Constraining matrix elements for BSM searches with dispersion relations

\boldsymbol{u}^{b}
 b
 UNIVERSITÄT
 BERN
 AEC
 ALBERT EINSTEIN CENTER
 FOR FUNDAMENTAL PHYSICS

Martin Hoferichter
Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern

Apr 3, 2023
Seminar talk
University of Siegen

Role of hadronic matrix elements at the precision frontier

- An obvious point in low-energy precision observables: want to constrain quark-level operators, but measure hadrons
- Transition involves hadronic matrix elements
- Effective field theories
- Lattice QCD
- Dispersion relations
- Examples include
- Hadronic corrections to $(g-2)_{\mu}$
- Direct-detection searches for dark matter (or
 any other nuclear probe)
- Flavor physics: B, D, K decays
- ...

From Cauchy's theorem to dispersion relations

- Cauchy's theorem

$$
f(s)=\frac{1}{2 \pi i} \int_{\partial \Omega} \frac{\mathrm{d} s^{\prime} f\left(s^{\prime}\right)}{s^{\prime}-s}
$$

From Cauchy's theorem to dispersion relations

- Cauchy's theorem

$$
f(s)=\frac{1}{2 \pi i} \int_{\partial \Omega} \frac{\mathrm{d} s^{\prime} f\left(s^{\prime}\right)}{s^{\prime}-s}
$$

From Cauchy's theorem to dispersion relations

- Dispersion relation

$$
f(s)=\frac{g}{s-M^{2}}+\frac{1}{\pi} \int_{\text {cuts }} \frac{\mathrm{d} s^{\prime} \operatorname{lm} f\left(s^{\prime}\right)}{s^{\prime}-s}
$$

\hookrightarrow analyticity

From Cauchy's theorem to dispersion relations

- Dispersion relation

$$
f(s)=\frac{g}{s-M^{2}}+\frac{1}{\pi} \int_{\text {cuts }} \frac{\mathrm{d} s^{\prime} \operatorname{Im} f\left(s^{\prime}\right)}{s^{\prime}-s}
$$

\hookrightarrow analyticity

- Subtractions

$$
f(s)=\frac{g}{s-M^{2}}+\underbrace{C}_{f(0)+\frac{g}{M^{2}}}+\frac{s}{\pi} \int_{\text {cuts }} \frac{\mathrm{d} s^{\prime} \operatorname{lm} f\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)}
$$

From Cauchy's theorem to dispersion relations

- Dispersion relation

$$
f(s)=\frac{g}{s-M^{2}}+\frac{1}{\pi} \int_{\text {cuts }} \frac{\mathrm{d} s^{\prime} \operatorname{Im} f\left(s^{\prime}\right)}{s^{\prime}-s}
$$

\hookrightarrow analyticity

- Subtractions

$$
f(s)=\frac{g}{s-M^{2}}+\underbrace{C}_{f(0)+\frac{g}{M^{2}}}+\frac{s}{\pi} \int_{\text {cuts }} \frac{\mathrm{d} s^{\prime} \operatorname{lm} f\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)}
$$

- Imaginary part from Cutkosky rules
\hookrightarrow forward direction: optical theorem
- Unitarity for partial waves: $\operatorname{lm} f(s)=\rho(s)|f(s)|^{2}$

- Residue g reaction-independent

Hadronic effects in $(g-2)_{\mu}$

- Hadronic vacuum polarization: need hadronic two-point function

$$
\Pi_{\mu \nu}=\langle 0| T\left\{j_{\mu} j_{\nu}\right\}|0\rangle
$$

- Hadronic light-by-light scattering: need hadronic four-point function

$$
\Pi_{\mu \nu \lambda \sigma}=\langle 0| T\left\{j_{\mu} j_{\nu} j_{\lambda} j_{\sigma}\right\}|0\rangle
$$

Hadronic vacuum polarization: simplest example for a two-point function

Master formula for HVP contribution to a_{μ}

$$
a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}=\left(\frac{\alpha m_{\mu}}{3 \pi}\right)^{2} \int_{s_{\mathrm{thr}}}^{\infty} d s \frac{\hat{K}(s)}{s^{2}} R_{\mathrm{had}}(s)
$$

- General principles yield direct connection with experiment
- Gauge invariance

- Analyticity

$$
\Pi_{\text {ren }}=\Pi\left(k^{2}\right)-\Pi(0)=\frac{k^{2}}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \mathrm{d} s \frac{\operatorname{Im} \Pi(s)}{s\left(s-k^{2}\right)}
$$

