universitätfreiburg

Flavour Physics

An experimentalist's perspective

Herbstschule of High-Energy Physics Prof. Dr. Marco Gersabeck Bad Honnef, 11.-13. Septem<u>ber 2024</u>

Outline

1. Introduction

- 2. Detectors and reconstruction
- 3. Mixing and CP violation
- 4. Rare processes
- 5. Future flavour

First steps

Flavour physics

Identifying Beyond the Standard (Cocoa) Model effects with precision flavour measurements → Sensitivity to mass scales beyond reach of direct observation

Combining indirect evidence to reveal hidden flavours

(A)Symmetries

- Ratios or asymmetries are powerful tests due to cancellation of strong interaction effects
- Test SM expectations of a range of symmetries
 - Lepton Universality: W coupling to ev, μv , τv
- Matter-antimatter asymmetry
 - CP violation in decays
 - CP violation in neutral meson-antimeson mixing
 - Interference of the two
- SM CP violation governed by complex phase of CKM matrix

Precision measurements

Flavour physics Fast tracking discoveries

- K⁰- $\overline{K}{}^0$ mixing and smallness of $K^0{\rightarrow}\mu^+\mu^-$
 - GIM mechanism predicts charm quark in 1970
- Kaon CP violation
 - KM mechanism predicts bottom and top quarks in 1973
 - Charm & bottom quarks discovered: 1974*+1977
- $B^{0}-\overline{B}^{0}$ oscillations discovered in 1987
 - Requires mtop > 50 GeV to deactivate GIM cancellation
 - Top quark discovered: 1995

Flavour physics Fast tracking discoveries

- K⁰- $\overline{K}{}^0$ mixing and smallness of $K^0{\rightarrow}\mu^+\mu^-$
 - GIM mechanism predicts charm quark in 1970
- Kaon CP violation
 - KM mechanism predicts bottom and top quarks in 1973
 - Charm & bottom quarks discovered: 1974*+1977
- $B^{0}-\overline{B}^{0}$ oscillations discovered in 1987
 - Requires mtop > 50 GeV to deactivate GIM cancellation
 - Top quark discovered: 1995

Flavour physics Fast tracking discoveries

- K⁰- $\overline{K}{}^0$ mixing and smallness of $K^0{\rightarrow}\mu^+\mu^-$
 - GIM mechanism predicts charm quark in 1970
- Kaon CP violation
 - KM mechanism predicts bottom and top quarks in 1973
 - Charm & bottom quarks discovered: 1974*+1977
- $B^{0}-\overline{B}^{0}$ oscillations discovered in 1987
 - Requires mtop > 50 GeV to deactivate GIM cancellation
 - Top quark discovered: 1995

The reach of flavour

- Indirect participation of BSM particles opens door to heavy virtual particles
- Can outperform direct reach by many orders of magnitude
- Requires non-minimally flavour violating new physics
- MFV scenario still offers discovery potential, e.g. in Bmeson oscillations

Fig. 5.1: Reach in new physics scale of present and future facilities, from generic dimension six operators. Colour coding of observables is: green for mesons, blue for leptons, yellow for EDMs, red for Higgs flavoured couplings and purple for the top quark. The grey columns illustrate the reach of direct flavour-blind searches and EW precision measurements. The operator coefficients are taken to be either ~ 1 (plain coloured columns) or suppressed by MFV factors (hatch filled surfaces). Light (dark) colours correspond to present data (mid-term prospects, including HL-LHC, Belle II, MEG II, Mu3e, Mu2e, COMET, ACME, PIK and SNS).

Detectors and reconstruction

Production Experiments Reconstruction

Experiments

	Fixed target	e ⁺ e ⁻ collider	Hadron collider
Cross-section	NA62: 4×10 ⁻⁶ kaon decays in detector per proton on target	D ⁰ from ψ(3770): 8 nb D ⁰ from Y(4S): 1.5 nb B ⁰ from Y(4S): 1.1 nb	LHCb acceptance@13 TeV cc pairs: 2.4 mb bb pairs: 0.14 mb

	Fixed target	e ⁺ e ⁻ collider	Hadron collider
Cross-section	NA62: 4×10 ⁻⁶ kaon decays in detector per proton on target	D ⁰ from ψ(3770): 8 nb D ⁰ from Y(4S): 1.5 nb B ⁰ from Y(4S): 1.1 nb	LHCb acceptance@13 TeV cc pairs: 2.4 mb bb pairs: 0.14 mb
Luminosity (targets)	NA62: 2×10 ¹⁸ protons on target	BESIII: 20 fb ⁻¹ @ ψ(3770) Belle II: 50 ab ⁻¹ @ Y(4S)	LHCb: 50 fb ⁻¹ LHCb Upgrade II: 300 fb ⁻¹
Rate	2×10 ¹² kaon decays per NA62	BESIII: 8×10 ⁹ cc pairs / fb ⁻¹ Belle II: 10 ⁹ bb pairs / ab ⁻¹	2400×10 ⁹ cc pairs / fb ⁻¹ 140×10 ⁹ bb pairs / fb ⁻¹

