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Quantum uncertainty relations

Heisenberg uncertainty relation

∆x ·∆p ≥ ℏ
2π

Pauli observable uncertainty

∆X +∆Y +∆Z ≥ 2

where
∆Ô = ⟨Ô2⟩ϱ − ⟨Ô⟩2ϱ

▶ Non-commuting operators cannot be simultaneously measured.

▶ How to find such relations systematically?
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Generalizing the Pauli uncertainty

▶ Operators {Ai}ni=1 and χij ∈ {0, 1} such that

AiAj = (−1)χijAjAi , Ai = A†
i , A2

i = 1

▶ Encode relations in graph:

i ∼ j if AiAj = −AjAi

Example

A1 = {XZIII , IXZII , IIXZI , IIIXZ ,ZIIIX}
A2 = {XIX ,ZXI , IZX ,ZZZ ,ZIX}

▶ Same anti-commutativity graph

▶ Same uncertainty relation∑
A∈A1

∆A =
∑

A′∈A2

∆A′ ≥ |A| −
∑
A∈A

⟨A⟩2ϱ = n − β

(reversible Clifford circuit connects sets A1 and A2)
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Aim: determine β

Operators {Ai}ni=1 and χij ∈ {0, 1} such that

AiAj = (−1)χijAjAi , Ai = A†
i , A2

i = 1

Aim: determine
β = sup

ϱ,H,Ai

n∑
i=1

⟨Ai ⟩2ϱ

Then
∑

i ∆Ai ≥ n − β is a tight additive uncertainty relation.

▶ To find β, use NPA hierarchy
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Navascués-Pironio-Aćın hierarchy / quantum Lasserre

▶ Goal: find largest eigenvalue of a non-commutative expression
under constraints, e.g. max tr(Pϱ), P a polynomial.

▶ Applications: Bell inequalities, bounds on ground state energy

Key idea: index a moment matrix with monomials in operators
(X1, . . . ,Xn) up to some degree ℓ, M(P,Q) = ⟨P†Q⟩

Example
Two operators A,B

M =



1 A B A2 AB ...

1 ⟨1⟩ ⟨A⟩ ⟨B⟩ ⟨A2⟩ ⟨AB⟩
A ⟨A†A⟩ ⟨A†B⟩ ⟨A†A2⟩ ⟨A†AB⟩
B ⟨B†B⟩ ⟨B†A2⟩ ⟨B†AB⟩
A2 ⟨(A2)†A2⟩ ⟨(A2)†AB⟩
AB ⟨(AB)†AB⟩
...

. . .


⪰ 0
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Navascués-Pironio-Aćın hierarchy (II)

M =



1 A B A2 AB ...

1 ⟨1⟩ ⟨A⟩ ⟨B⟩ ⟨A2⟩ ⟨AB⟩
A ⟨A†A⟩ ⟨A†B⟩ ⟨A†A2⟩ ⟨A†AB⟩
B ⟨B†B⟩ ⟨B†A2⟩ ⟨B†AB⟩
A2 ⟨(A2)†A2⟩ ⟨(A2)†AB⟩
AB ⟨(AB)†AB⟩
...

. . .


⪰ 0 ,

▶ Apply constraints from observable relations:
M(P,Q) = M(R,S) if P†Q = R†S

▶ Objective function is linear combination of entries.

▶ Maximize over all matrices M ⪰ 0 satisfying the constraints.

Problem: β =
∑n

i=1⟨Ai ⟩2 is quadratic in the entries!
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DPS/symmetric extension hierarchy

Idea: Use the Doherty-Parrilo-Spedalieri / symmetric extension
hierarchy to get quadratic terms.

