

Comment: scalar form factors beyond 1 GeV

Bastian Kubis

HISKP (Theorie) & BCTP Universität Bonn

with S. Ropertz, C. Hanhart, EPJC 78 (2018) 1000

Beyond the Flavor Anomalies V

Siegen, 10/4/2024

- universality of final-state interactions (J/ ψ noninteracting spectator)
 - \rightsquigarrow rescattering in $\pi^+\pi^-$ related to scalar (S-waves) and vector (P-waves) pion form factors

- universality of final-state interactions $(J/\psi$ noninteracting spectator)
 - \rightsquigarrow rescattering in $\pi^+\pi^-$ related to scalar (S-waves) and vector (P-waves) pion form factors
- ' $\triangleright \ \bar{B}^0_s \to J/\psi \pi^+\pi^-$: S-wave dominated, clean $\bar{s}s$ source

- universality of final-state interactions (J/ ψ noninteracting spectator)
 - \rightsquigarrow rescattering in $\pi^+\pi^-$ related to scalar (S-waves) and vector (P-waves) pion form factors
- $ar{B}^0_s
 ightarrow J/\psi \pi^+\pi^-$: S-wave dominated, clean $ar{s}s$ source
- $\bar{B}^0_d \rightarrow J/\psi \pi^+ \pi^-$: clean $\bar{d}d$ source

- universality of final-state interactions (J/ ψ noninteracting spectator)
 - \rightsquigarrow rescattering in $\pi^+\pi^-$ related to scalar (S-waves) and vector (P-waves) pion form factors
- $ar{B}^0_{
 m s}
 ightarrow J/\psi \pi^+\pi^-$: S-wave dominated, clean $ar{ss}$ source
- $ar{B}^0_d
 ightarrow J/\psi \pi^+\pi^-$: clean $ar{d}d$ source
- link to $\bar{B}^0_{d/s} \rightarrow J/\psi K^+ K^-$

LHCb 2014, Daub et al. 2016, Ropertz et al. 2018

- $\bullet\,$ universality of final-state interactions (J/ ψ noninteracting spectator)
 - \rightsquigarrow rescattering in $\pi^+\pi^-$ related to scalar (S-waves) and vector (P-waves) pion form factors
- $\bar{B}^0_s \to J/\psi \pi^+\pi^-$: S-wave dominated, clean $\bar{s}s$ source
- $ar{B}^0_d
 ightarrow J/\psi \pi^+\pi^-$: clean $ar{d}d$ source
- link to $\bar{B}^0_{d/s} \rightarrow J/\psi K^+ K^-$

ce $\overline{B}_{s}^{0} \xrightarrow{b} W^{-} (\Gamma_{K}^{s}) K^{+}K^{+}$

- $\pi\pi$ and $\bar{K}K$ coupled channels work up to 1.1 GeV
- beyond: strong coupling to $4\pi \rightarrow$ phase/inelasticity description??
- resonances, e.g. $\mathcal{B}(f_0(1500) \to 4\pi) = (48.9 \pm 3.3)\%$ PDG 2022

- $\bullet\,$ universality of final-state interactions (J/ ψ noninteracting spectator)
 - \rightsquigarrow rescattering in $\pi^+\pi^-$ related to scalar (S-waves) and vector (P-waves) pion form factors
- $ar{B}^0_s
 ightarrow J/\psi \pi^+\pi^-$: S-wave dominated, clean $ar{s}s$ source
- $\bar{B}^0_d \rightarrow J/\psi \pi^+ \pi^-$: clean $\bar{d}d$ source
- link to $\bar{B}^0_{d/s} \rightarrow J/\psi K^+ K^-$

- $\pi\pi$ and $\bar{K}K$ coupled channels work up to 1.1 GeV
- beyond: strong coupling to $4\pi \rightarrow$ phase/inelasticity description??
- resonances, e.g. $\mathcal{B}(f_0(1500) \to 4\pi) = (48.9 \pm 3.3)\%$ PDG 2022
- idea: coupling to 4π via resonances, preserve unitarity in general very complicated; approximation: $\rho\rho$ or $\sigma\sigma$ Ropertz, Hanhart, BK 2018

Fit $\overline{\langle Y^0_0 angle}$ for $ar{B}^0_s o J/\psi \, \pi^+\pi^-$

Fit $\left< Y^0_0 \right>$ for $ar{B}^0_s o J/\psi \ K^+K^-$

Fit $(\rho\rho)$ with two additional resonances. S-, P-, and D-waves

$$\frac{\chi^2}{\text{ndf}} = \frac{376.2}{384 - 30} \approx 1.07$$

Comparison F_{π} (modulus)

Omnès solution with $F_{\pi}(0) = 0$ and $F_{\mathcal{K}}(0) = 1$ in black

$$F_{\pi}(s) = \Omega_{11}(s) F_{\pi}(0) + rac{2}{\sqrt{3}} \Omega_{12}(s) F_{\mathcal{K}}(0)$$

Phase input: Dai, Pennington 2014

Comparison $F_{\mathcal{K}}$ (modulus)

Omnès solution with $F_{\pi}(0) = 0$ and $F_{\kappa}(0) = 1$ in black

$$rac{2}{\sqrt{3}}\,F_{\mathcal{K}}(s)=\Omega_{21}(s)\,F_{\pi}(0)+rac{2}{\sqrt{3}}\,\Omega_{22}(s)\,F_{\mathcal{K}}(0)$$

Phase input: Dai, Pennington 2014

Comparison $F_{4\pi}$ (modulus)

- suppressed at lower energies
- strong model dependence of the additional channel
- need to include more exclusive data!

Conclusion

- strange scalar form factors from $\bar{B}^0_s \to J/\psi\{\pi\pi,\bar{K}K\}$ up to 2 GeV
- coupled channels $\pi\pi \leftrightarrow \bar{K}K$ probably insufficient: 4π channel!

Ropertz, Hanhart, BK 2018

Outlook

- same for nonstrange scalar form factor from $\bar{B}^0_d \rightarrow J/\psi \{\pi \pi, \bar{K}K\}$?
- $\bar{d}d$ source has no isospin filter $\longrightarrow I = 0, 1$
- strong *P*-wave contribution for $\pi\pi$ expected Daub, Hanhart, BK 2016
 - \longrightarrow 10 partial waves for all helicity amplitudes (1 S-, 3 P- & D-waves)
- cf. also πK system in τ decays (more partial-wave selective!)

von Detten, Noël, Hanhart, Hoferichter, BK 2021