- Unitarity

$$
\operatorname{Im} \Pi(s)=-\frac{s}{4 \pi \alpha} \sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)=-\frac{\alpha}{3} R_{\text {had }}(s)
$$

\hookrightarrow one kinematic variable, one scalar function, no subtractions

Hadronic vacuum polarization from $e^{+} e^{-}$data

Keshavarzi, Nomura, Teubner 2018

- Decades-long effort to measure $e^{+} e^{-}$cross sections
- cross sections defined photon-inclusively
\hookrightarrow threshold $s_{\mathrm{thr}}=M_{\pi^{0}}^{2}$ due to $\pi^{0} \gamma$ channel
- up to about 2 GeV : sum of exclusive channels
- above: inclusive data + narrow resonances + pQCD
- Tensions in the data: most notably between KLOE and BaBar 2π data \hookrightarrow extensive discussion in WP of current status and consequences

Data-driven determination of HVP: our recommendation from WP20

HVP from $e^{+} e^{-}$data

$$
\begin{aligned}
a_{\mu}^{\mathrm{HVP}, \mathrm{LO}} & =6931(28)_{\exp }(28)_{\mathrm{sys}}(7)_{\mathrm{DV}+\mathrm{QCD}} \times 10^{-11}=6931(40) \times 10^{-11} \\
a_{\mu}^{\mathrm{HVP}} & =6845(40) \times 10^{-11}
\end{aligned}
$$

- DV+QCD: comparison of inclusive data and pQCD in transition region
- Sensitivity of the data is better than the quoted error
\hookrightarrow would get $4.2 \sigma \rightarrow 4.8 \sigma$ when ignoring additional systematics
- Systematic effect dominated by [fit w/o KLOE - fit w/o BaBar]/2
- $a_{\mu}^{\text {HVP }}$ includes NLO calmet et al. 1976 and NNLO Kurz et al. 2014 iterations

New data since WP20 (prior to CMD-3)

BaBar vs. SND 20

KLOE vs. SND 20

- New data from SND experiment not yet included in WP20 number
\hookrightarrow lie between BaBar and KLOE
- New data for 3π : BESIII, BaBar
- New data on inclusive region: BESIII (slight tension with pQCD)

Windows in Euclidean time

- вмшс still only complete calculation at similar level of precision as $e^{+} e^{-}$data

$$
\left.a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}\left[e^{+} e^{-}\right]=6931(40) \times 10^{-11} \quad a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}[\mathrm{BMW}]\right]=7075(55) \times 10^{-11}
$$

\hookrightarrow globally 2.1σ

- Idea rbc/ukacd 2018: define partial quantities

$$
a_{\mu}^{\text {HVP, LO, win }}=\left(\frac{\alpha m_{\mu}}{3 \pi}\right)^{2} \int_{s_{\text {thr }}}^{\infty} d s \frac{\hat{K}(s)}{s^{2}} R_{\text {had }}(s) \tilde{\Theta}_{\text {win }}(s)
$$

\hookrightarrow smaller systematic errors for same quantity in lattice QCD
\hookrightarrow tool for the comparison to $e^{+} e^{-}$data

A puzzle in the intermediate window: $e^{+} e^{-}$vs. lattice QCD

RBC/UKQCD 2022 supersedes RBC/UKQCD 2018
ETMC 2022 supersedes ETMC 2021
FNAL/HPQCD/MILC 2022 agrees for ud connected contribution, same for Aubin et al. 2022, χ QCD 2022
R-ratio result from Colangelo et al. 2022

A new puzzle: $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$from CMD-3

CMD-3, 2302.08834
generally shows larger pion form factor in the whole energy range under discussion. The most significant difference to other energy scan measurements, including previous CMD-2 measurement, is observed at the left side of ρ-meson $(\sqrt{s}=0.6-0.75 \mathrm{GeV})$, where it reach up to 5%, well beyond the combined systematic and statistical errors of the new and previous results. The source of this difference is unknown at the moment.

Where to go from here?

- Need to understand the details of CMD-3 result
\hookrightarrow seminar + discussion (online) organized by TI https://indico.fnal.gov/event/59052/
- Next plenary meeting in Bern (4-8 Sep 2023) https://indico. cern.ch/event/1258310/
- New data on the 2π channel forthcoming:
- New BaBar and KLOE analyses (a lot more data not analyzed so far)
- Full statistics of SND
- New data from BESIII and Belle II
- In addition:
- Improved lattice-QCD calculations for full HVP, more windows
- Further scrutiny of radiative corrections
- Potentially τ data to be resurrected as a viable cross check if progress on isospin breaking allows (lattice QCD, dispersive)
- Independent HVP determination from MuonE