Quantum de Finetti theorem: Given k-partite ϱk . If for all n ∈ N,
there exists ϱn such that πϱnπ

−1 = ϱn for all π ∈ Sn and

trn\k(ϱn) = ϱk

then

ϱk =

∫
ϱ⊗kdµ(ϱ)

▶ Approximate M⊗2 by a hierarchy of trn\2(Mn)

Mn(P,Q;E ,F ; . . . ;K , L) = ⟨P†Q⟩⟨E †F ⟩ · · · ⟨K †L⟩

▶ Convergerging sequence of upper bounds on β =
∑

i ⟨Ai ⟩2.
“Scalar extension” Pozas et al 2017, “State polynomial optimization” Klep et al 2023
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In practise: relaxations

Useful relaxation: Index moment matrix with entries ⟨A†
i ⟩Ai ,

Γij = ⟨A†
i ⟩⟨Aj⟩⟨AiA

†
j ⟩

Γ =


1 ⟨A1⟩A†

1 ... ⟨An⟩⟩An

1

⟨A1⟩A†
1

...
⟨An⟩A†

n

 ⪰ 0 ,

Properties:

▶ Γ00 = ⟨1⟩ = 1

▶ Γii = Γi0 = ⟨A†
i ⟩⟨Ai ⟩⟨AiA

†
i ⟩ = ⟨A†

i ⟩⟨Ai ⟩
▶ max

∑n
i=1 Γii approximates β

▶ If Γ has these properties, then so has Re(Γ) = (Γ + ΓT )/2
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Theta body

Optimization is over set

TH(G ) =
{
diag(M)

∣∣ (1 xT

x M

)
⪰ 0 , xi = Mii ∀i ,Mij = 0 if i ∼ j

}
.

with i ∼ j if AiAj = −AjAi

▶ TH(G ) is also known as the theta body of G .

▶ Maximum over sum of TH(G ) is the Lovász theta number.

This gives the bound

α(G ) ≤ β ≤ ϑ(G )

where the lower bound is the independence number α.

Hastings/O’Donnel 2021, De Gois et al 2022
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Stronger relaxations

Index by k products of ⟨A†
i ⟩Ai

▶ Efficiently computable
bounds

α ≤ β ≤ ϑk ≤ · · · ≤ ϑ1

where α is the independence
number of a graph.

▶ Generalizes to arbitrary
operators (qudits. . . )

1 2 3 4 5 6 7 8

#1 2.2361 3.2361 2.2361 2.2361 2.2361 4.2361 3.2361 3.2361
#2 2.0000 3.0000 2.0000 2.0000 2.0000 4.0000 3.0000 3.0000
↵ 2 3 2 2 2 4 3 3

9 10 11 12 13 14 15 16

#1 3.2361 3.2361 3.2361 3.2361 3.2361 3.2361 3.2361 3.2361
#2 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
↵ 3 3 3 3 3 3 3 3

17 18 19 20 21 22 23 24

#1 3.2361 3.1966 3.0642 3.3177 3.2361 3.1966 3.2361 3.1966
#2 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000
↵ 3 3 3 3 3 3 3 3

25 26 27 28 29 30 31 32

#1 2.2361 2.2361 2.2361 2.2361 2.2361 2.2361 2.2361 2.2361
#2 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
↵ 2 2 2 2 2 2 2 2

33 34 35 36 37 38 39 40

#1 2.2361 2.2361 2.2361 2.2361 2.2361 2.2361 2.2361 2.2361
#2 2.0363 2.0056 2.0085 2.0033 2.0249 2.0392 2.0121 2.0024
#3 2.0067 2.0004 2.0017 2.0000 2.0047 2.0052 2.0006 2.0000
#7 2.0013 2.0000 2.0003 2.0000 2.0014 2.0011 2.0002 2.0000
↵ 2 2 2 2 2 2 2 2

41 42 43

#1 2.2361 2.2361 2.1099
#2 2.0910 2.0000 2.0950
#3 2.0076 2.0000 2.0938
#7 2.0024 2.0000 2.0938
↵ 2 2 2

Moisés Morán, FH, PRL 132, 200202 (2024)
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Outlook

▶ When is α = β?
See Xu/Schwonnek/Winter PRX Quantum 5 (2), 020318
(2024)

▶ Position-momentum uncertainty also holds classically.
A theory for distinguishing classical from quantum uncertainty
/ moment inequalities?

