Recent progress on the CKM angle γ and Quantum-Correlated $D^0\overline{D}^0$ pairs

Alex Gilman

19/09/2024 University of Siegen Particle Theory Seminar

Outline

Introduction

Quantum-correlated $D^0\overline{D}^0$ pairs and D^0 Hadronic Parameters

Measuring γ at LHCb

LHCb γ + Charm Combination

Future Prospects & Summary

Outline

Introduction

Quantum-correlated $D^0\overline{D}^0$ pairs and D^0 Hadronic Parameters

Measuring γ at LHCb

LHCb γ + Charm Combination

Future Prospects & Summary

The CKM Unitarity Triangle(s)

- The Cabibbo-Kobayashi-Maskawa (CKM) matrix defines the probability of flavour transitions in weak interactions of quarks.
- ► SM predicts this matrix to be unitary ⇒ cannot predict individual elements, but does provide a system of constraints!
- Can construct *B*-meson Unitarity Triangle from one such constraint

$$V_{\mathsf{CKM}} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \qquad \underbrace{\begin{vmatrix} V_{ud}V_{ub}^* \\ V_{cd}V_{cb}^* \end{vmatrix}}_{\boldsymbol{\gamma}} \underbrace{\begin{vmatrix} V_{td}V_{tb}^* \\ V_{cd}V_{cb}^* \end{vmatrix}}_{\boldsymbol{\gamma}}$$

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

Gilman $\gamma + QC D^0 \overline{D}^0$

Unitarity tests as new physics probes

- Numerous measurements can constrain the Unitarity Triangle apex
- $\gamma \equiv \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$, along with $\frac{|V_{ub}|}{|V_{cb}|}$, allows for a determination of the apex from processes that proceed through tree-level SM interactions.

Gilman $\gamma + \mathsf{QC} D^0 \overline{D}^0$

Unitarity tests as new physics probes

- Numerous measurements can constrain the Unitarity Triangle apex
- $\gamma \equiv \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$, along with $\frac{|V_{ub}|}{|V_{cb}|}$, allows for a determination of the apex from processes that proceed through tree-level SM interactions.
- The apex can also be determined from loop-level observables
- Difference between the two gives strong evidence for new physics entering at loop-level!
- Tree-level determination, especially γ , provides limiting uncertainty

 γ Golden Decay Channel: $B^+ \rightarrow DK^+$

▶ CP violation (CPV) through interference of $b \rightarrow c\overline{u}s$ and $b \rightarrow u\overline{c}s$

• Examine D decay modes common to D^0 and \overline{D}^0 :

- This interference induces:
 - 1. Flavour-dependent decay rates $(B^- \rightarrow DK^- \text{ vs. } B^+ \rightarrow DK^+)$
 - 2. Modulation of the flavour-integrated decay rate

 $(B^{\pm} \rightarrow DK^{\pm}$ branching fraction depends on D decay!)

- lnterference effects depend on γ , *B*-decay and *D*-decay hadronic parameters
- Need samples of B mesons (LHCb/BelleII) and and D⁰ mesons (BESIII) for optimal measurements

The LHCb Detector and Datasets

- Single-arm forward spectrometer designed for analysis of beauty and charm hadrons produced in LHC *pp* collisions
- ► $2 < \eta < 5$ (40% of heavy quark production)

•
$$\sigma_{\text{Vtx}}: \left(15 + \frac{29}{p_T/\text{GeV}}\right) \mu \text{m}$$

• Excellent
$$K^{\pm}/\pi^{\pm}$$
 separation

LHC Run 1 (2011-2012): 3.0 fb⁻¹ at 7 TeV and 8 TeV
 LHC Run 2 (2015-2018): 6.0 fb⁻¹ at 13 TeV

Gilman $\gamma + QC D^0 \overline{D}^0$

Beijing Electron-Positron Collider Mk. II (BEPCII)

- ▶ Symmetric e^+e^- collider
- Diameter of storage rings: \sim 75 m (LHC: \sim 8 km)

$$\blacktriangleright E_{CM}: 2-5 \text{ GeV}$$

Beijing Electron Spectrometer III (BESIII)

