S}^R ^2 \rangle = \langle M_S \rangle$	2.16 ± 1.62	[1.12, 4.73]
$\frac{1}{2}\tilde{\Gamma}_2$	$\tau_B \langle \operatorname{Re}(\widehat{A}_0^L \widehat{S}^{L*} + \widehat{A}_0^R \widehat{S}^{R*}) \rangle = \langle M_{0 \mathrm{Re}} \rangle$	-0.84 ± 0.29	$\left[-0.53, -1.24 ight]$
$-\sqrt{\frac{5}{3}}\tilde{\Gamma}_{11}$	$\tau_B \langle \operatorname{Re}(\widehat{A}^L_{ } \widehat{S}^{L*} + \widehat{A}^R_{ } \widehat{S}^{R*}) \rangle$	-0.31 ± 0.69	$\left[-0.23, -0.54 ight]$
$\sqrt{\frac{5}{3}}\tilde{\Gamma}_{15}$	$\tau_B \langle \operatorname{Im}(\widehat{A}_{\perp}^L \widehat{S}^{L*} + \widehat{A}_{\perp}^R \widehat{S}^{R*}) \rangle$	0.57 ± 0.69	$\left[-0.17, -0.36 ight]$
$\frac{1}{\sqrt{3}}\tilde{\Gamma}_{34}$	$\tau_B \langle \operatorname{Re}(\widehat{A}^L_{\perp} \widehat{S}^{L*} - \widehat{A}^R_{\perp} \widehat{S}^{R*}) \rangle$	0.35 ± 0.26	$\left[-0.14,-0.34\right]$
$-\frac{1}{\sqrt{3}}\tilde{\Gamma}_{38}$	$\tau_B \langle \operatorname{Im}(\widehat{A}^L_{ } \widehat{S}^{L*} - \widehat{A}^R_{ } \widehat{S}^{R*}) \rangle$	0.14 ± 0.25	$\left[-0.29, -0.61 ight]$

from: [J. Virto, A. Khodjamirian, S. Descotes-Genon, KKV] [arXiv:2304.02973]

- \Box Pure S wave moments already disfavor some S-wave models
- \Box Mixed S and P, depend on α and different models for S
- \Box No indication for large D wave contribution

K.K. Vos, (J.Virto), A. Marshall

 $B \rightarrow K \pi$ 20 / 34

Is it possible to improve the experimental analyses in the future?

Why is multiple *P*-wave states a problem?

□ The angular distribution for each amplitude has, a short-/long-distance component $S(q^2)$, a local form factor component $f(q^2)$ and some $m(K\pi)$ dependence $g(m(K\pi))$.

$$\underbrace{f(q^2) \cdot S(q^2)}_{K} \cdot g(m_K \pi)$$

 \propto Angular terms

□ With one only one $m(K\pi)$ contribution (say only $K^{*0}(892)$), the above is fine ▷ Assuming no $m(K\pi)$ dependence in the angular coefficients: $(f(q^2) \cdot S(q^2))$

 \Box What happens if we have two contributions $(g_1 \text{ and } g_2)$ to $m(K\pi)$ lineshape?

$$(f_1(q^2) \cdot g_1(m_K \pi) + f_2(q^2) \cdot g_2(m_K \pi)) \cdot S(q^2)$$

- \Box The local form factors will be different for each contribution (f_1 and f_2)
- □ The above factorisation has broken down, and the local form factor effects can no longer be grouped with short-/long-distance components in our angular coefficients.

What options do we have?

Firstly, it is unclear how big this issue might be

 \Box The effect is likely negligible with current statistics and the current $m(K\pi)$ window.

However, this is something to consider going forward, the importance of these effects will only increase with more LHCb data.

If the effect is relevant, the options would be:

 \Box Reduce the size of $m(K\pi)$ window, or at least don't continue to open it further.

▷ Note, in the upcoming LHCb binned analysis the $m(K\pi)$ window is widened to increase sensitivity to S-wave/interference observables (now is approx 0.746 to 1.10)

 \Box Extreme solution: Fit a 2nd set of *P*-wave observables for the $K^{*0}(1410)$

$$f_1(q^2) \cdot S_1(q^2) \cdot g_1(m_K \pi) + f_2(q^2) \cdot S_2(q^2) \cdot g_2(m_K \pi)$$

- > Almost certainly a prohibitively large number of parameters?
- ▶ Moment analysis?
- What about any interference?

K.K. Vos, (J.Virto), A. Marshall

 $B \rightarrow K \pi$ 23 / 34

Can we use data to pin down the *P*-wave $m(K\pi)$ lineshape?

 \Box We hoped to isolate the *P*-wave lineshape using $B^0 \to K^{*0}\gamma$, where the photon forces the K^{*0} to be *P*-wave

[1905.06284].

24 / 34

 \Box However, this would not quite be the same P-wave lineshape as we expect in $B^0\to K^{*0}(\to K^+\pi^-)\mu^+\mu^-$

- Each decay channel has different levels of contributions from different helicity amplitudes, each of which has a different local form factor dependence (thanks to J. Virto for a useful discussion)
- \triangleright Not possible to separate different contributions in $B^0 \to K^{*0}\gamma$ as we cannot measure the helicity of the photon.