Back to dispersion relations: the electromagnetic form factor of the pion

- $e^{+} e^{-} \rightarrow 2 \pi$ determined by pion vector form factor F_{π}^{V}
- Unitarity for pion vector form factor

$$
\operatorname{Im} F_{\pi}^{V}(s)=\theta\left(s-4 M_{\pi}^{2}\right) F_{\pi}^{V}(s) e^{-i \delta_{1}^{1}(s)} \sin \delta_{1}^{1}(s)
$$

\hookrightarrow final-state theorem: phase of F_{π}^{V} equals $\pi \pi P$-wave phase δ_{1} Watson 1954

- Solution in terms of Omnès function

$$
\operatorname{Im} F_{\pi}^{V}(s)=P(s) \Omega_{1}^{1}(s) \quad \Omega_{1}^{1}(s)=\exp \left\{\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta_{1}^{1}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)}\right\}
$$

- Implementation in practice
- Where to get the phase shift $\delta_{1}^{1} \Rightarrow$ Roy equations
- Isospin breaking $\Rightarrow \rho-\omega$ mixing
- Inelastic states \Rightarrow mostly 4π, constrained by Eidelman-Łukaszuk bound

Some comments on CMD-3 from analyticity and unitarity constraints

The pion form factor from dispersion relations

$$
F_{\pi}^{V}(s)=\underbrace{\Omega_{1}^{1}(s)}_{\text {elastic } \pi \pi \text { scattering }} \times \underbrace{G_{\omega}(s)}_{\text {isospin-breaking } 3 \pi \text { cut }} \times \underbrace{G_{\mathrm{in}}(s)}_{\text {inelastic effects: } 4 \pi, \ldots}
$$

- $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$cross section subject to strong constraints from analyticity, unitarity, crossing symmetry, leading to dispersive representation with few parameters Colangelo, MH, Stoffer, 2018, 2021, 2022, work in progress
- Elastic $\pi \pi$ scattering: two values of phase shifts
- $\rho-\omega$ mixing: ω pole parameters and residue
- Inelastic states: conformal polynomial
\hookrightarrow cross check on data, functional form for all $s \leq 1 \mathrm{GeV}^{2}$

Some comments on CMD-3 from analyticity and unitarity constraints

- Tensions in $\left.a_{\mu}^{\pi \pi}\right|_{\leq 1 \mathrm{GeV}}$ compared to CMD-3:
- Inner/outer error: experiment/total (also shown: combination + BaBar/KLOE error)
- Theory error dominated by order in conformal polynomial N
- No red flags for CMD-3 so far, but:
- Large systematic error from N, correlated/anticorrelated for BaBar/other experiments
- $\pi \pi$ phase shifts remain reasonable, main change in conformal polynomial
\hookrightarrow suggests that inelastic effects could give a handle on the tension

Some comments on CMD-3 from analyticity and unitarity constraints

- Can also study consistency of hadronic parameters \hookrightarrow phase of the $\rho-\omega$ mixing parameter δ_{ϵ}
- δ_{ϵ} observable, since defined as a phase of a residue
- δ_{ϵ} vanishes in isospin limit, but can be non-vanishing due to $\rho \rightarrow \pi^{0} \gamma, \eta \gamma, \pi \pi \gamma, \ldots \rightarrow \omega$
- Combined-fit $\delta_{\epsilon}=3.8(2.0)[1.2]^{\circ}$ agrees well with narrow-width expectation
$\delta_{\epsilon}=3.5(1.0)^{\circ}$, but considerable spread among experiments
- Mass of the ω systematically too low compared to $e^{+} e^{-} \rightarrow 3 \pi$

Matrix elements for nucleon decay

- Operator basis for nucleon decay in SMEFT

$$
\begin{aligned}
& Q_{d u q}=\varepsilon^{\alpha \beta \gamma} \varepsilon_{j k}\left[\left(d_{p}^{\alpha}\right)^{T} C u_{r}^{\beta}\right]\left[\left(q_{s}^{\gamma j}\right)^{T} C L_{t}^{k}\right] \\
& Q_{q q u}=\varepsilon^{\alpha \beta \gamma} \varepsilon_{j k}\left[\left(q_{p}^{\alpha j}\right)^{T} C q_{r}^{\beta k}\right]\left[\left(u_{s}^{\gamma}\right)^{T} C e_{t}\right] \\
& Q_{q q q}=\varepsilon^{\alpha \beta \gamma} \varepsilon_{j n} \varepsilon_{k m}\left[\left(q_{p}^{\alpha j}\right)^{T} C q_{r}^{\beta k}\right]\left[\left(q_{s}^{\gamma m}\right)^{T} C L_{t}^{n}\right] \\
& Q_{d u u}=\varepsilon^{\alpha \beta \gamma}\left[\left(d_{p}^{\alpha}\right)^{T} C u_{r}^{\beta}\right]\left[\left(u_{s}^{\gamma}\right)^{T} C e_{t}\right]
\end{aligned}
$$

