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Problem statement 

Given a (generally non-pure) thermal state of spin-

Is this state entangled, i.e. it cannot be written as

with and, if so, how much entangled is it?



Motivation
(Multipartite) entanglement is interesting: 

• Study of quantum correlations and complex phases

• Implementations in quantum simulation, sensing, communication

Need for entanglement detection and quantification

In most systems full-state tomography is not possible

Methods based on entanglement witnesses



Entanglement witnesses

𝑊

𝑊 ≥ 0 𝑊 < 0



𝑊

𝑊 ≥ 0 𝑊 < 0

Optimal entanglement witnesses



𝑊

𝑊 ≥ 0 𝑊 < 0

Nonlinear optimal entanglement witnesses



Spin-squeezing inequalities (SSIs) [1]:

Variance-based optimal entanglement witnesses

[1] G. Tóth et al., Phys. Rev. A 79, 042334 (2009)
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Witness-based entanglement monotones
Non-negative real functions of density matrices that are zero for all 
separable states and non-increasing under LOCC:

Example:  Best Separable Approximation (BSA)

: , 

Special cases: 

and   

target state separable
entangled

[2] F. G. S. L. Brandao, Phys. Rev. A 72, 022310 (2005)
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Bounds on the BSA
: , 

For a thermal state 
షಹ/೅

we can find

• A lower bound based on an entanglement witness

• An upper bound based on a separable ansatz state



Example:

Permutational invariance (PI): with 

Relevance: Thermal states of fully connected spin systems

Permutationally invariant spin states



Case study: Fully connected XXX model
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Interlude: Schur-Weyl duality

For ⊗ே acting on ே
ଶ ⊗ே we can factorize the Hilbert space 

ே ௌ
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where ௌ
ଶௌାଵ is the Hilbert space of a single spin- particle and ௌ

is the spin multiplicity.

With this, our density matrices also factorize
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The ௞
ଵ

ଶ
ே
௡ୀଵ ௞

௡ split into the sectors ௌ of the associated irrep of that 
contains PI states belonging to the representation of the symmetric group ே

Example: 

Case study: Fully connected XXX model
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Note:

𝑆 = 2

𝑆 = 1

𝑆 = 0



Lower bound: BSA for 
With : 

 

normalized witness



Interlude: calculations for large 
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[3] T. Curtright et al. , Phys. Lett. A 381 5, 0375-9601 (2017)
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With : 
 

Analogously for : 

Lower bound: BSA for 

Check:  [1] G. Tóth et al., Phys. Rev. A 79, 042334 (2009)
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Upper bound: separable state ansatz
Idea:

Ansatz based on states that are both PI and separable:

Target state: 
షಹ/೅

diagonal in basis of global spin 

 Ansatz states should also be diagonal 𝑆 = 2

𝑆 = 1

𝑆 = 0



How to obtain separable PI ansatz states I
Separable PI states can be written as

 
ಿ

Most general case: map the boundary of the set of separable states 
(spanned by pure states) into PI states:

ಿ



How to obtain separable PI ansatz states II
 For our PI model, we only need to find the coefficients corresponding 
to operators in each .

For an ansatz of product states of single particle states and a 
corrsponding they are
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which can be obtained from combinatorics and -dimensional SU(2) 
generators (or, equivalently, the Schur matrix).



Note: Equivalent method
Method: Write ansatz states as Werner states [4]:

ௐ
⊗ே

ௐ
⊗ே ற

஠ ஠஠∈𝔖𝔑
= ஛஛ ஛

We can characterize product states patterns using Gram matrices.
Example: ௑௑௑

ଵ ଶ ଷ

projectors into 
spin subspaces

coordinates of product 
states in spin subspaces

[4] R. F. Werner, Phys. Rev. A 40, 4277 (1989)

central young 
projectors

α஛ =
1

dim ℋ஛

d λ

N!
ImmλG ψଵ, … , ψ୒



Case study: XXX model

஛ୀ ସ

஛ୀ{ଷ,ଵ}

஛ୀ{ଶ,ଶ}

(𝑁 = 4):



BSA for the XXX model ( )

ୣ୬୲ ୱୣ୮

𝑝ଷ ∶ no  excitation 

𝑝ଶ ∶ single  excitation 

𝑝ଵ ∶ double  excitation 
𝑇



Results for the XXX model: 
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Results for the XXX model: 

𝐸

𝑁

𝑁



Other preliminary results and extensions
With this mechanism we can also obtain …
• Bounds for other models

• XX model: ଡ଼ଡ଼ ௫
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௬
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• Bounds for other entanglement monotones
• Similar results for GR

• Generalizations
• Entropy formulation
• More general method to obtain lower bound 
• Mixed states
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Outlook
We are also looking at

• Bounds for more complicated models (e. g. XYZ) and entanglement 
measures (relative entropy, geometric measure of entanglement)

• Extensions to non-Hermitian observables: 
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Summary: Bounds on entanglement monotones

For a thermal state 
షಹ/೅

we can find

• A lower bound based on an entanglement witness

• An upper bound based on a separable ansatz state


