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Status: July 2018

ATLAS Preliminary

Run 1,2
p
s = 7,8,13 TeV

Theory

LHC pp
p
s = 7 TeV

Data 4.5 � 4.9 fb
�1

LHC pp
p
s = 8 TeV

Data 20.2 � 20.3 fb
�1

LHC pp
p
s = 13 TeV

Data 3.2 � 79.8 fb
�1

Standard Model Production Cross Section Measurements

ATLAS SM summary plots
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SM/index.html#ATLAS_b_SMSummary_FiducialXsect
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Figure 3: Left: SM phase diagram in terms of Higgs and top pole masses. The plane is
divided into regions of absolute stability, meta-stability, instability of the SM vacuum, and non-
perturbativity of the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative
for Mt > 230 GeV. The dotted contour-lines show the instability scale ⇤I in GeV assuming
↵3(MZ) = 0.1184. Right: Zoom in the region of the preferred experimental range of Mh and Mt

(the grey areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to 1-� variations of ↵3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size
of the theoretical error.

The quantity �e↵ can be extracted from the e↵ective potential at two loops [112] and is explicitly
given in appendix C.

4.3 The SM phase diagram in terms of Higgs and top masses

The two most important parameters that determine the various EW phases of the SM are the
Higgs and top-quark masses. In fig. 3 we update the phase diagram given in ref. [4] with our
improved calculation of the evolution of the Higgs quartic coupling. The regions of stability,
metastability, and instability of the EW vacuum are shown both for a broad range of Mh and
Mt, and after zooming into the region corresponding to the measured values. The uncertainty
from ↵3 and from theoretical errors are indicated by the dashed lines and the colour shading
along the borders. Also shown are contour lines of the instability scale ⇤I .

As previously noticed in ref. [4], the measured values of Mh and Mt appear to be rather
special, in the sense that they place the SM vacuum in a near-critical condition, at the border
between stability and metastability. In the neighbourhood of the measured values of Mh and
Mt, the stability condition is well approximated by

Mh > 129.6GeV + 2.0(Mt � 173.34GeV)� 0.5GeV
↵3(MZ)� 0.1184

0.0007
± 0.3GeV . (64)

The quoted uncertainty comes only from higher order perturbative corrections. Other non-
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https://physics.aps.org/articles/v8/108
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Figure 3: Left: SM phase diagram in terms of Higgs and top pole masses. The plane is
divided into regions of absolute stability, meta-stability, instability of the SM vacuum, and non-
perturbativity of the Higgs quartic coupling. The top Yukawa coupling becomes non-perturbative
for Mt > 230 GeV. The dotted contour-lines show the instability scale ⇤I in GeV assuming
↵3(MZ) = 0.1184. Right: Zoom in the region of the preferred experimental range of Mh and Mt

(the grey areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
to 1-� variations of ↵3(MZ) = 0.1184±0.0007, and the grading of the colours indicates the size
of the theoretical error.

The quantity �e↵ can be extracted from the e↵ective potential at two loops [112] and is explicitly
given in appendix C.

4.3 The SM phase diagram in terms of Higgs and top masses

The two most important parameters that determine the various EW phases of the SM are the
Higgs and top-quark masses. In fig. 3 we update the phase diagram given in ref. [4] with our
improved calculation of the evolution of the Higgs quartic coupling. The regions of stability,
metastability, and instability of the EW vacuum are shown both for a broad range of Mh and
Mt, and after zooming into the region corresponding to the measured values. The uncertainty
from ↵3 and from theoretical errors are indicated by the dashed lines and the colour shading
along the borders. Also shown are contour lines of the instability scale ⇤I .

