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Quantum uncertainty relations

Heisenberg uncertainty relation

AX~ApZ£
2T

Pauli observable uncertainty
AX +AY +AZ >2

where

N N

AO = (0?), - (0)?

2/29



Quantum uncertainty relations

Heisenberg uncertainty relation

AX~ApZ£
2T

Pauli observable uncertainty
AX +AY +AZ >2

where

N N

AO = (0?), - (0)?

» Non-commuting operators cannot be simultaneously measured.

» How to find such relations systematically?
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Generalizing the Pauli uncertainty

» Operators {A;}7_; and xj; € {0,1} such that
AA = (C1)NGAA, A=A, A =1

» Encode relations in graph:

i~ if AA = —AA;
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Generalizing the Pauli uncertainty

» Operators {A;}7_; and xj; € {0,1} such that
AA = (C1)NGAA, A=A, A =1
» Encode relations in graph:
i~j if AA = —-AA;
Example

Ay = A{XZIIl, IXZI 1TXZI, 1IXZ, ZIHEX )
Ao ={XIX, ZXI,1ZX,ZZZ, ZIX }

» Same anti-commutativity graph

» Same uncertainty relation

S AA= DY AN A=Y (A =n-38

Ac A Alc A, AcA
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Generalizing the Pauli uncertainty

» Operators {A;}7_; and xj; € {0,1} such that
AA = (C1)NGAA, A=A, A =1
» Encode relations in graph:
i~j if AA = —-AA;
Example

Ay = A{XZIIl, IXZI 1TXZI, 1IXZ, ZIHEX )
Ao ={XIX, ZXI,1ZX,ZZZ, ZIX }

» Same anti-commutativity graph

» Same uncertainty relation
S AA= DY AN A=Y (A =n-38
Ac Ay Ale A AcA

(reversible Clifford circuit connects sets A; and Ap)
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Aim: determine (8

Operators {A;}7_; and xj; € {0, 1} such that
AA = (“1)9AA;, A=A A2=1

1

Aim: determine n

B=sup > (A

Q’H7Ai i=1

Then >, AA; > n— (3 is a tight additive uncertainty relation.

» To find 3, use NPA hierarchy
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Aim: determine (8

Operators {A;}7_; and x;; € {0,1} such that
AA = (“1)9AA;, A=A A2=1

1

Aim: determine n

B=sup > (A)

o, H,A; i=1
Then >, AA; > n— (3 is a tight additive uncertainty relation.
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Navascués-Pironio-Acin hierarchy / quantum Lasserre

P> Goal: find largest eigenvalue of a non-commutative expression
under constraints, e.g. max tr(Pg), P a polynomial.
» Applications: Bell inequalities, bounds on ground state energy

Key idea: index a moment matrix with monomials in operators
(X1,...,Xp) up to some degree ¢, M(P, Q) = (PTQ)

Example
Two operators A, B
1 A B A2 AB
v [ (L (A (B) (A%) (AB)
A (ATA)  (ATB)  (ATA?) (ATAB)
B (BTB)  (BTA?) (BYAB)
M= » (A)TA%) (A% AB) =0
((AB)'AB)

AB
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Navascués-Pironio-Acin hierarchy (I1)

r [ (1) (A (B) (A%) (AB)
A (ATA)  (ATB)  (ATA%) (ATAB)
B (BtB)y (B'A?) (BTAB)
Moo= » (A%)TA%)  ((A*)'AB) z0,

AB ((AB)'AB)

» Apply constraints from observable relations:
M(P,Q) = M(R,S) if PTQ = R{S
» Objective function is linear combination of entries.

» Maximize over all matrices M > 0 satisfying the constraints.

Problem: 8= >""_,(A;)? is quadratic in the entries!
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DPS/symmetric extension hierarchy

Idea: Use the Doherty-Parrilo-Spedalieri / symmetric extension
hierarchy to get quadratic terms.

Quantum de Finetti theorem: Given k-partite of. If for all n € IN,
there exists g, such that mp,7~! = p, for all 7 € S, and

trok(on) = ok

then

ok = /@®kdu(9)
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DPS/symmetric extension hierarchy

Idea: Use the Doherty-Parrilo-Spedalieri / symmetric extension
hierarchy to get quadratic terms.

Quantum de Finetti theorem: Given k-partite of. If for all n € IN,
there exists g, such that mp,7~! = p, for all 7 € S, and

trok(on) = ok

then

ok = /@®kdu(g)
> Approximate M®? by a hierarchy of trp\2(Mn)

Mn(P,Q;E,F;...; K, L) = (PTQY(ETF)--- (KTL)

» Convergerging sequence of upper bounds on 8 = Zi<A,->2.