- For most operators dominant limits from two-body decays $\hookrightarrow p \rightarrow \pi^{0} e^{+}, \ldots$
- Exception: operators with τ require off-shell processes such as $p \rightarrow \pi^{0} \ell^{+} \nu_{\ell} \bar{\nu}_{\tau}$
- Momentum dependence of the form factors from dispersion
 relations \Rightarrow pion-nucleon rescattering

Matrix elements for nucleon decay: normalization

x_{i}	$w_{0}^{X_{i L}(0)}$	$w_{1}^{X_{i L}(0)}$	$w_{0}^{X_{i R}}(0)$	$W_{1}^{X_{i R}(0)}$
U_{1}	$0.151(31)$	$-0.134(18)$	$-0.159(35)$	$0.169(37)$
S_{1}	$0.043(4)$	$0.028(7)$	$0.085(12)$	$-0.026(4)$
S_{2}	$0.028(4)$	$-0.049(7)$	$-0.040(6)$	$0.053(7)$
S_{3}	$0.101(11)$	$-0.075(13)$	$-0.109(19)$	$0.080(17)$
S_{4}	$-0.072(8)$	$0.024(6)$	$-0.044(5)$	$-0.026(6)$
S_{1+2+4}	$0.000(0)$	$0.000(0)$	$0.000(0)$	$0.000(0)$
S_{2-3-4}	$0.000(0)$	$0.000(0)$	$0.112(15)$	$0.000(12)$

Yoo et al. 2022

- Normalizations from lattice QCD

$$
\begin{aligned}
\left\langle\pi^{0}\right|\left[\bar{u}^{c} P_{A} d\right] u_{B}|p\rangle & =\frac{1}{\sqrt{2}}\left\langle\pi^{+}\right|\left[\bar{u}^{c} P_{A} d\right] d_{B}|p\rangle \equiv \frac{1}{\sqrt{2}} U_{1}^{A B} \\
\left\langle K^{0}\right|\left[\bar{u}^{c} P_{A} s\right] u_{B}|p\rangle & \equiv S_{1}^{A B}\left\langle K^{+}\right|\left[\bar{u}^{c} P_{A} s\right] d_{B}|p\rangle \equiv S_{2}^{A B} \quad\left\langle K^{+}\right|\left[\bar{u}^{c} P_{A} d\right] s_{B}|p\rangle \equiv S_{3}^{A B} \quad\left\langle K^{+}\right|\left[\bar{d}^{c} P_{A} s\right] u_{B}|p\rangle \equiv S_{4}^{A B}
\end{aligned}
$$

- Two form factors: $X_{i}^{A B}=P_{B}\left[W_{0}^{X_{i}^{A B}}(s)+\frac{\phi}{m_{N}} W_{1}^{X_{i}^{A B}}(s)\right] u_{N}(p)$, write $X_{i A} \equiv X_{i}^{A L}$
- Found two new relations:

$$
S_{1 A}+S_{2 A}+S_{4 A}=0 \text { (isospin) } \quad S_{2 L}-S_{3 L}-S_{4 L}=0 \text { (Fierz) }
$$

Matrix elements for nucleon decay: momentum dependence

- For which scalar functions should one write dispersion relations?
- Need to avoid kinematic singularities and zeros: $W_{0}(s), W_{1}(s)$
- Would like simple unitary relations: $W_{ \pm}(s)=W_{0}(s) \pm \frac{\sqrt{s}}{m_{N}} W_{1}(s)$ because

$$
\operatorname{Im} W_{+}(s)=W_{+}(s) e^{-i \delta_{0+}(s)} \sin \delta_{0+}(s) \quad \operatorname{Im} W_{-}(s)=W_{-}(s) e^{-i \delta_{1-}(s)} \sin \delta_{1-}(s)
$$

with πN phase shifts $\delta_{\ell \pm}, j=\ell \pm 1 / 2$

- Further constraint from baryon-pole diagrams (from ChPT Aoki et al. 2000)