As previously noticed in ref. [4], the measured values of Mh and Mt appear to be rather
special, in the sense that they place the SM vacuum in a near-critical condition, at the border
between stability and metastability. In the neighbourhood of the measured values of Mh and
Mt, the stability condition is well approximated by

Mh > 129.6GeV + 2.0(Mt � 173.34GeV)� 0.5GeV
↵3(MZ)� 0.1184

0.0007
± 0.3GeV . (64)

The quoted uncertainty comes only from higher order perturbative corrections. Other non-
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LHC
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Large Hadron Collider

p p

ATLAS

LHC: 17 mi
8
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Forces

40 million collisions  
each second



ATLAS
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100 million 
read out 
channels!

44m

25m

Muonchambers

Tilecalorimeters

LArhadronicend-capand
forwardcalorimeters

Pixeldetector

Toroidmagnets Arelectromagneticcalorimeters

Solenoidmagnet Transitionradiationtracker

Semiconductortracker



What’s exciting about data analysis now? 
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Rob Schreiber SLAC Colloquium

Increasingly large datasets!!

LCLS : Tb /s 

LHC : Collecting PB/ sec
Saving 90 PB / yr

SKA : TB / s

LSST : 20 TB / night

https://lcls.slac.stanford.edu/lcls-ii
https://atlas.cern/Updates/Press-Statement/Run3-first-collisions
https://www.skatelescope.org/news/green-light-for-ska-construction/
https://www.lsst.org/gallery/lsst-and-calypso


What’s exciting about methods now?
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Slide design from L. Heinrich

article article

“Alex Net”
Krizhevsky, Sutskever, Hinton, 2012

Physics, 2024

Physics, 2014

https://www.nytimes.com/2012/07/05/science/cern-physicists-may-have-discovered-higgs-boson-particle.html
https://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html
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AI for science: How to gain the 
most out of our physics datasets



Path to HH

19Katharine Leney

Slide design from 
K. Leney

Deep Learning in FTAG

Transformer-era

Future Outlook

13

https://indico.cern.ch/event/1096528/contributions/4612975/attachments/2349169/4008381/Seminar_v3.pdf#page=19
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Deep Learning in FTAG

Transformer-era

Future Outlook

• b-jets on ATLAS 
• Why Deep Learning 

• RNNIP 
• Physics impact 

• DIPS

14

https://indico.cern.ch/event/1096528/contributions/4612975/attachments/2349169/4008381/Seminar_v3.pdf#page=19


Quark signature

15

The European Physical Journal C 
Vol 73 3 (2013) 2304

Quark ➜ reconstructed 
as collimated spray of 
particles

Jet : Unsupervised 
clustering algorithm
‣ Proxy for the quark

‣ Cluster with anti-kT  
‣ R=0.4 for b-jets ✨  
‣ R=1.0 for Higgs-jets



b-jet
Displaced 

Tracks

Lxy

Secondary 
Vertex

Jet

Jet

light jet
c-jetu,d,s g 

✓Most tracks originating 
from the PV 

✓ Few displaced tracks

b-jet

Primary 
Vertex

16

Prompt 
Tracks

✓ “Long” lifetime: 𝜏 = 1.2 ps 

✓Many ( ) displaced tracks≈ 5

😍

✓ 𝜏 =.6 ps 

✓ Some displaced tracks

Variable # of tracks
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17

1005.5254

https://arxiv.org/pdf/1005.5254.pdf


ATLAS b-jet classifiers

18

IP2D

DL1

IP3D SV1 JetFitter

Impact Parameter based Vertex based
Lo

w
 le

ve
l

H
ig

h 
le

ve
l

NN trained on outputs 
of other classifiers



b-tagging

19

Key variable: impact parameter

B

Primary 
Vertex



How do we aggregate this information?

