Estimation of entanglement monotones in permutationally invariant spin systems

Julia Mathé (TU Wien)

Giuseppe Vitagliano (TU Wien)

Geometry of Quantum Dynamics 2024 (Siegen)

Ayaka Usui (UAB Barcelona)

August 29, 2024

Outline

- Entanglement detection and quantification
 - Entanglement witnesses
 - Entanglement monotones \rightarrow bounds
- Permutationally invariant spin systems
- Methods and results
 - Case study: XXX model
 - Other models and generalizations
- Outlook

Problem statement

Given a (generally non-pure) **thermal state** of N spin- $\frac{1}{2}$ particles

$$\varrho = \frac{e^{-H/T}}{Z}$$

Is this state entangled, i.e. it cannot be written as

$$\varrho_{\text{sep}} = \sum_{k} p_k \left(|\uparrow\uparrow\uparrow\uparrow\cdots\rangle\langle\uparrow\uparrow\uparrow\uparrow\cdots| \otimes \cdots \otimes |\downarrow\downarrow\uparrow\uparrow\cdots\rangle\langle\downarrow\downarrow\uparrow\uparrow\cdots| \right)$$

with $\sum_{k} p_k = 1$, and, if so, **how much entangled** is it?

Motivation

(Multipartite) entanglement is interesting:

- Study of quantum correlations and complex phases
- Implementations in quantum simulation, sensing, communication
- \rightarrow Need for entanglement detection and quantification

In most systems full-state tomography is not possible

→ Methods based on *entanglement witnesses*

Nonlinear optimal entanglement witnesses

Variance-based optimal entanglement witnesses

[1] G. Tóth et al., Phys. Rev. A 79, 042334 (2009)

Witness-based entanglement monotones

Non-negative real functions of density matrices that are zero for all separable states σ and non-increasing under LOCC:

$$\varepsilon_M = \max\{0, -\min_{W \in M} \operatorname{tr}(W\varrho)\} \quad [2]$$

Example: Best Separable Approximation (BSA)

$$BSA(\varrho) = \min(t) : \varrho = (1 - t)\sigma + t v, \quad t \in [0,1]$$

target state separable entangled

$$t = 0 \rightarrow \varrho = \sigma$$
 and $t = 1 \rightarrow \varrho = v$

[2] F. G. S. L. Brandao, Phys. Rev. A 72, 022310 (2005)

Bounds on the BSA

 $BSA(\rho) = \min(t) : \rho = (1 - t)\sigma + t\nu, t \in [0,1]$ For a thermal state $\rho = \frac{e^{-H/T}}{Z}$ we can find • A lower bound based on an entanglement witness $BSA(\rho) \ge \max\{0, -\langle W \rangle\}$ An upper bound based on a separable ansatz state $BSA(\varrho) \leq BSA(\sigma)$ $\sigma = \sum_{k} p_{k} \left(|\uparrow\uparrow\uparrow\uparrow\cdots\rangle\langle\uparrow\uparrow\uparrow\uparrow\cdots| \otimes \cdots \otimes |\downarrow\downarrow\uparrow\uparrow\cdots\rangle\langle\downarrow\downarrow\uparrow\uparrow\cdots| \right)$ $T_{\rm sep}$ $T_{\rm ent}$ T = 0

Permutationally invariant spin states

Example:

$$\bigcirc \bigcirc \bigcirc \qquad \left(\widehat{1} \widehat{1} \underbrace{1} \underbrace{1} \widehat{1} \right) / \sqrt{2}$$

Permutational invariance (PI): $U_{\pi}\varrho U_{\pi}^{\dagger} = \varrho$ with $\pi \in \mathfrak{S}_N$

Relevance: Thermal states of fully connected spin systems

Case study: Fully connected XXX model

$$H_{\rm XXX} = g \left(S_x^2 + S_y^2 + S_z^2 \right)$$

with $S_k = \sum_{n=1}^N \frac{1}{2} \sigma_k^{(n)}$ and g = 1 in the upcoming calculations

Interlude: Schur-Weyl duality

For $A^{\otimes N}$ acting on $\mathcal{H}_N = (\mathbb{C}^2)^{\otimes N}$ we can factorize the Hilbert space

$$\mathcal{H}_N = \bigoplus_{S=0}^{N/2} \mathcal{H}_S \otimes \mathbb{C}^{\mu_S}$$

where $\mathcal{H}_S = \mathbb{C}^{2S+1}$ is the Hilbert space of a single spin- S particle and μ_S is the spin multiplicity.