- "Onion"-style detector designed for studies of charm hadrons
- Hermiticity: 93% of 4π
- Gaseous Drift Chamber for tracking charged particles: $\frac{\sigma_p}{p} \sim 0.5\%$
- Time-of-Flight system for particle identification: σ_{TOF} = 80 ps
- Calorimeter for e^- identification and neutral particle reconstruction: $\sigma_E/E\sim 2.5\%$
- Some notable differences with a typical LHC experiment:
 - ► Low boost ⇒ (almost) no displaced vertices
 - Momentum of final state particles in the lab frame: 50 - 1500 MeV/c
 - e⁺e⁻ leads to very clean environments
 - ▶ $\sim 100\%$ trigger efficiency

9/33

BESIII Event Reconstruction

Simulated $D_s^{*+}D_s^-$ event

University of Oxford

10/33

LHCb Event Reconstruction

Each orange curve is a charged track!

Heavy Ion Collision event

University of Oxford

Outline

Introduction

Quantum-correlated $D^0\overline{D}^0$ pairs and D^0 Hadronic Parameters

Measuring γ at LHCb

LHCb γ + Charm Combination

Future Prospects & Summary

University of Oxford

D^0 Hadronic Parameters

• $B \to D^0 h$ CPV observables, and thus determination of γ depend on D^0 decay parameters

 $\Gamma\left(\overline{B} \to D\overline{K}\right) - \Gamma\left(B \to DK\right) \propto r_B^{DK} R_D^X r_D^X \sin\left(\delta_B^{DK} + \delta_D^X\right) \sin\gamma$

- Ratio of $D^0 \to X$ and $\overline{D}^0 \to X$ amplitudes $r_D^X \equiv \left| \frac{\overline{A}}{\overline{A}} \right|$
- Strong phase between amplitudes δ^X_D
 Coherence factor R^X_D of multibody D⁰ decays, R^X_De^{-iδ^X_D} ≡ ∫ A(**x**)Ā(**x**)d**x**/√∫ |A(**x**)|²d**x** ∫ |Ā(**x**)|²d**x**

Quantum Correlated $D^0\overline{D}^0$ pairs @ BESIII

• Production through virtual photon constrains $D\overline{D}$ state to be C-odd

- ▶ BESIII collects data the *DD* threshold, so it is guaranteed that there are no other particles in the final state
- C constraint correlates D^0 and \overline{D}^0 decays to have opposite CP :

$$\frac{P(D^0\overline{D}^0 \to X_1X_2)}{P(D^0 \to X_1)P(\overline{D}^0 \to X_2)} = 1 + \left(r_D^{X_1}r_D^{X_2}\right)^2 - 2r_D^{X_1}r_D^{X_2}R_D^{X_1}R_D^{X_2}\cos\left(\delta_D^{X_1} + \delta_D^{X_2}\right)$$

Quantum Correlated Tag Decay Modes

► Flavour Tags

- ► $\overline{D}^0 \to K^+ e^- \nu$, is flavour-definite, so allow for a normalising determination of $P(D^0 \to X)$
- ► Cabibbo-favoured decays, e.g. $\overline{D}^0 \to K^+ \pi^-$, used as quasi-flavour tags
- CP Tags
 - ► $\overline{D}^0 \to \pi\pi, K^+K^-, K^0_S\pi^0$, etc. are CP-eigenstates (neglecting $\mathcal{O}(10^{-3})$ CP violation)
 - $\overline{D}^0 \to \pi^+ \pi^- \pi^0$ has high coherence $(R_D^{\pi\pi\pi^0} \approx 95\%)$, so it can be treated as an approximate CP eigenstate.

 $\frac{P(D^0\overline{D}^0 \to Xk_{CP})}{P(D^0 \to X)P(\overline{D}^0 \to k_{CP})} = 1 + \left(r_D^X\right)^2 \mp 2R_D^{k_{CP}}r_D^XR_D^X\cos\left(\delta_D^X\right)$

► Note that other *CP*-indefinite tags needed to determine sin (δ^X_D)

Gilman $\gamma + QC D^0 \overline{D}^0$

- ▶ Using 2.93 fb⁻¹ of data @ $E_{CM} = 3.773$ GeV
- Measurement of $D^0/\overline{D}^0 \to K^0_S \pi^+\pi^-$ strong phase parameters $c_i [s_i] \equiv$ amplitude-weighted $\cos [\sin] \delta_D$ in phase-space bin i
- Phase space described by $m_{\pm} \equiv m \left(K^0 \pi^{\pm} \right)$