20

What we have: 
• Collection of tracks 

•  

• Each track has features 

•  

• Jet has labels  

• : {b, c, light} — or — 
• : {bb, cc, top, QCD} 

Xi : i = {1,…, n}

Xi ∈ ℝm

Y
Y

High dimensional problem 
   n ⋅ m ∼ 𝒪(103)What we want: p(Y | X1, … , Xn)	

variable # of tracks

E.g, impact parameters 
momenta, quality 



Recurrent Neural Network

21

Account for correlations between 
tracks 
Allow for variable # of tracks in 
the jet 
Avoids curse of 
dimensionality - 
add more features

ATL-PHYS-PUB-2017-003



ATLAS b-jet classifiers
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IP2D

DL1

IP3D SV1 JetFitter

Impact Parameter based Vertex based
Lo

w
 le

ve
l
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ig

h 
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l

NN trained on outputs 
of other classifiers

RNNIP

DL1r



DL1r classifier

23

better

Db = log
pb

fc pc + (1 − fc)pl

Expected performance of the 2019 ATLAS taggers

More 
signal!

New DL1r tagger 
77% WPOld MV2 tagger 

70% WP

b-jet efficiency = # b-jets > threshold
# b-jets 

Background rejection = 1
Background efficiency 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2019-005/
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How did b-tagging improvements help our HH analyses?

ϕ

V(ϕ)

λ
H

H

H

Main HH channels 4b, bb𝛾𝛾, bb𝜏𝜏, 
all need b-tagging.

😁

V(ϕ) = μ2h(x)2 + λvh(x)3 +
1
4

λh(x)4λ

∼ 10−13signal

background

24



25

V. Cairo’s slide

4b bb𝛾𝛾 bb𝜏𝜏 Combination

σHH limit [x SM]

Early Run 2

Full Run 2 
(lumi scaling)

Full Run 2

Run 2+3 
(lumi scaling) dashed means by hand scaling

More data
Expect to improve by a 

factor of 2x from scalingℒ

How did we improve 
on our expectations, 

i.e, in b-tagging?
Analyses improving by a factor of 3-5!! 

How will b-tagging improvements help 
bbyy again exceed expectations?

2015+2016 data: 36 ifb

2015-2018 data: 140 ifb

2015-2018 & 2022-2024 
300 ifb

2015-2018 data: 140 ifb

https://indico.cern.ch/event/1079757/contributions/4614616/attachments/2366849/4041691/HH_ATLASPhysicsWorkshop2021_VMMCAIRO_16Dec2021.pdf#page=5


Issue: ordering

26

Account for correlations between 
tracks 
Allow for variable # of tracks in 
the jet 

Challenge: How to order??

Avoids curse of 
dimensionality - 
add more features

ATL-PHYS-PUB-2017-003



When does order matter (?)

27

(1)   Mary likes John

Same words… the order changes the meaning.

(2)   John likes Mary

Images ref

Natural language

https://www.really-learn-english.com/crash-vs-crush.html


Permutation invariance

28

Deep Set: Neural Network designed to operate on sets

Set: Collection of objects without any specified order
Ex 1: # of colored balls in a bag Ex 2: tracks in heavy flavour decay

b-jet



Deep Sets

29

Inputs

X1

X2

Xn

NN track 
feature extractor

Φ(X1) y
Outputs

Φ(X2)

Φ(Xn)

…
 

…
 ∑

Sum: Permutation 
invariant operation

F

NN jet feature 
extractor

✓Models correlations 
between the tracks

∈ {b, c, l} 

Network of networks!!

✓ Computationally efficient
✓Allows for variable # of tracks

 🪄 

Particle Flow networks: 1810.05165  
& python package

https://arxiv.org/abs/1810.05165
https://energyflow.network


DIPS

30

Model the jet as a set

Same inputs as b-tagging RNN

Energy Flow networks: 1810.05165  
& python package

Deep
Impact
Parameter
Sets

https://arxiv.org/abs/1810.05165
https://energyflow.network


DIPS

31

Similar performance with the same inputs 
4x speed-up in the training time!!!