With this, our density matrices also factorize

$$\varrho = \bigoplus_{S=0}^{N/2} p_S \, \varrho_S \otimes \frac{1}{\mu_S} \mathbb{1}_{\mu_S}$$

Case study: Fully connected XXX model

$$H_{\text{XXX}} = g\left(S_x^2 + S_y^2 + S_z^2\right) = \bigoplus_{S=0}^{N/2} S(S+1) \mathbb{1}_S \otimes \mathbb{1}_{\mu_S}$$

with $S_k = \sum_{n=1}^N \frac{1}{2} \sigma_k^{(n)}$ and $g = 1$ in the upcoming calculations

N/2

The $S_k = \sum_{n=1}^{N} \frac{1}{2} \sigma_k^{(n)}$ split into the sectors \mathcal{H}_S of the associated irrep of SU(2) that contains PI states belonging to the representation of the symmetric group S_N .

Example:
$$N = 4$$

Note:
 $\mathcal{H}_{\lambda} \leftrightarrow \mathcal{H}_{S}$
 $|S| = 1$
 $|S| = 0$
 $\lambda = \{4\}$
 $|S| = 1$
 $\lambda = \{3,1\}$
 $|S| = 0$
 $\lambda = \{2,2\}$

Lower bound: BSA for H_{XXX}

With $W = \langle H \rangle - N/2$: $BSA(\varrho) \ge \max\{0, -\frac{2W}{N}\}$

Interlude: calculations for large N

$$Z(T) = \sum_{S=0}^{N/2} \mu_S(2S+1)e^{-gS(S+1)/(TN)} \qquad \langle H \rangle = \sum_{S=0}^{N/2} \mu_S(2S+1)S(S+1)e^{-gS(S+1)/(TN)}$$
$$= -\frac{N}{g}\partial_\beta \log(Z(\beta)), \beta = 1/T$$

Multiplicity:

$$\mu_S = \binom{N}{N/2-S} - \binom{N}{N/2-S-1}$$
$$\mu_x \approx (1+2x) e^{-2x(x+1)/N}$$
[3]

 $\rightarrow Z(T) = \int_0^\infty dx \, (2x+1) \mu_x e^{-gx(x+1)/(TN)}$

[3] T. Curtright et al., Phys. Lett. A 381 5, 0375-9601 (2017)

Lower bound: BSA for H_{XXX} With $W = \langle H \rangle - N/2$: $BSA(\varrho) \ge \max\{0, -2W/N\}$ $\rightarrow BSA(T) \ge \max\left\{0, 1 - \frac{3}{g/T + 2}\right\}$ T = 0: T = 0: $T_{ent}/N = g$: BSA(0) = 1 $BSA(T_{ent}) = 0$

Analogously for $H_{XX} = g \left(S_x^2 + S_y^2\right)$: $T_{ent}/N = g/2$

Check: [1] G. Tóth et al., Phys. Rev. A 79, 042334 (2009)

Upper bound: separable state ansatz

Ansatz based on states that are both PI and separable:

$$\sigma = \sum_{k} p_{k} \left(|\uparrow\uparrow\uparrow\uparrow\cdots\rangle\langle\uparrow\uparrow\uparrow\uparrow\cdots| \otimes \cdots \otimes |\downarrow\downarrow\uparrow\uparrow\cdots\rangle\langle\downarrow\downarrow\uparrow\uparrow\cdots| \right)$$

Target state: $\rho = \frac{e^{-H/T}}{Z}$ diagonal in basis of global spin $|S S_Z \mu_S\rangle$

 \rightarrow Ansatz states should also be diagonal

How to obtain separable PI ansatz states I

Separable PI states can be written as

$$\varrho_{\mathrm{PI}}^{\mathrm{sep}} = \frac{1}{N!} \sum_{\pi \in \mathfrak{S}_N} U_{\pi} \left(\sum_k p_k (|\uparrow\uparrow\cdots\rangle\langle\uparrow\uparrow\cdots| \otimes \cdots \otimes |\downarrow\uparrow\cdots\rangle\langle\downarrow\uparrow\cdots|)_k \right) U_{\pi}^{\dagger}$$