16/33

Gilman $\gamma + \text{QC} D^0 \overline{D}^0$

- Using 2.93 fb⁻¹ of data @ $E_{CM} = 3.773$ GeV
- Measurement of $D^0/\overline{D}^0 \to K^0_S \pi^+\pi^-$ strong phase parameters $c_i [s_i] \equiv$ amplitude-weighted $\cos [\sin] \delta_D$ in phase-space bin i
- Phase space described by $m_{\pm} \equiv m \left(K^0 \pi^{\pm} \right)$
- ▶ 17 tag modes employed, yields determined with 2-D fits to $M_{\rm BC} \equiv \sqrt{E_{\rm beam}^2 p_D^2}$ or $M_{\rm miss}^2$

- Using 2.93 fb⁻¹ of data @ $E_{CM} = 3.773$ GeV
- ▶ Measurement of $D^0/\overline{D}^0 \rightarrow K_S^0 \pi^+ \pi^-$ strong phase parameters $c_i [s_i] \equiv$ amplitude-weighted $\cos [\sin] \delta_D$ in phase-space bin i
- Phase space described by $m_{\pm} \equiv m \left(K^0 \pi^{\pm} \right)$
- ▶ In terms of fractional yields of flavour-tagged $K_S^0 \pi^+ \pi^- \equiv K_i$

•
$$K_S^0 \pi^+ \pi^-$$
 vs. CP tag: $M_i^{\pm} = h_{CP} \left(K_i + K_{-i} + 2c_i \sqrt{K_i K_{-i}} \right)$

► $K_S^0 \pi^+ \pi^-$ vs. $K_{S,L}^0 \pi^+ \pi^-$ tag: $M_{ij} = h_{DT} \left(K_i K_{-j} + K_{-i} K_j \mp \sqrt{K_i K_{-j} K_{-i} K_j} (c_i c_j + s_i s_j) \right)$

PRL 124, 241802 (2020) PRD 101, 112002, (2020)

16/33

Gilman $\gamma + \mathsf{QC} D^0 \overline{D}^0$

- ▶ Using 2.93 fb⁻¹ of data @ $E_{CM} = 3.773$ GeV
- ▶ Measurement of $D^0/\overline{D}^0 \to K^0_S \pi^+\pi^-$ strong phase parameters $c_i [s_i] \equiv$ amplitude-weighted $\cos [\sin] \delta_D$ in phase-space bin i
- Phase space described by $m_{\pm} \equiv m \left(K^0 \pi^{\pm} \right)$

Binning schemes from CLEO PRD 82,112006 (2010) PRL 124, 241802 (2020) PRD 101, 112002, (2020)

Circles are predictions from BaBar and Belle, PRD 98, 110212(2018)

16/33

Outline

Introduction

Quantum-correlated $D^0\overline{D}^0$ pairs and D^0 Hadronic Parameters

Measuring γ at LHCb

LHCb γ + Charm Combination

Future Prospects & Summary

Measuring γ : Different D decay channels

- Different D decay channels provide complementary sensitivity to gamma and samples with uncorrelated statistical and systematic uncertainties:
 - $D \rightarrow \text{multibody}^1 K^0_S \pi^+ \pi^- / D \rightarrow K_S K^+ K^-$:
 - Hadronic parameters vary significantly across D phase space
 - \blacktriangleright CPV observables $B \to Dh$ interference effects across the D phase space and increased sensitivity to γ
 - ▶ $D \rightarrow \text{Cabibbo-favoured/suppressed decays}^2$, e.g. $D^0 \rightarrow K^- \pi^+$:
 - Amplitude ratios r_D measured to high precision, but not strong phases
 - $D \rightarrow (quasi)$ -CP eigenstates³, e.g. $D^0 \rightarrow K^- K^+$:
 - Two-body decays trivially have $r_D = 1$, $\delta_D = 0, \pi$
 - Multi-body decays require a coherence-factor correction determined from D⁰ D
 D⁰ data
 - ▶ Multi-body decays, e.g. $D \to K^- \pi^+ \pi^+ \pi^-$, also benefit greatly from phase-space dependent analysis