better

ATL-PHYS-PUB-2020-014



Faster turn around time for physics optimizations

32

DIPS more 
performant for a 
high efficiency 
track selection

nominal: from before (pT > 1 GeV, |d0| < 1 mm, |z0 sin θ| < 1.5 mm) 
loose: poorer quality (pT > 1 GeV, |d0| < 1 mm, |z0 sin θ| < 1.5 mm) 
Optimized DIPS: loose selection + new inputs (d0, z0 sin θ)

ATL-PHYS-PUB-2020-014



Path to HH

19Katharine Leney

Slide design from 
K. Leney

Deep Learning in FTAG

Transformer-era

Future Outlook

• GN1 
• Vertexing plots 
• Performance in data  
• Other similar applications 

• pT regression 
• Higgs tagging 
• IceCube

33

https://indico.cern.ch/event/1096528/contributions/4612975/attachments/2349169/4008381/Seminar_v3.pdf#page=19
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Transformers are transforming our day-to-day lives!

• Math 
• Poetry 
• Art
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Transformers are transforming our day-to-day lives!

• Math 
• Poetry 
• Art

Curtesy of Diptaparna
* Gemini 1.5 Pro 002

Write me a song for the ATLAS 
flavour tagging group.
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Transformers are transforming our day-to-day lives!

• Math 
• Poetry 
• Art



Transformers for collecting your Nobel prize

37

Chemistry, 2024

AlphaFold2
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Transformers 101

142k 
citations “My favorite 

subject is physics.” “Mein Lieblingsfach is”

Physics 1706.03762

https://arxiv.org/abs/1706.03762
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Transformers 101

1706.03762

“My favorite 
subject is physics.” “Mein Lieblingsfach ist”

Physik

Architecture natively permutation invariant.
Quarks

Forces

Leptons

“My favorite subject is physics.”
0 1 2 3 4<START> <END>

Sequence information encoded via an 
additional input

https://arxiv.org/abs/1706.03762
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Transformers for FTAG

No need for positional encoding 
(permutation invariance over the tracks)

Inputs & Preprocessing

12

Inputs: 
➢ Jet  and  
➢ Track parameters, uncertainties, and impact parameters 
➢ Detailed hit information 
➢ Jet variables are concatenated with each track. 

Preprocessing: 
➢ Resampling of jet kinematics (  and ) for each flavour 

➢ Rather than providing discrimination, these variables 
then act as a parameterisation 

➢ Normalisation and shuffling applied 
➢ Result: 30M training jets, further 500k each val & test jets

pT η

pT η GN1Lep: 

➢ Semileptonically decaying b-hadron indicated by 
leptons in the jets. 

➢ Simple way to include this information: add a 
track variable indicating if the track has been used 
in the reconstruction of an electron or muon.

pb pc plight

1706.03762
A. Karpathy’s lecture

Replace the Deep Sets Sum with a 
weighted sum (still permutation invariant) 🪄 

And do this lots of times!

=

https://arxiv.org/abs/1706.03762
https://www.youtube.com/watch?v=kCc8FmEb1nY


GN2: architecture

41

Set-to-graph: 2002.08772 
ATL-PHYS-PUB-2022-027 
S. Stroud’s GN* seminar

  
per-particle network

hi = Φ(xi)

G
ra

ph
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Vertex 
predictions

Track origin 
predictions

Jet flavor 
prediction

Inputs & Preprocessing

12

Inputs: 
➢ Jet  and  
➢ Track parameters, uncertainties, and impact parameters 
➢ Detailed hit information 
➢ Jet variables are concatenated with each track. 

Preprocessing: 
➢ Resampling of jet kinematics (  and ) for each flavour 

➢ Rather than providing discrimination, these variables 
then act as a parameterisation 

➢ Normalisation and shuffling applied 
➢ Result: 30M training jets, further 500k each val & test jets

pT η

pT η GN1Lep: 

➢ Semileptonically decaying b-hadron indicated by 
leptons in the jets. 

➢ Simple way to include this information: add a 
track variable indicating if the track has been used 
in the reconstruction of an electron or muon. ℒtot = ℒjet ℒtrk ℒvtx+α +β

β = 1.5α = 0.5

Multi-task learning!