Matrix elements for nucleon decay: momentum dependence

- For which scalar functions should one write dispersion relations?
- Need to avoid kinematic singularities and zeros: $W_{0}(s), W_{1}(s)$
- Would like simple unitary relations: $W_{ \pm}(s)=W_{0}(s) \pm \frac{\sqrt{s}}{m_{N}} W_{1}(s)$ because

$$
\operatorname{Im} W_{+}(s)=W_{+}(s) e^{-i \delta_{0+}(s)} \sin \delta_{0+}(s) \quad \operatorname{Im} W_{-}(s)=W_{-}(s) e^{-i \delta_{1-}(s)} \sin \delta_{1-}(s)
$$

with πN phase shifts $\delta_{\ell \pm}, j=\ell \pm 1 / 2$

- Further constraint from baryon-pole diagrams (from ChPT Aoki et al. 2000)
- Our solution Crivellin, MH 2023

$$
\begin{aligned}
W_{0}(s) & =W_{0}(0)\left[(1-\alpha) \Omega_{0+}(s)+\alpha \frac{m_{B}^{2}}{m_{B}^{2}-s} \Omega_{1-}(s)\right] \quad m_{B} \in\left\{m_{N}, m_{\Lambda}, m_{\Sigma}\right\} \\
W_{+}(s) W_{-}(s) & =\left[W_{0}(s)\right]^{2}-\frac{s}{m_{N}^{2}}\left[W_{1}(s)\right]^{2}=\left[W_{0}(0)\right]^{2} \Omega_{0+}(s) \Omega_{1-}(s) \frac{m_{B}^{2}}{m_{B}^{2}-s}(1+\beta s) \\
\alpha & =-\frac{m_{B}}{m_{N}} \frac{W_{1}(0)}{W_{0}(0)} \quad \beta=(1-2 \alpha)\left[\dot{\Omega}_{0+}-\dot{\Omega}_{1-}-\frac{1}{m_{B}^{2}}\right]-\frac{\left[W_{1}(0)\right]^{2}}{m_{N}^{2}\left[W_{0}(0)\right]^{2}}
\end{aligned}
$$

\hookrightarrow implements normalization, unitarity, and chiral constraints

Matrix elements for nucleon decay: momentum dependence

- Typical limits:
- Two-body decays:

$$
\left|C_{i}\right| \lesssim\left(10^{-15} / \mathrm{GeV}\right)^{2}
$$

- Four-body decays:
$\left|C_{i}\right| \lesssim\left(10^{-10} / \mathrm{GeV}\right)^{2}$
\hookrightarrow phase space and G_{F}
- Closes flat directions for τ operators

Matrix elements for $B \rightarrow K^{(*)} \gamma^{*}$

(a)

(b)

(c)

- All cases so far: "normal" thresholds expected from unitarity \hookrightarrow dispersion integral starts at $s=\left(m_{1}+m_{2}\right)^{2}$ for a two-body intermediate state with masses m_{1} and m_{2}
- Anomalous thresholds can arise when Landau singularities move onto first Riemann sheet
\hookrightarrow sufficiently heavy external states, light "left-hand cut"
- Recently pointed out in the context of $B \rightarrow K^{(*)} \gamma^{*}$ due to D_{s} left-hand cut
- Here: some vague ideas how one could try to estimate such diagrams

Anomalous thresholds: general case

- Consider the scalar loop function $C_{0}(s), s=p_{2}^{2}$
- Fulfills the dispersion relation

$$
\begin{aligned}
C_{0}(s)= & \frac{1}{2 \pi i} \int_{\left(m_{2}+m_{3}\right)^{2}}^{\infty} \mathrm{d} s^{\prime} \frac{\operatorname{disc} C_{0}\left(s^{\prime}\right)}{s^{\prime}-s} \\
+ & \theta\left[m_{3} p_{1}^{2}+m_{2} p_{3}^{2}-\left(m_{2}+m_{3}\right)\left(m_{1}^{2}+m_{2} m_{3}\right)\right] \\
& \times \frac{1}{2 \pi i} \int_{0}^{1} \mathrm{~d} x \frac{\partial s_{x}}{\partial x} \frac{\operatorname{disc_{an}} C_{0}\left(s_{x}\right)}{s_{x}-s} \\
s_{X}= & x\left(m_{2}+m_{3}\right)^{2}+(1-x) s_{+} \\
s_{+}= & p_{1}^{2} \frac{m_{1}^{2}+m_{3}^{2}}{2 m_{1}^{2}}+p_{3}^{2} \frac{m_{1}^{2}+m_{2}^{2}}{2 m_{1}^{2}}-\frac{p_{1}^{2} p_{3}^{2}}{2 m_{1}^{2}}-\frac{\left(m_{1}^{2}-m_{2}^{2}\right)\left(m_{1}^{2}-m_{3}^{2}\right)}{2 m_{1}^{2}} \\
+ & \frac{1}{2 m_{1}^{2}} \sqrt{\lambda\left(p_{1}^{2}, m_{1}^{2}, m_{2}^{2}\right) \lambda\left(p_{3}^{2}, m_{1}^{2}, m_{3}^{2}\right)}
\end{aligned}
$$