Gronau and Wyler, PLB265 (1991) 172;Gronau and London, LB253 (1991) 483

Bondar and Poluektov, EPJC 47 (2006) 347; Giri, Grossman, Soffer, and Zupan PRD 68 (2003) 054018 Atwood, Dunietz, Soni, PRD63 (2001) 036005

 γ from $B^{\pm} \rightarrow Dh^{\pm}$, $D \rightarrow K^0_S h^+ h^-$

- ▶ Using full LHCb Run 1+ Run 2 dataset, analysing $K_S^0 \pi^+ \pi^-$ & $K_S^0 K^+ K^-$
- ▶ $B^{\pm} \rightarrow DK^{\pm}$ has amplitude ratio $r_B^{DK} \sim 0.1 \Rightarrow$ large interference effects
- ► $B^{\pm} \rightarrow D\pi^{\pm}$ has $r_B^{D\pi} \sim 0.05 \Rightarrow$ small interference effects, good control channel for detection and production asymmetries

LHCb, JHEP 2021, 169 (2021)

Gilman $\gamma + QC D^0 \overline{D}^0$ University of Oxford

19/33

 γ from $B^{\pm} \rightarrow Dh^{\pm}$, $D \rightarrow K^0_S h^+ h^-$

• Using full LHCb Run 1+ Run 2 dataset, analysing $K_S^0 \pi^+ \pi^-$ & $K_S^0 K^+ K^-$

- ▶ Perform simultaneous fit of invariant masses for $B \to DK/B \to D\pi$ to determine CPV observables $r_B^{DK} \cos(\delta_B^{DK} \pm \gamma)$ and $r_B^{DK} \sin(\delta_B^{DK} \pm \gamma)$ and related $B \to D\pi$ observables
- Sample is split by B-decay, B-charge, D-decay, K⁰_S decay category (before/after LHCb magnet), and phase-space bin (160 subsamples total!)
- ► Strong phase inputs fixed in fit from BESIII measurements LHCb, JHEP 2021, 169 (2021)

19/33

 γ from $B^{\pm} \rightarrow Dh^{\pm}$, $D \rightarrow K^0_S h^+ h^-$

▶ $r_B^{DK} \cos \left(\delta_B^{DK} \pm \gamma \right)$ and $r_B^{DK} \sin \left(\delta_B^{DK} \pm \gamma \right)$, and $B \to D\pi$ observables can be analysed in turn to determine r_B^{DK}, δ_B^{DK} and γ

$$r_B^{DK} = 0.0904_{-0.0075}^{+0.0077} \qquad \delta_B^{DK} = \left(118.3_{-5.6}^{+5.5}\right)^{\circ} \qquad \gamma = \left(68.7_{-5.1}^{+5.2}\right)^{\circ}$$

- Most precise determination of γ from any single measurement
- $\blacktriangleright \sim 1^\circ$ uncertainty from BESIII inputs, similar size for LHCb systematics \Rightarrow stastical uncertainty dominates

LHCb, JHEP 2021, 169 (2021)

Gilman

$\gamma \text{ from } B^0 \to DK^{*0}$

- ▶ $B^0 \rightarrow DK^*(892)^0$ has smaller branching fraction than $B^+ \rightarrow DK^+$, but larger amplitude ratio $r_{B^0}^{DK^*} \sim 0.250$, and so gives competitive sensitivity.
- ▶ Run1 + Run2 analysis of $B^0 \rightarrow DK^*(892)^0$ with $D \rightarrow K^0_S h^+ h^-$ final states determined $\gamma = (49^{+22}_{-19})^\circ$ [LHCb, EPJC 84, 206 (2024)]
- Run1 + Run2 measurement with $D \rightarrow K^+K^-, \pi^+\pi^-(\pi^+\pi^-)$, and $K^-\pi^+(\pi^+\pi^-)$ also published [LHCb, JHEP 2024, 25 (2024)]