GN1: graph neural network 
GN2: transformer

Transformer-based flavour tagger
Transformer

https://arxiv.org/abs/2002.08772
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/
https://indico.cern.ch/event/1232499/
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FTAG-2023-01

Better!

DIPS-based 
model

transformer 
model

2x increase in light 
rejection

4x increase in charm 
rejection

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/


FTAG over time
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baseline

RNNs
+Sets

Graphs

Trans-
formers

The FTAG CP gain for 
Run 2 HH analyses

Transformer-based tagger 
 more training jets 

[300m 😱 ]
𝒪(10)

FTAG-2023-01

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
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Primary vertex

Group tracks with pair-wise compatibility > 0.5

From the B-
decay vertex

From tertiary D-
decay vertex

FTAG-2023-01

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
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FTAG-2023-04

Simulation Data
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70% efficiency

SFf(pT) =
εdata
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-04/
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FTAG-2023-04

Simulation Data
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SFf(pT) =
εdata
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-04/


And… it translates to the physics (!)
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FTAG-2023-07

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-07/


Impacting the physics…
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Which events we save? Run 3
ATLAS b-jet trigger2022

2023
2024

b-jet trigger 
public plots

New b-taggers in 
trigger each year 

of Run 3!

2022: DL1d 
2023: GN1 
2024: GN2

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BJetTriggerPublicResults
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b-jet trigger public plots

2022: DL1d 
2023: GN1 
2024: GN2

mHH [GeV]

Up to 50% more HH events getting 
saved with the Run 3 triggers

H

H

H

𝝺
b
b
b

b

FTAG in trigger 
V(ϕ)

ϕ

Ex: HH4b efficiency

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BJetTriggerPublicResults


Versatile: Xbb tagging
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ATL-PHYS-PUB-2023-021
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https://cds.cern.ch/record/2866601


Versatile: Xbb tagging
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ATL-PHYS-PUB-2023-021

b
b

H b
b

H

Increasing Higgs pT

H(
bb

) e
ffic

ien
cy

Large R jet pT [GeV]

baseline NN

tagging subjets

large-R jet transformer

https://cds.cern.ch/record/2866601


Versatile: regression
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ATL-PHYS-PUB-2024-015
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Path to HH

19Katharine Leney

Slide design from 
K. Leney

Deep Learning in FTAG

Transformer-era

Future Outlook
• End-to-end optimization 
• Use with novel calibrations
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https://indico.cern.ch/event/1096528/contributions/4612975/attachments/2349169/4008381/Seminar_v3.pdf#page=19
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Traditional Analysis
Step 1: Train the tagger

Step 2: Optimize the analysis

Embed NN

Const. n

Jet NN

⋯
Const. 2

Embed NN
Const. 1

Embed NN

H(bb) vs QCDℒ

∇ϕℒ

transformer

Analysis NN

Jet 1
Jet 2

Jet m

HH vs bkgℒ

∇ϕℒ
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New paradigm

Analysis NN

HH vs bkg

Embed NN

Const. n

Jet NN

⋯
Const. 2

Embed NN
Const. 1

Embed NN

Jet 2

Embed NN

Const. n

Jet NN

⋯
Const. 2

Embed NN
Const. 1

Embed NN

Jet m

Embed NN

Const. n

Jet NN

⋯
Const. 2

Embed NN
Const. 1

Embed NN

Jet 1

ℒ

∇ϕℒ

Deep Set 
over jets

⋯

End to end

Q1/ Does this help us?