For example, classically for all measures µ(∫
x4y2 dµ

)(∫
x2y4 dµ

)
−

(∫
x2y2 dµ

)3
≥ 0

Klep et al. 2024

What is the quantum bound?

▶ Other interesting non-linear expressions in QIT?
−→ Quantum Error correcting codes :)
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Quantum computing

Blatt laboratory, Abobeih et al. 2022

▶ Information is physical (atoms, photons, electric charges . . . )
▶ Quantum physics is noisy / quantum information is fragile
▶ Quantum information cannot be treated classically

(state collapse, no-cloning, continuity of states & errors)

. . . we need a way to protect quantum states from noise
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Quantum error-correcting codes

▶ A quantum code encodes quantum information (e.g. a qubit)
redundantly. The encoded state can be recovered after being
affected by noise.

▶ Quantum codes form the backbone of quantum computers:
allow for fault-tolerant processing of quantum information.

Example
α |0⟩+ β |1⟩ 7→ α |000⟩+ β |111⟩

▶ circumvents no-cloning.

▶ discretization of errors.
(detect single flip by measurement of ZZI ,ZIZ , IZZ )

▶ syndrome measurement collapses state onto code subspace.
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Conditions for quantum error correction

▶ Code is a subspace (C2)⊗n, represented by a projector Π.

▶ Noise acts as a quantum channel on a state ϱ

N (ϱ) =
∑
Eµ∈N

Eµ(ϱ)E
†
µ

where
∑

µ E
†
µEµ = 1.

▶ Knill-Laflamme conditions: N can be corrected on Π, iff

ΠE †
µEνΠ = cµνΠ

for all Eµ,Eν ∈ N.

▶ Think of this as a type of sphere packing: equivalent to

⟨ϕ|EµEν |ψ⟩ = cµν ⟨ϕ|ψ⟩

for all Eµ,Eν ∈ N. and |ϕ⟩ , |ψ⟩ ∈ ran(Π).
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Error basis

Our goal: correct all tensor-product errors of at most weight δ.

The Pauli matrices form a basis for complex 2× 2 matrices.

I =

(
1 0
0 1

)
, Y =

(
0 −i
i 0

)
X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

)
▶ Tensor-product basis

En =
{
Eα = eα1 ⊗ . . .⊗ en | ei ∈ {I ,X ,Y ,Z}

}
▶ Weight wt(Eα) is the number of coordinates where Eα acts

non-trivially. E.g. wt(IXIZZ ) = 3
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Fundamental question in (quantum) coding theory

A ((n,K , δ)) quantum code is then a projector Π on (C2)⊗n of
rank K , such that

ΠE †
aEbΠ = cabΠ

for all Ea,Eb ∈ En with wt(E †
aEb) < δ.

▶ A code is pure, if cab ∝ tr(EaEb) for 1 < wt(E †
aEb) < δ.

(maximally mixed marginals)
▶ A code is self-dual if K = 1 and the code is pure.

Question
For a given block length n and distance d , what is the maximal
size K for quantum codes ((n,K , d))D on n quDits?

▶ Linear programming bounds

▶ Analytical bounds (q. Singleton)

▶ SDP bounds. . . ?
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Contributions

Result (A)

A quantum code with parameters ((n,K , δ))2 exists if and only if a
certain SDP hierarchy is feasible at every level.

Result (B)

The Lovász number bounds the existence of self-dual quantum
codes. A symmetrization recovers the quantum Delsarte bound.

Result (C)

There is an SDP of size O(n4) based on the Terwilliger algebra.
Codes with parameters ((7, 1, 4))2, ((8, 9, 3))2, and ((10, 5, 4))2 do not
exist.
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An attempt: Stabilizer codes

▶ Stabilizer group S = ⟨g1, . . . , gn−k⟩, −1 ̸∈ S , gi generators.