K.K. Vos, (J.Virto), A. Marshall $B \rightarrow K \pi$

Testing for $m(K\pi)$ dependence in local form factors

- □ Floating $m(K\pi)$ dependence may not be possible in $B^0 \to K^{*0}(\to K^+\pi^-)\mu^+\mu^-$ with the current LHCb dataset
- \Box Can we look at other channels to see how big the effect might be? $D^+ \to K^- \pi^+ \ell^+ \nu_\ell$ for example?
- □ Large BESIII $D^+ \rightarrow K^- \pi^+ \ell^+ \nu_\ell$ data set and analysis completed [1512.08627]
- \Box This analysis fits the data for $D \to K\pi$ form factor parameters assuming factorisation of $m(K\pi)$
- \Box Can we re-analyse the data with a different model that allows for some $m(K\pi)$ dependence into FFs and compare results?
 - $\triangleright~$ This is the equivalent to adding finite width to K^* state

 $B \rightarrow K \pi$ 25 / 34

Testing for $m(K\pi)$ dependence in local form factors

Some definitions for the z parameterization,

$$t_p = (m(B) + m(K) + m(\pi))^2,$$

$$t_m = (m(B) - m(K) - m(\pi))^2,$$

and

$$t_0 = t_p \left(1 - \sqrt{1 - \frac{t_m}{t_p}} \right).$$

Define z as,

$$z(s) = \frac{\sqrt{t_p - s} - \sqrt{t_p - t_0}}{\sqrt{t_p - s} + \sqrt{t_p - t_0}},$$

and Δz

$$\Delta z(q^2) = z(q^2) - z(0).$$

Could define a $P\mbox{-wave general form factor expression for a set of coefficients <math display="inline">a$ as,

$$\mathcal{F}_{(p)}(q^2, m_{K\pi}, a) = \frac{BW}{1 - \frac{q^2}{m(R)^2}} (a_0 + a_1 \Delta z(q^2) + a_2 \Delta z(q^2)^2),$$

then add some $m(K\pi)$ dependence into the coefficients a_i :

$$a_{N}(a, m_{K\pi}) = a[N, 0] + \frac{m_{K\pi}^{2}}{(m_{K} + m_{\pi})^{2}} a[N, 1].$$
$$a_{\parallel} = \begin{bmatrix} a_{\parallel}^{0,0} & a_{\parallel}^{0,1} \\ a_{\parallel}^{1,0} & a_{\parallel}^{1,1} \\ a_{\parallel}^{2,0} & a_{\parallel}^{2,1} \end{bmatrix},$$

 $\hfill \begin{tabular}{ll} \hline \end{tabular}$ Fit the data with a[N,1] floating and a[N,1]=0, and compare results

K.K. Vos, (J.Virto), A. Marshall

 $B \rightarrow K \pi$ 26 / 34

Testing for $m(K\pi)$ dependence in local form factors

- \Box Can we repeat the above $D^+ \to K^- \pi^+ \ell^+ \nu_\ell$ study with $D^+ \to \pi^- \pi^+ \ell^+ \nu_\ell$?
- \Box The $D^+\to\pi^-\pi^+\ell^+\nu_\ell$ channel is CKM suppressed but we can study the $\rho(770)\to\pi^+\pi^-$ resonance
- Including the flexibility in the local form factors for $m(K\pi)$ dependence is equivalent to giving a finite width to the meson
- \Box Finite width effects in P-wave at 20% level for BR of K^{*0}
- \Box The width of the $\rho(770)$ is larger than that of the $K^{*0}(892)$ and so we can expect effects might be larger?

Worth noting:

- □ Detector effects significantly contribute to the width of the experimental mass distribution
- \Box Therefore it might be expected that effects are not quite as large as 20%?

K.K. Vos, (J.Virto), A. Marshall

 $B \rightarrow K \pi$ 27 / 34

What S-wave parameterisation to use?

□ Upcoming LHCb binned analysis uses the LASS paramterstion for the *S*-wave

- ▷ Note: LASS data starts at $m_{K\pi} = 0.825$ GeV, binned $m_{K\pi}$ window starts at 0.746 GeV.
- □ It is not completely clear what values to use in the LASS parameterisation

$$\cot \delta_B = \frac{1}{ak} + \frac{rk}{2}$$

- With more data we can look to float these parameters
- or perhaps we should look at model-independent approaches...

Model-independent *S*-wave fit?

□ For $B^0 \to K^{*0}(\to K^+\pi^-)\mu^+\mu^-$ LHCb do not have enough statistics to further split our data set into bins of $m(K\pi)$ and run independent fits.

 \Box Is it possible to fit the S-wave amplitude and phase with a generalised polynomial of some order?

