Deep Learning meets Physics

Prof. Dr. Martin Erdmann, RWTH Aachen University, 24-Oct-2024

Matthew D. Schwartz, Nat Rev Phys 4 (2022) 741, adapted

Generative Modeling

https://thispersondoesnotexist.com

Martin Erdmann, RWTH Aachen University

Nobelprize Physics 2024

NOBELPRISET I FYSIK 2024 THE NOBEL PRIZE IN PHYSICS 2024

John J. Hopfield Princeton University, NJ, USA

Geoffrey E. Hinton University of Toronto, Canada

"för grundläggande upptäckter och uppfinningar som möjliggör maskininlärning med artificiella neuronnätverk" "for foundational discoveries and inventions that enable machine learning with artificial neural networks" THE

#NobelPrize

Martin Erdmann, RWTH Aachen University

etworks"_{THE} NOBEL PRIZE

Physics: Models for phenomena of nature

Mathematically readable model

Highly complex physics models

Scientific research: Quality of the prediction & scope of validity

McCulloch, W.S., Pitts, W.: Bulletin of Mathematical Biophysics (1943) 5: 115. Frank Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan Books, Washington DC, 1961

Neural Network Operations

x multi-dimensional input data*W*, *b* to be trained

y = Wx + b

McCulloch, W.S., Pitts, W.: Bulletin of Mathematical Biophysics (1943) 5: 115. Frank Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan Books, Washington DC, 1961

Neural Network Operations

Martin Erdmann, RWTH Aachen University

Neural Network Training

- Data set
 - $\{x_j, y_j\} \quad j = 1, ..., N$
- Define model = network prediction

 $y_m(x) = W x + b$

- Define **objective** function (=loss, cost) $\mathcal{L}(W, b) = \frac{1}{N} \sum_{j=1}^{N} \left[y_m(x_j) - y_j \right]^2$
- Train model by optimizing parameters

 $(\widehat{W}, \widehat{b}) = \arg \min \mathcal{L}(W, b)$

('supervised')

Automated parameterization of arbitrary function

x ∈ [-10,10]

7 hidden layers 200 nodes each **ReLU** activation function

original function (black symbols):

fair description after 2800 training steps (purple)

Deep Learning Progress

Concepts

- Fully connected
- Convolutional
- Graph
- Recurrent
- Lorentz Boost Network
- Autoencoder
- Adversarial
- Reinforcement
- Invertible
- Transformer

Improved set of tools

Train millions of parameters by:

- Data preprocessing
- Normalization
- Regularization
- Short cuts

...

Learning strategies

Computing

- Graphics Processing Unit (GPU) Software Libraries
 - TensorFlowKeras
 - PyTorch

World's largest Calorimeter for Cosmic Rays

air Water Cherenkov detectors 55 km

Pierre Auger Observatory

M. E., Jonas Glombitza, David Walz, 10.1016/j.astropartphys.2017.10.006 The Pierre Auger Collaboration, A. Abdul Halim, arXiv:2406.06319

Cosmic ray arrival directions by physicist or network

Deep Neural Network

No physics education

No explicit information about

- *locations of detectors*
- speed of light

Needs data with true target θ

Deep Neural Network *learns physics from* data within 3h

M. E., Jonas Glombitza, David Walz, 10.1016/j.astropartphys.2017.10.006 The Pierre Auger Collaboration, A. Abdul Halim, arXiv:2406.06319

Neural network to characterize signal traces

Deep Neural Network

Cosmic-Ray Flux & Shower Depth

The Pierre Auger Collaboration, A. Abdul Halim, arXiv:2406.06315

Convolutional Networks

...looking for better ways than 1 pixel = 1 network input node

Martin Erdmann, RWTH Aachen University

Convolutional network to analyse image-like data

Convolutional network to identify electron neutrinos

A. Aurisano et al., JINST 11 (2016) P09001

od	<pre>v_e efficiency (same purity)</pre>
cists thm	35%
learning I network	49%

Fully connected, Convolutional networks

From Recurrent Networks to Transformers

to analyse input data of variable size

Image: Kaparthy

D.E. Rumelhart, G.E. Hinton, R.J. Williams, Nature 323(9-Oct-1986)533 S. Hochreiter, J. Schmidhuber, Neural Computation 9(1997)1735

Recurrent networks

Long Short Term Memory

E.g. detecting correlations between tracks on input far away from each other through a **cell memory**

Attention Mechanism

Martin Erdmann, RWTH Aachen University

J. Cheng, L. Dong, M. Lapata, arXiv:1601.06733 D. Bahdanau, K. Cho, Y. Bengio, arXiv:1409.0473 BLEU (bilingual evaluation understudy)

Transformer: `Attention Is All You Need ´

Martin Erdmann, RWTH Aachen University

A. Vaswani, et al., arXiv:1706.03762

Identifying Higgs bosons at the LHC

1 Higgs-Decay \rightarrow 2 Bottom-Quarks Probability identifying **1** Bottom-Quark $p = 65\% \rightarrow 80\%$

2 Higgs-Bosons \rightarrow **4** Bottom-Quarks $p^4 = 18\% \rightarrow 41\%$ Al: same signal after half the LHC operating time (>2029)

Transformer

Transformer

Autonomous model building Assign functional target \rightarrow training data optimize network (`unsupervised')

Martin Erdmann, RWTH Aachen University

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua BengioarXiv:1406.2661 M. Erdmann, J. Glombitza, T. Quast, Comput Softw Big Sci (2019) 3: 4

Generative Modeling to simulate particle showers

A wealth of possibilities: Invertible Problems

Further impact & developments

Martin Erdmann, RWTH Aachen University

'Reconciliation' of AI with classical physics

arXiv:2404.19756v2, 2-May-2024

Summary: High Research & Innovation Potential Physics expertise and AI knowledge

Computer Science Methods adapted, e.g. Deep Learning

 Fully connected Convolutional

 Generative Adversarial • Normalizing Flows

 Reinforcement Kolmogorov-Arnold Lorentz Boost

backup

Martin Erdmann, RWTH Aachen University

32

Early Networks

Hopfield Network

Hinton: Restricted Boltzmann Machine

$$E = \frac{1}{2} \sum_{i,j=1}^{N} W_{ij} X_i X_j$$

National BMBF Action Plan "ErUM-Data" Community Self-organization "DIG-UM"

Astronomy, accelerator, particles, astroparticles, hadrons+nuclei, synchrotron, neutrons, ions

NFDI Helmholtz-Initiativen Datenkom

Datenkompetenzzentren

EuCAIF is an European initiative for advancing the use of Artificial Intelligence (AI) in Fundamental