Most general case: map the boundary of the set of separable states (spanned by pure states) into PI states:

$$\varrho_{\mathrm{PI}}^{\mathrm{boundary}} = \frac{1}{N!} \sum_{\pi \in \mathfrak{S}_N} U_{\pi} \left(|\uparrow \uparrow \cdots \rangle \langle \uparrow \uparrow \cdots | \otimes \cdots \otimes |\downarrow \uparrow \cdots \rangle \langle \downarrow \uparrow \cdots | \right) U_{\pi}^{\dagger}$$

How to obtain separable PI ansatz states II

 \rightarrow For our PI model, we only need to find the coefficients corresponding to operators in each \mathcal{H}_S .

For an ansatz of product states of N single particle s_z states and a corresponding S_z they are

$$\alpha_{S,S_Z}^{m_1,\ldots,m_N} = \sum_{i_S} |\langle m_1,\ldots,m_N|S,S_Z,i_S\rangle|^2$$

which can be obtained from combinatorics and d-dimensional SU(2) generators (or, equivalently, the Schur matrix).

Note: Equivalent method

[4] R. F. Werner, Phys. Rev. A 40, 4277 (1989)

Case study: XXX model

BSA for the XXX model (N = 4)

Results for the XXX model: $\frac{T}{N}$ 25 20 n-2 15 $\frac{T}{N}$ Tent Tsep \bigcirc 10 10 20 30 40 50 Ν

 $E = \langle H \rangle / T + \log(Z)$

Other preliminary results and extensions

With this mechanism we can also obtain ...

- Bounds for other models
 - XX model: $H_{XX} = g(S_x^2 + S_y^2)$
 - XXZ model: $H_{XXZ} = g(S_x^2 + S_y^2) + hS_z^2$

$$\frac{T_{\text{ent}}}{N} = c_1, \frac{T_{\text{sep}}}{N} \sim c_2 N$$

- Models undergoing some dynamics, e.g. $H(\tau) = g(S_x^2 + S_y^2) + h(\tau)S_z^2$
- Bounds for other entanglement monotones
 - Similar results for GR
- Generalizations
 - Entropy formulation
 - More general method to obtain lower bound
 - Mixed states

Outlook

We are also looking at

- Bounds for more complicated models (e.g. XYZ) and entanglement measures (relative entropy, geometric measure of entanglement)
- Extensions to non-Hermitian observables:

$$(N-1)\sum_{k\in I} \left(\tilde{\Delta}J_k(q_k)\right)^2 - \sum_{k\notin I} \left\langle \tilde{J}_k^2(q_k) \right\rangle + N(N-1)j^2 \ge 0$$
$$J_k^{(m)}(q_k) = \sum_{n=1}^{k_m} e^{-iq_k n} j_k^{(n)}, \qquad \left\langle \tilde{J}_k^2(q_k) \right\rangle \coloneqq \left\langle J_k^2(q_k) \right\rangle - \sum_n \left\langle \left(j_k^{(n)}\right)^2 \right\rangle = \sum_{n\neq m} e^{iq_k(n-m)} \left\langle j_k^{(n)} j_k^{(m)} \right\rangle$$

Summary: Bounds on entanglement monotones

$$\varepsilon_{M} = \max\{0, -\min_{W \in M} \operatorname{tr}(W\varrho)\}$$

For a thermal state $\varrho = \frac{e^{-H/T}}{Z}$ we can find
•A lower bound based on an entanglement witness
 $\varepsilon_{M}(\varrho) \ge \max\{0, -\langle W \rangle\}$
•An upper bound based on a separable ansatz state
 $\varepsilon_{M}(\varrho) \le \varepsilon_{M}(\sigma)$
 $\sigma = \sum_{k} p_{k} (|\uparrow\uparrow\uparrow\uparrow\cdots\rangle\langle\uparrow\uparrow\uparrow\uparrow\cdots| \otimes \cdots \otimes |\downarrow\downarrow\uparrow\uparrow\cdots\rangle\langle\downarrow\downarrow\uparrow\uparrow\cdots|)$
 $\max\{0, -\langle W \rangle\}$ $\varepsilon_{M}(\sigma)$