- Anomalous piece parameterizes the contour deformation from threshold to s_{+}

Anomalous thresholds: an example from HLbL scattering

numerical
analytic dispersive
numerical
analytic dispersive

\qquad
\qquad

- Example for $q_{1}^{2}=q_{2}^{2}, m_{1}=m_{2}=m_{3}=M_{\pi} \mathrm{MH}$, Colangelo, Procura, Stoffer 2013

Anomalous thresholds: towards estimates for P_{5}^{\prime}

- Observations:
- Discontinuity in q^{2} depends on D-meson form factor $F_{D}(s)$ and $B \rightarrow D \bar{D} K^{(*)} P$-wave(s)
- The partial-wave projection of the $B \rightarrow D \bar{D} K^{(*)}$ amplitude generates the same logarithm responsible for the anomalous singularities in $C_{0}(s)$
- Could evaluate the dispersion relation including anomalous piece if the spectral function of $F_{D}(s)$ and couplings in D_{s} exchange were known
- Questions:

- What is the relevant dynamical content of $F_{D}(s)$ and $B \rightarrow D \bar{D} K^{(*)}$? How big an error would one make if the decay width were assumed to be saturated by D_{s} exchange?
- How would one combine the result with the existing calculations of the $B \rightarrow K^{(*)} \gamma^{*}$ matrix elements while avoiding double counting?

Hadronic light-by-light scattering: data-driven, dispersive evaluations

- Organized in terms of hadronic intermediate states, in close analogy to HVP Colangelo et al. 2014, ...
- Leading channels implemented with data input for $\gamma^{*} \gamma^{*} \rightarrow$ hadrons, e.g., $\pi^{0} \rightarrow \gamma^{*} \gamma^{*}$
- Uncertainty dominated by subleading channels
\hookrightarrow axial-vector mesons $f_{1}(1285), f_{1}(1420), a_{1}(1260)$
- Transition form factors accessible in $e^{+} e^{-}$collisions \hookrightarrow BESIII, Belle II (?)

Hadronic light-by-light scattering: status

- Lattice QCD Mainz 2021, 2022:

$$
\begin{aligned}
a_{\mu}^{\mathrm{HLbL}}[u d s] & =107(15) \times 10^{-11} \\
a_{\mu}^{H L b L}[c] & =2.8(5) \times 10^{-11}
\end{aligned}
$$

- Preliminary update from RBC/UKQCD 2022 also looks consistent
- Good agreement between lattice QCD and phenomenology at $\simeq 20 \times 10^{-11}$
- Need another factor of 2 for final Fermilab precision work in progress

Summary and outlook

- Muon g-2: dispersive approaches to HVP and HLbL
- For HLbL agreement between lattice and phenomenology
\hookrightarrow another factor 2 looks feasible
- HVP: puzzles in intermediate window and with CMD-3
- New $e^{+} e^{-}$data and lattice calculations forthcoming
- Rescattering corrections to proton-decay matrix elements
- Some (vague) ideas to estimate the impact of anomalous thresholds on P_{5}^{\prime}

Sixth plenary TI workshop

Muon g-2 Theory Initiative Sixth Plenary Workshop

Bern, Switzerland, September 4-8, 2023

Relation to global electroweak fit

Hadronic running of α

$$
\Delta \alpha_{\text {had }}^{(5)}\left(M_{Z}^{2}\right)=\frac{\alpha M_{Z}^{2}}{3 \pi} P \int_{s_{\text {hr }}}^{\infty} d s \frac{R_{\text {had }}(s)}{s\left(M_{Z}^{2}-s\right)}
$$

- $\Delta \alpha_{\text {had }}^{(5)}\left(M_{z}^{2}\right)$ enters as input in global electroweak fit \hookrightarrow integral weighted more strongly towards high energy Passera, Marciano, Sirin 2008
- Changes in $R_{\text {had }}(s)$ have to occur at low energies, $\lesssim 2 \mathrm{GeV}$ Crivellin et al. 2020, Keshavarzi et al. 2020, Malaescu et al. 2020
- This seems to happen for bmwc calculation (translated from the space-like), with only moderate increase of tensions in the electroweak fit ($\sim 1.8 \sigma \rightarrow 2.4 \sigma$) \hookrightarrow need large changes in low-energy cross section
- Similar conclusion from Mainz 2022 calculation of hadronic running