Backbone architectures
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High Level Features (HLF): 
pT, η, 𝜑 m, soft drop m

Scalar + HLF Vector + HLF

ℝ128

Q2/ Does the vector latent dimensions hold extra 
information for analyses?
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Finetuning Foundation Models for Joint Analysis Optimization

Matthias Vigl,1 Nicole Hartman,1 and Lukas Heinrich1

1
Technical University of Munich

Email: matthias.vigl@tum.de

In this work we demonstrate that significant gains in performance and data efficiency can be achieved
in High Energy Physics (HEP) by moving beyond the standard paradigm of sequential optimization
or reconstruction and analysis components. We conceptually connect HEP reconstruction and
analysis to modern machine learning workflows such as pretraining, finetuning, domain adaptation
and high-dimensional embedding spaces and quantify the gains in the example usecase of searches of
heavy resonances decaying via an intermediate di-Higgs system to four b-jets.

I. INTRODUCTION

Data analysis in High Energy Physics (HEP) aims to
make inferences on fundamental theories of nature based
on data recorded at large-scale experiments, such as those
at the Large Hadron Collider (LHC). The observed data
at such experiments originates from high energy collisions
and their evolution is modeled by a deep hierarchy of
physical models, describing e.g. the decay of particles,
their subsequent radiation patterns and finally the in-
teractions with the detecting instrument. Consequently,
the primary approach in data analysis is that of hierar-
chical pattern recognition and inference: first, low-level
patterns in the detector data are identified and used to
reconstruct properties of particles that directly interacted
with the detector. Based on these, the earlier stages of
the data-generating process are reconstructed in a hierar-
chical fashion before inferences on the originating theory
can finally be made. That is, the inference pipeline aims
to approximately invert the data-generating process by
progressively summarizing the data, reconstructing earlier
latent states and subsequently analyzing those. Tradition-
ally, the individual reconstruction and analysis algorithms
are optimized sequentially (greedily), with late-stage algo-
rithms being optimized on inputs of previously optimized
earlier stages. While practical, it is unlikely that this
strategy would yield the jointly optimal data analysis
pipeline.

In this work, we show that significant gains in perfor-
mance and data efficiency can be achieved by instead pur-
suing a more global gradient-based optimization strategy
and modelling the data analysis approach after modern
large-scale machine learning (ML) workflows with founda-
tion models. As shown in Figure 1 these gains materialize
as boosted performance at a fixed dataset size as well as
an improved data efficiency, i.e. samples required to reach
a desired level of performance. This paper is outlined as
follows: In Section II we review relevant related work. In
Section III we recall preliminaries from simulation-based
inference and point out similarities between machine-
learning with foundation models and common practice in
particle physics. Section IV introduces a demonstrator
use-case for end-to-end optimization and discusses the
datasets involved, whereas Section V discusses the neural
network architectures and training strategies considered

FIG. 1: Strategies from modern machine learning such as
finetuning, large-scale pretraining, finetuning, domain
adaptation and high-dimensional embeddings (green

curves) can lead to significant performance gains over the
traditional HEP approach, denoted here as

S+HLF(frozen). Top: Performance evolution as a
function of training dataset size. Bottom: Final

Performance at 10M training samples.

in the study. In Section VI we discuss the results while
giving an outlook towards future research directions in
Section VII. Our main contributions are:

• We establish a correspondence between concepts in
the HEP analysis workflow and those in modern
deep learning such as foundation models, down-
stream tasks and finetuning to describe a general
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End-to-end 
analysis

S/ B : increases significance by 
40%!

Decreases bkg by 2x …

🧊Std 
analysis

More pretraining 
data A better Higgs tagger helps 

analysis performance

Start from 
random NN 

weights  

But training from scratch, with 
enough data, will surpass 
traditional analyses.

https://arxiv.org/abs/2401.13536
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vector + 4-vecXbb + 4-vec Xbb + 4-vec< <
Standard ML HEP More info from latent Custom “Xbb” (scalar) 

for each analysis

➡ Need a continuous, 
multi-dim calibration

➡ Need custom calibration 
for each analysis

Will need automated calibrations 
public plots

Recent work 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-02/


What about calibration …
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P.  Windischhofer + C. Pollard 
M. Algren talk; ATLAS-CONF-2024-014 
P. Gadow for connection w/ our project

Idea: How do you have a mapping from 
pbMC ➞ pbdata 

Architecture: Normalizing flow with a constraint to 
ensure the transport map is minimal.