- \Box One could share *P*-wave information across all $m(K\pi)$ bins
- Using Watson's theorem it would be possible to fix the S-wave phase in each $m(K\pi)$ bin certainly possible at low $m(K\pi)$?
 - ▷ BESIII $D^+ \rightarrow K^- \pi^+ e^+ \nu_e$ use a model-independent approach [1512.08627], they find it the phase agrees with the LASS parameterisation
 - \triangleright Using Watson's theorem, for the same isospin and angular momentum the phase as measured in $K\pi$ elastic scattering and a decay channel will be equal in the elastic regime (low $m(K\pi)$)

Conclusion

- \Box Discussed light-cone sum rule predictions for the S-wave contribution to $B^0\to K^{*0}(\to K^+\pi^-)\mu^+\mu^-$
- □ Highlighted some potential issues for $B^0 \to K^{*0}(\to K^+\pi^-)\mu^+\mu^-$ relating to the $m(K\pi)$ lineshape
 - > Some of which may not yet be relevant in comparison to statistical uncertainties
- $\hfill\square$ Made some suggestions of things that could be tried
- \Box Are there any other channels from which we can extract information useful for $B^0 \to K^{*0}(\to K^+\pi^-)\mu^+\mu^-$ analyses?

Thanks for listening

Backup

S-wave $B \to K\pi$ form factors

 \Box Generated by the axial-vector and pseudotensor $b \rightarrow s$ transition currents

$$j^{\mu}_{A} = \bar{s}\gamma^{\mu}\gamma_{5}b, \quad j^{\mu}_{T} = \bar{s}\sigma^{\mu\nu}q_{\nu}\gamma_{5}b.$$

 \Box Form factors $F_i(k^2,q^2,q\cdotar{k})$ defined as

$$\begin{aligned} -i\langle K^{-}(k_{1})\pi^{+}(k_{2})|\bar{s}\gamma^{\mu}\gamma_{5}b|\bar{B}^{0}(p)\rangle &= F_{t}k_{t}^{\mu}+F_{0}k_{0}^{\mu}+\ldots,\\ \langle K^{-}(k_{1})\pi^{+}(k_{2})|\bar{s}\sigma^{\mu\nu}q_{\nu}\gamma_{5}b|\bar{B}^{0}(p)\rangle &= F_{0}^{T}k_{0}^{\mu}+\ldots\end{aligned}$$

□ S-wave isolated via partial wave expansion:

$$F_{0,t}(k^2, q^2, q \cdot \bar{k}) = F_{0,t}^{(\ell=0)}(k^2, q^2) + \sum_{\ell=1}^{\infty} \sqrt{2\ell+1} F_{0,t}^{(\ell)}(k^2, q^2) P_{\ell}^{(0)}(\cos \theta_K),$$

 $\Box~$ In progress: LCSR expressions for $B \to (K\pi)_S$ form factors $F_{0,t}^{(\ell=0)}$ and $F_0^{T(\ell=0)}$

K.K. Vos, (J.Virto), A. Marshall

[Analyticity + Unitarity + Duality]

□ Start with correlation function:

$$\Pi_b(k,q) = i \int d^4 x \, e^{ik \cdot x} \langle 0 | \mathrm{T}\{j_S(x), j_b(0)\} | \bar{B}^0(q+k) \rangle \,,$$

 \Box Use dispersion relation in the variable k^2 :

$$\Pi^{(\text{OPE})}(k^{2}, q^{2}) = \frac{1}{\pi} \int_{(m_{K}+m_{\pi})^{2}}^{\infty} ds \, \frac{\text{Im}\Pi(s, q^{2})}{s - k^{2}}$$

Obtain spectral density by inserting a full set of states

$$\begin{split} 2\,\mathrm{Im}\Pi_{b}^{(K\pi)}(k,q) &= \sum_{K\pi} \int d\tau_{K\pi} \langle 0|j_{S}|K(k_{1})\pi(k_{2})\rangle^{*} \langle K(k_{1})\pi(k_{2})|j_{b}|\bar{B}^{0}(q+k)\rangle \ ,\\ \mathrm{Im}\Pi(s,q^{2}) &= \mathrm{Im}\Pi^{(K\pi)}(s,q^{2}) + \mathrm{Im}\Pi^{(h)}(s,q^{2})\theta(s-s_{h}) \,. \end{split}$$

K.K. Vos, (J.Virto), A. Marshall

 $B \rightarrow K \pi$ 33 / 34

[Analyticity + Unitarity + Duality]

Assume quark-hadron duality

$$\int_{s_h}^{\infty} ds \; \frac{\mathrm{Im} \Pi^{(h)}(s,q^2)}{s-k^2} = \int_{s_0}^{\infty} ds \; \frac{\mathrm{Im} \Pi^{(OPE)}(s,q^2)}{s-k^2} \; ,$$

 \Box Perform Borel transformation in the variable k^2

$$\frac{1}{\pi} \int_{(m_K + m_\pi)^2}^{s_0} ds \, e^{-s/M^2} \operatorname{Im}\Pi^{(K\pi)}(s, q^2) = \frac{1}{\pi} \int_{m_s^2}^{s_0} ds \, e^{-s/M^2} \operatorname{Im}\Pi^{(\text{OPE})}(s, q^2)$$
$$\equiv \Pi^{(\text{OPE})}(q^2, s_0, M^2)$$

 $\Box \prod^{OPE}(q^2, s_0, M^2)$ OPE expression after subtracting the above-threshold contribution from the dispersive integral