
5.1 The Relaxion

“The Relaxion” was proposed in 2015 [72].14 This approach uses symmetries in the under-
lying model, but the Higgs mass itself is not protected by a symmetry. Instead, dynamical
evolution of this Higgs mass in the early Universe halts at a point where it is tuned to be
much smaller than the cuto↵.

As described in [72], if the Higgs is a fundamental scalar then the hierarchy problem
relates to the fact that if we keep the theory fixed but change the Higgs mass, the point with
a small Higgs mass is not a point of enhanced symmetry. However, this may be a special
point with regard to dynamics, since this is the point where the SM fields become light.

The structure of the theory is relatively simple to write down and we will, as always, rely
on EFT arguments. Let us consider the SM as an e↵ective theory at the scale M , which is
the cuto↵ of the theory. Following the standard EFT rules we include all of the operators,
including non-renormalizable ones, consistent with symmetries. All dimensionful scales are
taken to the cuto↵ M . We add to this theory a scalar � which is invariant under a continuous
shift symmetry, � ! � + , where  is some constant. This shift symmetry only allows for
kinetic terms for �. We then add a dimensionful spurion g which breaks this shift symmetry.
As g is the only source of shift symmetry breaking then a selection rule may be imposed,
such that any potential terms for � will enter in the combination (g�/M2)n. Thus the theory
is written

L = LSM � M2|H|2 + g�|H|2 + gM2�+ g2�2 + ... (5.100)

where the ellipsis denote all of the other higher dimension terms and it should be understood
that the coe�cients of all the operators in eq. (5.100) could vary by O(1) factors and the
negative signs have been taken for ease of presentation.

The next step is to add an axion-like coupling of � to the QCD gauge fields

�

32⇡2f
G eG . (5.101)

This coupling is very special. As G eG is a total derivative, in perturbation theory eq. (5.101)
preserves the shift symmetry on �, thus it is consistent to include this operator without a
factor of g in the coupling. Perturbatively this operator will not generate any potential for
�, thus all of the shift-symmetry breaking terms involving g remain radiatively stable and it
is technically natural for them to be small. However, non-perturbatively the full topological
structure of the QCD vacuum breaks the shift symmetry � ! �+  down to a discrete shift
symmetry � ! �+ 2⇡fz, where z is an integer. Thus the complete story behind the model
is one of symmetries. � enjoys a shift symmetry which is broken to a discrete shift symmetry
by QCD e↵ects. The discrete shift symmetry is then broken completely by g.

Let’s see how this works. At first pass the field � is massless, and enjoys a shift symmetry
� ! � + f . This is the ‘nonlinear’ realisation of a U(1) symmetry, and so we identify � as
a Goldstone boson. Now let us return to the quarks and charge them under this symmetry,
such that they cannot have a bare mass term, but can only have a Yukawa interaction with
a complex scalar �, of which �/f is the phase, as enforced by the U(1) symmetry. Once the

14A similar idea was considered much earlier for the cosmological constant problem [141], and alternative
relaxation-based approaches to the hierarchy problem have also been explored [142,143] more recently.
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scalar obtains a vev, spontaneously breaking the symmetry, then we can see that the action
for the quarks becomes

L = i �µDµ +m e
i✓q  + h.c.+ (✓ + �/f)

g2

32⇡2
✏µ⌫↵�G

a

µ⌫
Ga

↵�
(5.102)

! i �µDµ +m e
i(✓q+✓+�/f)  + h.c. , (5.103)

where in the last line we performed an anomalous chiral rotation to move the QCD angle
into the quark mass term, and the hermitian conjugate is just an alternative way of writing
action without the �5 matrix.

The important point is that the Goldstone boson enters the action in just the same
way as the bare CP-violating angles. With only these terms this field would be the axion,
and we will refer to this U(1) symmetry as U(1)PQ, after Roberto Peccei and Helen Quinn,
who spotted that this global symmetry had very interesting implications for the strong-
CP problem. Since the axion has a shift symmetry, we may happily shift away the angles
� ! �� f(✓q + ✓) such that the action is simply

L = i �µDµ +m e
i�/f  + h.c. (5.104)

This is, of course, relating a shift of the axion field to a quark chiral field rotation! The overall
background value of the axion field h�/fi is now the total physical strong-CP phase. For
example, the neutron electric dipole moment is simply proportional to this value nEDM /
h�/fi. What should this value be?