▶ Projector onto the code subspace

Π =
1

2n−k

n−k∑
i=1

(1+ gi ) =
1

2n−k

∑
s∈S

s

▶ Simplest case: graph states gi = Xi
⊗

j∈N(i) Zj

▶ Commutative group: [gi , gj ] = 0 for all gi , gj .

Is there a stabilizer code with K = 1 with distance δ
(i.e. a δ − 1-uniform graph state)?

▶ Need maximal commuting subgroup of Pauli group.

▶ If EaEb = −EbEa, then not both can be in S .

▶ If 1 < wt(Ea) < δ, then Ea is not in S .
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Independence number

Independence number (maximum size of disconnected set)

α = max
H⊂V

|H| s.t. (i , j) ̸∈ E for all i , j ∈ H

▶ It is known that α(G ) ≤ θ(G )

▶ ϑ is efficiently computable, α is not
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Lovász bound for stabilizer codes

▶ Index by “Pauli cube”:
En,δ = {Ea ∈ En | wt(Ea) ≥ δ}

▶ Confusability graph:
a ∼ b if EaEb = −EbEa.

▶ If a self-dual stabilizer code with
distance δ exists, then there is an
independent set of size α = 2n

▶ As a consequence: 2n ≤ 1 + ϑ(G ).

II XI

XX

YXZX

ZI YI

IX
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Lovász bound for all quantum codes

Key idea (c.f. uncertainty relations)

▶ Write ⟨Ea⟩ for tr(Eaϱ) with ϱ = Π/K .

▶ Construct moment matrix Γab = ⟨E †
a ⟩⟨Eb⟩⟨EaE

†
b⟩ for Eα ∈ En,

Γ =


1 ⟨E1⟩E†

1 ··· ⟨EN⟩E†
N

1 1 Γ01 · · · Γ0N
⟨E1⟩E†

1 Γ11 . . . Γ1N
...

. . .
...

⟨EN⟩E†
N ΓNN

 ⪰ 0 ,

▶ For two qubits, one would index with
⟨II ⟩II , ⟨IX ⟩IX , . . . , ⟨YZ ⟩YZ , ⟨ZZ ⟩ZZ .
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Lovász bound for all quantum codes (II)

Γ =


1 ⟨E1⟩E†

1 ··· ⟨EN⟩E†
N

1 1 Γ01 · · · Γ0N
⟨E†

1 ⟩E1 Γ11 . . . Γ1N
...

. . .
...

⟨E†
N⟩EN ΓNN

 ⪰ 0 ,

N = 4n − 1

Consider K = 1. Then:

▶ Γ00 = ⟨1⟩ = 1

▶ Γab = Γa0 = ⟨Ea⟩2

▶
∑N

a=0 Γaa = 2n, corresponding to tr(ϱ2) = 1.

Note: If Γ is a valid moment matrix, then so is (Γ + ΓT )/2.
Impose extra condition:

▶ Γab = 0 if EaEb = −EbEa.
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Lovász bound for all quantum codes (III)

This corresponds to a hyperplane in the theta body

TH(G ) =
{
diag(M)

∣∣ (1 xT

x M

)
⪰ 0 , xa = Maa ∀a ,Mab = 0 if a ∼ b

}
.

where the quantum confusability graph has En\1 as vertices and

a ∼ b if

{
0 < wt(EaEb) < δ or

EaEb = −EbEa

a ∼ a if 0 < wt(Ea) < δ

Lovász bound on self-dual quantum codes

If a ((n, 1, δ)) code exists, then
b) TH(G ) contains an element with 2n = 1+

∑N
a=1Maa and

a) 2n ≤ ϑ(G ) + 1

▶ Already excludes the ((4, 1, 3)) code / four-qubit AME state.
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Symmetry-reduction

This scales badly: Pauli cube has 4n elements!

▶ Average Γ over all row and column permutations which keep
triples of weights i = wt(Ea), j = wt(Eb), and k = wt(E †

aEb)
invariant.