	Fixed target	e ⁺ e ⁻ collider	Hadron collider
Cross-section	NA62: 4×10 ⁻⁶ kaon decays in detector per proton on target	D ⁰ from ψ(3770): 8 nb D ⁰ from Y(4S): 1.5 nb B ⁰ from Y(4S): 1.1 nb	LHCb acceptance@13 TeV cc pairs: 2.4 mb bb pairs: 0.14 mb
Luminosity (targets)	NA62: 2×10 ¹⁸ protons on target	BESIII: 20 fb ⁻¹ @ ψ(3770) Belle II: 50 ab ⁻¹ @ Y(4S)	LHCb: 50 fb ⁻¹ LHCb Upgrade II: 300 fb ⁻¹
Rate	2×10 ¹² kaon decays per NA62	BESIII: 8×10 ⁹ cc pairs / fb ⁻¹ Belle II: 10 ⁹ bb pairs / ab ⁻¹	2400×10 ⁹ cc pairs / fb ⁻¹ 140×10 ⁹ bb pairs / fb ⁻¹
Background	Overlapping decays due to continuous production	Overlapping signals Few additional particles in off-resonance production	Lots of additional particles produced Some overlapping collisions

	Fixed target	e ⁺ e ⁻ collider	Hadron collider
Cross-section	NA62: 4×10 ⁻⁶ kaon decays in detector per proton on target	D ⁰ from ψ(3770): 8 nb D ⁰ from Y(4S): 1.5 nb B ⁰ from Y(4S): 1.1 nb	LHCb acceptance@13 TeV cc pairs: 2.4 mb bb pairs: 0.14 mb
Luminosity (targets)	NA62: 2×10 ¹⁸ protons on target	BESIII: 20 fb ⁻¹ @ ψ(3770) Belle II: 50 ab ⁻¹ @ Y(4S)	LHCb: 50 fb ⁻¹ LHCb Upgrade II: 300 fb ⁻¹
Rate	2×10 ¹² kaon decays per NA62	BESIII: 8×10 ⁹ cc pairs / fb ⁻¹ Belle II: 10 ⁹ bb pairs / ab ⁻¹	2400×10 ⁹ c c pairs / fb ⁻¹ 140×10 ⁹ bb pairs / fb ⁻¹
Background	Overlapping decays due to continuous production	Overlapping signals Few additional particles in off-resonance production	Lots of additional particles produced Some overlapping collisions
Boost	NA62: Very large	BESIII: none Belle II: minimal	LHCb: Large

	Fixed target	e ⁺ e ⁻ collider	Hadron collider
Cross-section	NA62: 4×10 ⁻⁶ kaon decays in detector per proton on target	D ⁰ from ψ(3770): 8 nb D ⁰ from Y(4S): 1.5 nb B ⁰ from Y(4S): 1.1 nb	LHCb acceptance@13 TeV cc pairs: 2.4 mb bb pairs: 0.14 mb
Luminosity (targets)	NA62: 2×10 ¹⁸ protons on target	BESIII: 20 fb ⁻¹ @ ψ(3770) Belle II: 50 ab ⁻¹ @ Y(4S)	LHCb: 50 fb ⁻¹ LHCb Upgrade II: 300 fb ⁻¹
Rate	2×10 ¹² kaon decays per NA62	BESIII: 8×10 ⁹ cc pairs / fb ⁻¹ Belle II: 10 ⁹ bb pairs / ab ⁻¹	2400×10 ⁹ c c pairs / fb ⁻¹ 140×10 ⁹ bb pairs / fb ⁻¹
Background	Overlapping decays due to continuous production	Overlapping signals Few additional particles in off-resonance production	Lots of additional particles produced Some overlapping collisions
Boost	NA62: Very large	BESIII: none Belle II: minimal	LHCb: Large
Asymmetries	Momentum selection produces one charge at a time	Forward-backward asymmetry	p p : Forward-backward pp: Matter-antimatter
		·	