Lets see what happens when the quarks condense and work now within the SM. We will
not include the neutral pion field, associated with the spontaneous breaking of the chiral
SU(2) symmetry, however one should consult [144] for a clear and up-to-date treatment
including the pions. The result in the SM for the approximation mu = md = mq is that
mqh  i = f 2

⇡
m2
⇡
, thus the action becomes

L = ei�/fhm   i + h.c. (5.105)

! f 2
⇡
m2
⇡
ei�/f + h.c. (5.106)

Thus the potential generated for the axion, within QCD, is

V (�) = �f 2
⇡
m2
⇡
cos

✓
�

f

◆
. (5.107)

Note that this is a very non-trivial result. We started with a global symmetry which was
spontaneously broken, leading to a massless Goldstone boson. However, this symmetry was
anomalous at the quantum level, under QCD. This means that although in perturbation the-
ory no mass would ever be generated for the axion, there was no obstruction to generating
a mass non-perturbatively, and this is precisely what has happened: The U(1)PQ symmetry
was not a true quantum symmetry of the theory, and when QCD became strongly coupled
non-perturbative e↵ects become large. Since these e↵ects need not respect the global sym-
metry, they need not respect the shift symmetry of the axion, and they can, and do, generate
a potential and a mass for the axion.

This becomes the crucial insight for the relaxion, since the �-potential generated by
QCD e↵ects depends on the light quark masses, which in turn depend on the Higgs vacuum
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Figure 12: Evolution of the relaxion field in the early Universe from a point where the
e↵ective Higgs mass-squared is postive (left), passing through zero (middle), and negative
(right).

expectation value and this will provide the dynamical back reaction. In practice this potential
is

VQCD ⇠ f 2
⇡
m2
⇡
cos�/f (5.108)

/ f 3
⇡
mq cos�/f (5.109)

/ f 3
⇡
�u,dh|H|i cos�/f . (5.110)

Let us now consider the vacuum structure of the theory for two values of �, including
also the e↵ect of the g-terms. If M2 � g� > 0 then the e↵ective Higgs mass-squared is
positive. QCD e↵ects will break electroweak symmetry, and quark condensation will lead
to a tadpole for the Higgs field, which will in turn lead to a very small vacuum expectation
value for the Higgs. Thus in this regime the axion potential of eq. (5.110) exists but is
extremely suppressed. If M2 � g� < 0 the e↵ective Higgs mass-squared will be negative and
the Higgs will obtain a vacuum expectation value, so the height of the axion potential will
grow proportional to the vev.

Cosmological Evolution

The general idea of the relaxion mechanism is sketched in fig. 12. Imagine at the beginning
of a period of inflation the relaxion field begins at values far from the minimum of the scalar
potential. We can, without loss of generality, take this to be at � = 0. Due to its potential
it will roll, with Hubble friction providing the necessary dissipation for this to occur in a
controlled manner. This Hubble friction can be understood from the equation of motion for
a scalar in an inflating background

@2
t
�+ 3H@t� ⇡ gM2 + ... , (5.111)

where the ellipsis denotes higher order terms in g. During inflation H = const, and this term
provides a constant source of friction, and for large H, one has a non-accelerating solution
to the equations of motion � ⇠ (gM2/3H)t. All the while the e↵ective Higgs mass-squared
is evolving.
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Once the e↵ective mass-squared passes through zero the Higgs will obtain a vacuum
expectation value and the axion potential of eq. (5.110) will turn on, growing linearly with
the Higgs vev. If the gradient of this potential becomes locally great enough to overcome
the gradient of the g-induced relaxion potential, i.e.

f 3
⇡

f
�u,dh|H|i > gM2 , (5.112)

then the relaxion will stop rolling and become stuck. Once it has become stuck the e↵ective
Higgs mass-squared has also stopped evolving. If g is taken to be appropriately small, then
this evolution will cease at a point where the Higgs vev is small h|H|i ⌧ M . As g is a
parameter which can take values that are naturally small, and g ends up determining the
final Higgs vev, a naturally small value for the weak scale may be generated.

