Hadronic calorimeters

Jan Kieseler

What is a calorimeter?

- Detection of particles and their properties through full absorption
- All energy of the particle is finally converted to heat (and more)
- Essential to detect neutral particles

Hadronic shower

Hadrons are messj

Gamma shower

Why is that: hadronic interactions

Recap: EM showers

- Very regular
- Only EM effects

Dominated by pair production and bremsstrahlung

Hadronic showers

EM component

Hadronic component:

- Elastic
- Inelastic

Energy undetected:

- Binding energy
- Neutrinos

- Not possible to capture all energy
- Large fluctuations on a per-shower basis, also in time

The contributions

• Models differ significantly, but common features

More quantitatively

• Elastic and inelastic components

- Inelastic dominates
- Nucleon-proton $\sigma_{\rm tot} = \sigma_{pp} (10 \, {\rm GeV}) A^{2/3}$

Define nuclear interaction length

• Define $\lambda_{\text{int}} = \frac{A}{N_A \rho \sigma_{\text{tot}}} \approx 35 \frac{\text{g}}{\text{cm}^2} A^{1/3}$

For comparison: EM showers

$$\sigma_{pair} \approx \frac{7}{9} \left(4\alpha r_e^2 Z^2 \ln \frac{183}{Z^{1/3}} \right) = \frac{7}{9} \frac{A}{N_A X_0}$$
$$X_0 = \text{const.} \frac{A}{N_A \sigma_{\text{pair}}} \propto A/Z^2$$

- The nuclear interaction length is typically (much) larger than the radiation length for the same material
- The ratio of both is material dependent

Summary

- Hadronic showers are messy
- Important quantity: interaction length:material dependent
- EM fraction is important
- •

Plot nuclear interaction length and radiation length for as a function of A and Z. Put markers for materials in our material list for simulation

> Adapt your EM calorimeter to also capture Hadronic showers; what happens? (Performance, cost, ...)

Start by visualising the shower depth

How do energy sum and DNN regression relate?

Build an optimal hadronic calorimeter (no transversal granularity) within for showers between 1 and 100 GeV and stay below 50kCHF