▶ The resulting matrix

Γ̃ =
∑

π∈Aut0

πΓπ−1

can be block-diagonalized with the Terwilliger algebra.

▶ This results in an SDP of size O(n4).

Gijswijt, Schrijver, Tanaka, J. Comb. Theory, A 113, 8, 2006, 1719-1731

−→ Efficiently computable Lovasz bounds!
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Complete SDP hierarchy for code existence

1. Formulate the Knill-Laflamme conditions ΠEaEbΠ = cabΠ as

K
∑
E∈En

wt(E)=j

tr(EϱE †ϱ) =
∑
E∈En

wt(E)=j

tr(Eϱ) tr(E †ϱ)

for j < δ. (In short: KBj = Aj for j < δ)

2. State polynomial optimization: Consider non-commutative
letters {xi}. Form words w = xj1 . . . xjk . Associate
expectations ⟨w⟩ behaving as v⟨w⟩ = ⟨w⟩v and
⟨v⟨w⟩⟩ = ⟨v⟩⟨w⟩. State monomials have the form
wi1⟨wi2⟩ . . . ⟨wim⟩. Use Positivstellensatz for positive state
polynomials / corresponding moment hierarchy.
(Note: Γ from above is an intermediate level!) Klep et al. 2023

▶ This recovers RHS in above condition. LHS. . . ?
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letters {xi}. Form words w = xj1 . . . xjk . Associate
expectations ⟨w⟩ behaving as v⟨w⟩ = ⟨w⟩v and
⟨v⟨w⟩⟩ = ⟨v⟩⟨w⟩. State monomials have the form
wi1⟨wi2⟩ . . . ⟨wim⟩. Use Positivstellensatz for positive state
polynomials / corresponding moment hierarchy.
(Note: Γ from above is an intermediate level!) Klep et al. 2023

▶ This recovers RHS in above condition. LHS. . . ?
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Complete SDP hierarchy (II)

3. Use the quantum MacWilliams identity

B(x , y) = A
(x + 3y

2
,
x − y

2

)
,

where A(x , y) =
∑n

j=0 Aj(Π)x
n−jy j and likewise for B(x , y).

4. Hierarchy is dimension-free: restrict to qubits by
characterization of quasi-Clifford algebras with generator
relations αiαj = (−1)χijαjαi , χij ∈ {0, 1} and α2

i = 1.
Gastineau-Hills 1982

5. Impose that ϱ = Π/K : use swap-like constraints,

tr(ϱm) = tr
(
(1, 2, . . . ,m)ϱ⊗m

)
=

1

Km−1

expanded in Pauli matrices.
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Applications

▶ Averaging the Lovász bound over distance-preserving
automorphism leads to the quantum Delsarte bound,

η = max
n∑

j=0

Aj ,

subject to A0 = 1 , Aj ≥ 0 with equality for 1 < j < δ ,
n∑

i=0

Kj(i)Ai ≥ 0 for j = 0, . . . , n .

If η < 2n, then code does not exist.

▶ Hierarchy with O(n4) scaling: Average over distance and
zero-preserving autormorphisms. Symmetry-reduce using the
4-ary Terwilliger algebra. Gijswijt, Schrijver, Tanaka 2006

▶ Infeasibility certificates for ((7, 1, 4)), ((8, 9, 3)), ((10, 5, 4))
codes.
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Contributions

▶ Complete hierarchies of SDP bounds for uncertainty relations
and the existence of quantum codes.

▶ Quantum analogies of the classical Lovász and Delsarte bounds.
▶ Numerically practical relaxations.
▶ Flexibility of applications, formally dimension-free: extensions

to qudit codes & more general confusability graphs possible.
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G. Munné, A. Nemec, FH, SDP bounds on quantum codes,
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Outlook

▶ Other applications for non-linear expressions in expectations?

▶ A theory for classical vs quantum moments?

▶ More general settings: quantum capacity of a graph?

▶ Rational certificates for exact non-existence proof.
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