Gilman $\gamma + QC D^0 \overline{D}^0$ $\gamma \text{ from } B^0 \to DK^{*0}$

- ▶ $B^0 \rightarrow DK^*(892)^0$ has smaller branching fraction than $B^+ \rightarrow DK^+$, but larger amplitude ratio $r_{B^0}^{DK^*} \sim 0.250$, and so gives competitive sensitivity.
- ► Combination of <u>all</u> modes (partially) resolves the degeneracy, with preferred solution γ = (63.2^{+6.9}_{-8.1})°

Gilman $\gamma + QC D^0 \overline{D}^0$

Outline

Introduction

Quantum-correlated $D^0\overline{D}^0$ pairs and D^0 Hadronic Parameters

Measuring γ at LHCb

LHCb γ + Charm Combination

Future Prospects & Summary

University of Oxford

Determination of γ by combining measurements

- Each γ analysis reports CPV observables, which are interpreted in combination in terms of γ and:
 - \blacktriangleright Ratio of B amplitudes r_B

 - Strong phase between B amplitudes δ_B
 Coherence factor R_B or κ_B of multibody B decays
 - Same set of parameters as above, but for D decays
 - Combinations of above , e.g. c_i , s_i in K^0_Shh or CP-even fractions F_+

From B measurements

Primarily from external *D* measurements BESIII/CLEO/LHCb

- Many groups deliver combinations of γ observables: CKMFitter, HFLAV, UTFit, Belle+BelleII, etc.
- LHCb combination uses a frequentist implementation through the GammaCombo package, see PLB 726 (2013) 151 for details on the formalism

Why combine with charm mixing?

$$\left|D_{1,2}\right\rangle = p\left|D^{0}\right\rangle \pm q\left|\overline{D}^{0}\right\rangle$$

 $x \equiv (m_1 - m_2)/\Gamma$ $y \equiv (\Gamma_1 - \Gamma_2)/2\Gamma$

- Charm mixing measurements depend on same set of D hadronic parameters as γ measurements from B → Dh
- ▶ Interpretation of $B \rightarrow Dh$ measurements requires corrections due charm mixing
- ► $B \rightarrow D[K\pi]h$ measurements sensitive to $\delta_D^{K\pi}/r_D^{K\pi} \Rightarrow$ improve precision on y measurements from $D \rightarrow K\pi$ decays
- First LHCb γ + charm mixing combination JHEP 12 (2021) 141, direct charm CPV observables added in LHCb-CONF-2022-003

Results of 2022 LHCb combination

 B^0_s only with Run1 data, and B^0 with partial Run2 data

24/33

A family of γ measurements in 2024

- LHCb has now published analyses of many B and D decay channels with Run1 and Run2 data including:
 - $\blacktriangleright B^+ \to DK^+$
 - ▶ $B^+ \to D^*K^+$ (new)
 - ▶ $B^+ \to DK^{*+}$ (new)
 - $B^0 \rightarrow DK^{*0}$ (updated from partial Run2 in 2024)
 - ▶ $B_s^0 \to D_s^+ K^+$ (updated from Run1 only in 2024)
- Different B decays give complementary sensitivity with largely uncorrelated uncertainties
- First opportunity to compare results across B decays with full Run1+Run2 dataset
- 2024 combination includes 198 input observables to determine 53 free parameters

Results of the 2024 combination: γ by B flavour

Goodness of fit = 20.8% from χ^2

26/33

Results of the 2024 combination: γ by decay channel

Now have distinct solutions in eight separate decay channels

Gilman $\gamma + QC \underline{D^0 \overline{D}^0}$

Results of the 2024 combination: Charm results

• Since 2022 combination, new measurements of mixing in $D^0 \to K^- \pi^+$ and $\pi^+ \pi^- \pi^0$ decays

- CPV in *D*-mixing just outside of 95% C.L.
- From LHCb combination $\delta_D^{K\pi} = (191.6^{+2.5}_{-2.4})^{\circ}$, significantly more precise than best current BESIII measurement

Outline

Introduction

Quantum-correlated $D^0\overline{D}^0$ pairs and D^0 Hadronic Parameters

Measuring γ at LHCb

LHCb γ + Charm Combination

Future Prospects & Summary

29/33

γ prospects: Prospects for Multibody D-decays

Gilman

 $\gamma + \mathsf{QC} \ D^0 ar D^0$

- ▶ Phase-space dependent analysis of multi-body final states greatly improves sensitivity to γ , as demonstrated in 2023 LHCb measurement of $B^+ \rightarrow DK^+$, $D \rightarrow K^- \pi^+ \pi^+ \pi^-$
- Both BESIII and LHCb data essential to deliver meaningful precision
- $\blacktriangleright\,$ Results to come from with other $D \rightarrow$ multi-body final states