Changing the $\pi \pi$ cross section below 1 GeV

Colangelo, MH, Stoffer 2020

- Changes in 2π cross section cannot be arbitrary due to analyticity/unitarity constraints, but increase is actually possible
- Three scenarios:
(1) "Low-energy" scenario: $\pi \pi$ phase shifts
(2) "High-energy" scenario: conformal polynomial
(3) Combined scenario
$\hookrightarrow 2$. and 3. lead to uniform shift, 1. concentrated in ρ region

Correlations

Correlations with other observables:

- Pion charge radius $\left\langle r_{\pi}^{2}\right\rangle$
\hookrightarrow significant change in scenarios 2 . and 3 .
\hookrightarrow can be tested in lattice QCD
- Hadronic running of α
- Space-like pion form factor

FAQ 1: do $e^{+} e^{-}$data and lattice really measure the same thing?

(a)

(b)

(c)

- Conventions for bare cross section
- Includes radiative intermediate states and final-state radiation: $\pi^{0} \gamma, \eta \gamma, \pi \pi \gamma, \ldots$
- Initial-state radiation and VP subtracted to avoid double counting
- NLO HVP insertions

$$
a_{\mu}^{\mathrm{HVP}, \mathrm{NLO}} \simeq[\underbrace{-20.7}_{(a)}+\underbrace{10.6}_{(b)}+\underbrace{0.3}_{(c)}] \times 10^{-10}=-9.8 \times 10^{-10}
$$

\hookrightarrow dominant VP effect from leptons, HVP iteration very small

- Important point: no need to specify hadronic resonances
\hookrightarrow calculation set up in terms of decay channels

FAQ 1: do $e^{+} e^{-}$data and lattice really measure the same thing?

- HVP in subtraction determined iteratively (converges with α) and self-consistently

$$
\alpha\left(q^{2}\right)=\frac{\alpha(0)}{1-\Delta \alpha_{\mathrm{lep}}\left(q^{2}\right)-\Delta \alpha_{\mathrm{had}}\left(q^{2}\right)} \quad \Delta \alpha_{\mathrm{had}}\left(q^{2}\right)=-\frac{\alpha q^{2}}{3 \pi} P \int_{s_{\mathrm{thr}}}^{\infty} \mathrm{d} s \frac{R_{\mathrm{had}}(s)}{s\left(s-q^{2}\right)}
$$

- Subtlety for very narrow $c \bar{c}$ and $b \bar{b}$ resonances (ω and ϕ perfectly fine)
\hookrightarrow Dyson series does not converge Jegerlehner
- Solution: take out resonance that is being corrected in $R_{\text {had }}$ in VP undressing
- How to match all of this on the lattice?
- Need to calculate all sorts of isospin-breaking (IB) corrections
$\hookrightarrow e^{2}$ (QED) and $\delta=m_{u}-m_{d}$ (strong IB) corrections

FAQ 1: do $e^{+} e^{-}$data and lattice really measure the same thing?

- Strong isospin breaking $\propto m_{u}-m_{d}$

(a) M

(b) O

(c) R

(d) R_{d}
- QED effects $\propto \alpha$

plots from Gülpers et al. 2018
- Diagram (f) F critical for consistent VP subtraction
\hookrightarrow same diagram without additional gluons is subtracted RBC/UKQCD 2018

FAQ 1: do $e^{+} e^{-}$data and lattice really measure the same thing?

	SD window		int window		LD window		full HVP	
	$\mathcal{O}\left(e^{2}\right)$	$\mathcal{O}(\delta)$	$\mathcal{O}\left(e^{2}\right)$	$\mathcal{O}(\delta)$	$\mathcal{O}\left(e^{2}\right)$	$\mathcal{O}(\delta)$	$\mathcal{O}\left(e^{2}\right)$	$\mathcal{O}(\delta)$
$\pi^{0} \gamma$	0.16(0)	-	1.52(2)	-	2.70(4)	-	4.38(6)	-
$\eta \gamma$	0.05(0)	-	0.34(1)	-	0.31(1)	-	0.70(2)	-
$\rho-\omega$ mixing	-	0.05(0)	-	0.83(6)	-	2.79(11)	-	3.68(17)
FSR (2π)	0.11(0)	-	1.17(1)	-	3.14(3)	-	4.42(4)	-
$M_{\pi} 0$ vs. $M_{\pi} \pm(2 \pi)$	0.04(1)	-	-0.09(7)	-	-7.62(14)	-	-7.67(22)	-
FSR ($K^{+} K^{-}$)	0.07(0)	-	0.39(2)	-	0.29(2)	-	0.75(4)	-
kaon mass ($K^{+} K^{-}$)	-0.29(1)	0.44(2)	-1.71(9)	2.63(14)	-1.24(6)	1.91(10)	-3.24(17)	4.98(26)
kaon mass ($\bar{K}^{0} K^{0}$)	0.00(0)	-0.41(2)	-0.01(0)	-2.44(12)	-0.01(0)	-1.78(9)	-0.02(0)	-4.62(23)
total	0.14 (1)	0.08(3)	1.61(12)	1.02(20)	-2.44(16)	$2.92(17)$	-0.68(29)	4.04(39)
BMWc 2020	-	-	-0.09(6)	0.52(4)	-	-	-1.5(6)	1.9(1.2)
RBC/UKQCD 2018	-	-	0.0(2)	0.1(3)	-	-	-1.0(6.6)	10.6(8.0)
JLM 2021	-	-	-	-	-	-	-	$3.32(89)$