And result consistent with the standard calibration backup

https://indico.cern.ch/event/1387465/contributions/6019631/attachments/2924286/5133139/b_jet_calibration_using_optimal_transport_atlas_cms_WS.pdf
https://cds.cern.ch/record/2911642


What about calibration …
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And matches the “standard calibration” with the same WPs

P.  Windischhofer + C. Pollard 
M. Algren talk; ATLAS-CONF-2024-014 
P. Gadow for connection w/ our project

https://indico.cern.ch/event/1387465/contributions/6019631/attachments/2924286/5133139/b_jet_calibration_using_optimal_transport_atlas_cms_WS.pdf
https://cds.cern.ch/record/2911642


In ∑-mary
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Deep Learning has transformed ATLAS FTAG our physics 
program in the past 7 years
• RNNs: model the jet as a SEQUENCE 
• Deep Sets (DIPS): model the jet as a SET 
• Transformers (GN2): Monolithic all-in-one architecture

• Calibrated, ready for physics 
• Now collecting HH events in 

Run 3 triggers



Backup
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Timeline

63

ML

Physics

1997 2017

20232022202120202019

2018

RNN 
LSTM Transformers

Deep Sets 
1703.06114

Deep Sets 
1810.05165

RNNIP 
GNNs 

2008.02831
Transformers

1706.03762

Dynamic 
Graph CNN 
1902.08570

2018

Dynamic 
Graph CNN 
1801.07829

GNN review 
1806.01261

ParT 
2202.03772

GN2 
FTAG-2023-01

DIPS 
ATL-PHYS-PUB-2020-014

ATL-PHYS-
PUB-2017-003

https://www.bioinf.jku.at/publications/older/2604.pdf
https://arxiv.org/pdf/1703.06114
https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/2008.02831
https://arxiv.org/abs/1706.03762
https://arxiv.org/pdf/1902.08570
https://arxiv.org/abs/1801.07829
https://arxiv.org/pdf/1806.01261
https://arxiv.org/abs/2202.03772
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/
https://cds.cern.ch/record/2718948
https://cds.cern.ch/record/2255226
https://cds.cern.ch/record/2255226
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FTAG-2023-04

And no worse than the 
previous DL1r tagger 🥳
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Flavour-tagging efficiency corrections for the 2019 ATLAS 
PFlow jet b-taggers with the full LHC Run II dataset

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-04/
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2020-001/
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2020-001/
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FTAG-2023-04

50 100 150 200 250
  [GeV]

T
Jet p

0.6

0.8

1

1.2

1.4

1.6

1.8

-je
t M

is
ta

gg
in

g 
Ef

fic
ie

nc
y 

SF
c  

ATLAS Preliminary

 -1=13 TeV 2015-18  140 fbs t 1 lep. t

PFlow Jets GN2
 77% Single Cut

Scale Factor (stat. unc.)

Scale Factor (tot. unc.)

FTAG-2023-05

0 50 100 150 200 250 300
 [GeV]

T
pJet 

1.0

1.5

2.0

2.5

3.0

Li
gh

t-f
la

vo
ur

 J
et

 S
ca

le
 F

ac
to

r

Total Unc.
Total Stat.
Data Stat.

Total Syst.
-jet SFc

Eff. MC
"Flip" Extrap.
MC Modelling
Tracking

ATLAS Preliminary
-1 = 13 TeV, 140 fbs

| < 2.5jet
η 1 jet sample, |≥ + Z

 =  70% b∈GN2 Flip, 
 R=0.4 particle flow jetstanti-k

g

q

q

Z
c-jet mistag light-jet 

mistag

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-04/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-05/