γ prospects: New data at LHCb and BESIII

- Run 3 is well underway, and LHCb has already collected a data sample larger than the Run 2 sample. Fantastic prospects for the full Run3 sample.
- ► BESIII has collected ~ 20 fb⁻¹ at the D⁰D⁰ production threshold, roughly 7× larger than the previous sample.

New avenues for quantum-correlated $D^0\overline{D}^0$ measurements

- C-odd constraint still applies to $e^+e^- \rightarrow X D^0 \overline{D}^0$
- If X is a C-odd eigenstate (e.g. γ), D⁰D
 ⁰ system should be constrained to be C-even : Predicted but never observed
- ► Correlations in *C*-even decays have different dependencies on hadronic parameters measurements in both *C*-even and *C*-odd samples allow for reduced systematic uncertainties from future measurements
- ► C-even decays also have linear sensitivity to D-mixing terms⁴ ⇒ possibility for time-independent measurements of mixing from e⁺e⁻ data
- ▶ Preliminary studies with BESIII $D^{*0}\overline{D}^{0}$ and $D^{*0}\overline{D}^{*0}$ data ongoing

Gilman $\gamma + QC D^0 \overline{D}^0$

New avenues for quantum-correlated $D^0\overline{D}^0$ measurements

- C-odd constraint still applies to $e^+e^- \rightarrow X D^0 \overline{D}^0$
- If X is a C-odd eigenstate (e.g. γ), D⁰D
 ⁰ system should be constrained to be C-even : Predicted but never observed
- Correlations in C-even decays have different dependencies on hadronic parameters – measurements in both C-even and C-odd samples allow for reduced systematic uncertainties from future measurements
- ► C-even decays also have linear sensitivity to D-mixing terms⁴ ⇒ possibility for time-independent measurements of mixing from e⁺e⁻ data
- ▶ Preliminary studies with BESIII $D^{*0}\overline{D}^{0}$ and $D^{*0}\overline{D}^{*0}$ data ongoing
- ▶ Possibility for measurements of CPV in decay from QC data? $P([D^0\overline{D}^0]_{\mathcal{C}-\text{odd}} \rightarrow \pi^+\pi^-\pi^+\pi^-) \sim \mathcal{B}(D^0 \rightarrow \pi^+\pi^-)^2 \times a^d_{\pi^+\pi^-} \sim 5 \times 10^{-9}$ Compare to ~ 10⁸ $D^0\overline{D}^0$ events in current data.
- ▶ Could be expanded with other QC-forbidden decays, e.g. $\pi^+\pi^-K^+K^-$
- Unique opportunities with missing/neutral particles e.g. $D^0 \to K^0_L \pi^0$, $D^0 \to \pi^0 \pi^0$

Bondar, Poluektov, Vorobiev, PRD 82 (2010) 034033

Gilman

Summary

Gilman

 $\gamma + \mathsf{QC} \ D^0 \overline{D}^0$

- \blacktriangleright Unitarity tests provide opportunity to search for new physics entering at loop level searches currently limited by CKM angle γ
- ▶ Physics programs of BESIII linked to LHCb measurements of γ through quantum-correlated $D^0\overline{D}^0$ pairs
- ▶ 2024 Average of all available LHCb and BESIII measurements determines $\gamma = (64.6 \pm 2.8)^{\circ} \sim 0.7^{\circ}$ improvement over 2023 global average

 \blacktriangleright Consistent determination of γ from $B^+\text{, }B^0\text{, and }B^0_s$ decays

- Strong prospects for further improvement with Run 2 data, and fantastic prospects from Run 3 data and new BESIII datasets
 - Uncertainty on $\frac{|V_{ub}|}{|V_{cb}|}$ could soon be a limiting uncertainty
- Quantum-correlated D⁰D
 ⁰ pairs present unique opportunities for measurements of D⁰ mixing and CPV

BACKUPS

University of Oxford