	Fixed target	e⁺e⁻ collider	Hadron collider
Cross-section	NA62: 4×10 ⁻⁶ kaon decays in detector per proton on target	D ⁰ from ψ(3770): 8 nb D ⁰ from Y(4S): 1.5 nb B ⁰ from Y(4S): 1.1 nb	LHCb acceptance@13 TeV cc pairs: 2.4 mb bb pairs: 0.14 mb
Luminosity (targets)	NA62: 2×10 ¹⁸ protons on target	BESIII: 20 fb ⁻¹ @ ψ(3770) Belle II: 50 ab ⁻¹ @ Y(4S)	LHCb: 50 fb ⁻¹ LHCb Upgrade II: 300 fb ⁻¹
Rate	2×10 ¹² kaon decays per NA62	BESIII: 8×10 ⁹ c c pairs / fb ⁻¹ Belle II: 10 ⁹ bb pairs / ab ⁻¹	2400×10 ⁹ c c pairs / fb ⁻¹ 140×10 ⁹ bb pairs / fb ⁻¹
Background	Overlapping decays due to continuous production	Overlapping signals Few additional particles in off-resonance production	Lots of additional particles produced Some overlapping collisions
Boost	NA62: Very large	BESIII: none Belle II: minimal	LHCb: Large
Asymmetries	Momentum selection produces one charge at a time	Forward-backward asymmetry	p p : Forward-backward pp: Matter-antimatter
Comments	Muon production from fixed- target produced pion decay similar	Can produce quantum- correlated meson pairs	Access to all hadron masses

Belle II

Belle II detector optimised for high-luminosity asymmetric e⁺e⁻ collisions

Data taking continues after recent upgrade completing vertex detector

LHCb detector as upgraded during LS2 40 MHz full detector readout into software trigger

LHCb: up to 2 fb⁻¹ / year LHCb Upgrade I: ~8 fb⁻¹ / year

Asymmetric collisions

B flavour tagging

- Apart from proton valence quarks, all quarks are produced as qq pairs
- Same side tagging
 - Exploit qq connections of light quarks associated to b-quark under study
- Opposite side tagging
 - Exploit decay chain of other quark produced in bb pair

Charm flavour tagging

- Can distinguish D⁰ from D
 ⁰ in two ways:
- Prompt D*-tagged
 - Charge of soft pion from strong decay $D^{*+} \rightarrow D^0 \pi_{s^+}$
 - Larger yields
 - Background from D-from-B
- Charge of muon from semi-leptonic decay $B{\rightarrow}D^0\mu^{-}X$
 - Smaller yields (somewhat)
 - Larger level of combinatorial background
 - Independent systematic uncertainties
- Double-tagged
 - The best of both worlds
 - Smallest samples

Quantum-correlated states and Decay-time difference

- Neutral meson-antimeson pairs can be produced in quantumcorrelated decays
 - $\phi \rightarrow K^0 \overline{K}^0$, $\psi(3770) \rightarrow D^0 \overline{D}^0$, $Y(4S) \rightarrow B^0 \overline{B}^0$, $Y(5S) \rightarrow B_s^0 \overline{B}_s^0$
 - Decay of one meson in one flavour state determines the other meson to be in the opposite flavour state <u>at that</u> <u>moment in time</u>
 - Measure time evolution of the other meson with respect to that moment
 - $\Delta t = t_1 t_2$
 - Δt can take negative values

Belle II, PRD 110 (2024) 012001

Credit: Markus Röhrken

Continuum suppression

- At e+e- colliders can exploit precisely known beam energy:
 - E^{*}beam
- Need to separate resonant events, e.g. Y(4S), from continuum production
- For fully-reconstructed B decays expect difference of B energy to beam energy to be 0
 - $\Delta E = E^*_B E^*_{\text{beam}}$
- Beam-constraint mass peaks at B mass for fully reconstructed B momentum
 - $M_{\rm bc} = \sqrt{[E^*_{\rm beam}/c^2 (p^*_B/c)^2]}$

Impact parameters

- Impact parameter: shortest distance between straight line (particle trajectory) and point (primary vertex)
- Decay products of particles that fly macroscopic distances
 have non-zero impact parameters
 - Tell-tale indicator of heavy-flavour decays
 - Per-particle information available without decay reconstruction
- Impact parameters of decaying particles are indicate whether or not they come from preceding heavy flavour decay
 - Most relevant in charm physics
- Need to correct for decay-time bias

Impact parameters

- Impact parameter: shortest distance between straight line (particle trajectory) and point (primary vertex)
- Decay products of particles that fly macroscopic distances
 have non-zero impact parameters
 - Tell-tale indicator of heavy-flavour decays
 - Per-particle information available without decay reconstruction
- Impact parameters of decaying particles are indicate whether or not they come from preceding heavy flavour decay
 - Most relevant in charm physics
- Need to correct for decay-time bias

Particle identification

 $B \rightarrow hh'$ with PID requirements to identify pions

Particle identification

 $B \rightarrow hh'$ with PID requirements to identify pions

 $B \rightarrow hh'$ with PID requirements to identify kaons

- Current multi-purpose heavy flavour experiments are BESIII (IHEP), Belle II (KEK) and LHCb (CERN)
- e⁺e⁻ colliders have lower production rates, but can exploit more knowledge about production process
 - Resonant/quantum-correlated production possible
- pp colliders have access to all hadrons with large cross-sections, but more complex event topologies
- Flavour tagging and particle identification crucial for flavour physics