- Note: error estimates only refer to the effects included \hookrightarrow additional channels missing (most relevant for SD and int window)
- Reasonable agreement with Bmwc 2020, RBC/UKQCD 2018, and James, Lewis, Maltman 2021 \hookrightarrow if anything, the result would become even larger with pheno estimates

FAQ 2: can we trust radiative corrections/MC generators?

- Typical objection: can we really trust scalar QED in the MC generator?
- Report by Working Group on Radiaitive Corrections and Monte Carlo Generators for Low Energies
\hookrightarrow Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data (0912.0749)
- Never just use scalar QED, include pion form factor wherever possible \hookrightarrow FsQED
- From the point of view of dispersion relations, this captures the leading infrared enhanced effects
- Existing NLO calculations do not point to (significant) center-of-mass-energy dependent effects Campanario et al. 2019
- Could there be subtleties in how the form factor is implemented or from pion rescattering?

FAQ 2: can we trust radiative corrections/MC generators?

- Test case: forward-backward asymmetry (C-odd)
- Large corrections found in GVMD model Ignatov, Lee 2022
- Can be reproduced using dispersion relations
\hookrightarrow effect still comes from infrared enhanced contributions
- Relevant effects for the C-even contribution?

FAQ 3: what about the τ data?

- Why did people stop using $\tau \rightarrow \pi \pi \nu_{\tau}$ data?
- Better precision from $e^{+} e^{-}$
- IB corrections not under sufficient control
- If this issue could be solved, would yield very useful cross check
\hookrightarrow new data at least on spectrum from Belle II
- New developments from the lattice talk by M. Bruno at Edinburgh
\hookrightarrow re-using HLbL lattice data
- Long-distance QED ($G_{E M}$) still taken from phenomenology for the time being
\hookrightarrow dispersive methods?

FAQ 3: what about the τ data?

Window FEVER - τ

my PRELIMINARY analysis of exp. + latt. data only exp. errs, no attempt at estimating sys. errs for [1] and [2] LQCD syst. errs require further investigation/improvements

Isospin-breaking:
[1]: w/o $\rho \gamma$ mixing
[2]: w/ $\rho \gamma$ mixing

What is $\rho \gamma$? too much to say, too little time to explain everything...

Hadronic running of α and global EW fit

$e^{+} e^{-}$KNT, DHMZ EW fit HEPFit EW fit GFitter guess based on BMWc

$\Delta \alpha_{\text {had }}^{(5)}\left(M_{Z}^{2}\right) \times 10^{4}$	$276.1(1.1)$	$270.2(3.0)$	$271.6(3.9)$	$277.8(1.3)$
difference to $e^{+} e^{-}$	-1.8σ	-1.1σ	$+1.0 \sigma$	

- Time-like formulation:

$$
\Delta \alpha_{\mathrm{had}}^{(5)}\left(M_{Z}^{2}\right)=\frac{\alpha M_{Z}^{2}}{3 \pi} P \int_{s_{\mathrm{thr}}}^{\infty} \mathrm{d} s \frac{R_{\mathrm{had}}(s)}{s\left(M_{Z}^{2}-s\right)}
$$

- Space-like formulation:

$$
\Delta \alpha_{\mathrm{had}}^{(5)}\left(M_{Z}^{2}\right)=\frac{\alpha}{\pi} \hat{\Pi}\left(-M_{Z}^{2}\right)+\frac{\alpha}{\pi}\left(\hat{\Pi}\left(M_{Z}^{2}\right)-\hat{\Pi}\left(-M_{Z}^{2}\right)\right)
$$

- Global EW fit
- Difference between HEPFit and GFitter implementation mainly treatment of M_{W}

- Pull goes into opposite direction