If it could be taken at face value, the picture painted above is quite a beautiful portrait
involving SM and BSM symmetries and dynamics. QCD plays a crucial role in determining
the weak scale and solving the hierarchy problem. Only an axion-like field, already motivated
by the strong-CP problem, is added. Inflation, which is already required in cosmology, pro-
vides the dissipation required for solving the hierarchy problem. We even find an explanation
for some other puzzles in the SM, such as why there are some quark masses determined by
the weak scale which are nonetheless lighter than the QCD strong coupling scale. However,
as we will see, some puzzles remain to be understood, presenting a number of interesting
areas to explore on the theoretical front.

Parameter Constraints

To determine the viability of the relaxion mechanism it is necessary to consider any con-
straints on the theory. I will list them here.

• �� > M2/g: For the relaxion to scan the entire M2 of Higgs mass-squared it must
traverse this distance in field space.

• HI > M2/MP : Inserting the previous �� into the potential we find that the vacuum
energy must change by an amount �V ⇠ M4. For the inflaton to dominate the vacuum
energy during inflation we require VI > M4, which corresponds to the aforementioned
constraint on the Hubble parameter during inflation.

• HI < ⇤QCD: For the non-perturbative QCD potential to form, the largest instantons,
of size l ⇠ 1/⇤QCD, must fit within the horizon.

• HI < (gM2)1/3: Fluctuations in the relaxion field during inflation (due to finite Hubble)
must not dominate over the classical evolution if the theory is to predict a small weak
scale.

• Ne & H2
I
/g2: Inflation must last long enough for the relaxion to roll over the required

field range.

• gM2f ⇠ ⇤4
QCD

: It must be possible for a local minimum to form in the full relaxion
potential whenever the Higgs vev is at the observed electroweak scale.
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Combining these constraints it was found in [72] that the maximum allowed cuto↵ scale in
the theory is

M <

✓
⇤4M3

P l

f

◆1/6

⇠ 107 GeV ⇥
✓
109 GeV

f

◆1/6

. (5.113)

It is compelling that such a large hierarchy can be realised within the relaxion framework.
Let us now saturate eq. (5.113) and take f = 109 GeV to explore the other parameters of
the theory. In this limit we find

g ⇠ 10�26 GeV , �� ⇠ 1040 GeV , 5 ⇥ 10�5 GeV . HI . 0.2 GeV , Ne & 1043 .
(5.114)

All of these features are quite puzzling or unfamiliar. As such they may represent interest-
ing opportunities for continued theoretical investigation. The parameter g which explicitly
breaks the shift symmetry is extremely small. Recent work has shed some light on this
question [145]. On a related note, the required field displacement is not only large, it is
‘super-duper Planckian’ [146]. How such large field displacements can be accommodated by
a story involving quantum gravity remains to be fully understood.

With regard to the inflationary aspects, the Hubble parameter is much smaller than is
typical in inflationary models. The number of e-foldings is huge (remember the scale factor
grows during inflation by a factor ⇠ eNe). Although not a problem in principle, it may be
di�cult to realise a natural inflationary model with the appropriate slow-roll parameters
which reheats the Universe successfully and also accommodates the observed cosmological
parameters.

A more tangible puzzle arises in the simplest QCD model presented above, as it is already
excluded by experiment. In the electroweak breaking vacuum the full relaxion potential will
be minimized whenever

@Vg

@�
+
@VQCD

@�
= 0 , (5.115)

where Vg is the scalar potential generated from the terms which explicitly break the shift
symmetry, all originating from the parameter g, and VQCD is the axion-like potential coming
from the non-perturbative QCD e↵ects. Since the relaxion is stopped by QCD e↵ects before
it reaches the minimum of Vg, the first term in eq. (5.115) is non zero. This then implies that
the second term in eq. (5.115) must also be non-zero. By construction, VQCD is minimised
whenever the e↵ective strong-CP angle is zero, thus if it is not minimised the e↵ective strong-
CP angle must be non-zero. In fact, it is typically expected to be close to maximal if the
relaxion has stopped in one of the first minima that appears after the Higgs vev starts to
grow. This is in clear contradiction with experimental bounds on the strong-CP angle and
so the model must be extended, and a number of options have been proposed.

Summary

The relaxion is not yet a complete story, so it is perhaps premature to include it in a lecture
course. However, it was the first major step towards a radically di↵erent perspective on the
hierarchy problem, a perspective that may an important role in BSM theory for a long time
to come, so it is included in these lectures.
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