“Scalar extension” Pozas et al 2017, “State polynomial optimization” Klep et al 2023
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In practise: relaxations

Useful relaxation: Index moment matrix with entries (AT)A,,
i = (AD) (A (AA])

Properties:
> lpo=(1)=1
> T = Tio = (A)(A)(AA]) = (AD)(A)
» max Y i, ['j approximates /3
» If [ has these properties, then so has Re(I') = (I +T7)/2
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Theta body

Optimization is over set

1 xT

with i ~j if A,'Aj = —AJ'A,'

» TH(G) is also known as the theta body of G.

» Maximum over sum of TH(G) is the Lovész theta number.
This gives the bound
a(G) < B <9(G)
where the lower bound is the independence number c.

Hastings/O'Donnel 2021, De Gois et al 2022
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Stronger relaxations

Index by k products of <A:f>A,-

A
¥

>

Efficiently computable

bounds
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Outlook

» When is a = 57
See Xu/Schwonnek/Winter PRX Quantum 5 (2), 020318
(2024)

» Position-momentum uncertainty also holds classically.
A theory for distinguishing classical from quantum uncertainty
/ moment inequalities?

For example, classically for all measures p

(/x4y2d,u)(/x2y4d,u> - (/Xzyzd,u)3 >0

Klep et al. 2024
What is the quantum bound?

» Other interesting non-linear expressions in QIT?
— Quantum Error correcting codes :)
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Quantum computing

a s g b
\ ‘ Real-time controller
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Blatt Iaboraory, Abobeih et al. 2022

» Information is physical (atoms, photons, electric charges ... )
» Quantum physics is noisy / quantum information is fragile

» Quantum information cannot be treated classically
(state collapse, no-cloning, continuity of states & errors)

...we need a way to protect quantum states from noise
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Quantum error-correcting codes

» A quantum code encodes quantum information (e.g. a qubit)
redundantly. The encoded state can be recovered after being
affected by noise.

» Quantum codes form the backbone of quantum computers:
allow for fault-tolerant processing of quantum information.

Example
P alo)+8]1) —  alo00)+ A[111)
» circumvents no-cloning.

» discretization of errors.
(detect single flip by measurement of ZZI, ZIZ,1Z2)

» syndrome measurement collapses state onto code subspace.
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Conditions for quantum error correction

» Code is a subspace (C?)®", represented by a projector I1.

» Noise acts as a quantum channel on a state o

N(o) = Z E;L(Q)EJ

E.eN

where 3 EfE, = 1.
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» Noise acts as a quantum channel on a state o
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E.eN
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» Knill-Laflamme conditions: A can be corrected on [, iff
NETE,N = ¢,

forall E,,E, € N.
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Conditions for quantum error correction

» Code is a subspace (C?)®", represented by a projector I1.

» Noise acts as a quantum channel on a state o
N(o)= > Eu(0)E]
E.eN
where 3 EfE, = 1.
» Khnill-Laflamme conditions: A can be corrected on I, iff
NETE,N = ¢,
forall E,,E, € N.
» Think of this as a type of sphere packing: equivalent to
(O EuEy |v) = cuv (910))
for all E,, E, € N. and |¢) , [¢) € ran().
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Error basis

Our goal: correct all tensor-product errors of at most weight 6.

The Pauli matrices form a basis for complex 2 x 2 matrices.
10 0 —i
=65 =0 )
01 1 0
(1 o) 7=(o )
» Tensor-product basis

é’,,:{Ea:em@...@en]e,-E{I,X,Y,Z}}

» Weight wt(E,) is the number of coordinates where E, acts
non-trivially. E.g. wt(IX1ZZ) =3
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Fundamental question in (quantum) coding theory

A ((n, K, 6)) quantum code is then a projector M on (C2?)®" of
rank K, such that
NETELN = ¢l

for all E,, Ep € &, with wt(EJEp) < 6.
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Fundamental question in (quantum) coding theory

A ((n, K, 6)) quantum code is then a projector M on (C2?)®" of
rank K, such that
NETELN = ¢l

for all E,, Ep € &, with wt(EJEp) < 6.

> A code is pure, if cap o tr(E,Ep) for 1 < wt(ELEp) < 6.
(maximally mixed marginals)
> A code is self-dual if K =1 and the code is pure.
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Fundamental question in (quantum) coding theory

A ((n, K, 6)) quantum code is then a projector M on (C2?)®" of
rank K, such that
NETELN = ¢l

for all E,, Ep € &, with wt(EJEp) < 6.

> A code is pure, if cap o tr(E,Ep) for 1 < wt(ELEp) < 6.
(maximally mixed marginals)
> A code is self-dual if K =1 and the code is pure.

Question
For a given block length n and distance d, what is the maximal
size K for quantum codes ((n, K, d))p on n quDits?

P Linear programming bounds
» Analytical bounds (q. Singleton)
» SDP bounds...?
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Contributions

Result (A)

A quantum code with parameters (n, K, 0))2 exists if and only if a
certain SDP hierarchy is feasible at every level.

Result (B)

The Lovdsz number bounds the existence of self-dual quantum
codes. A symmetrization recovers the quantum Delsarte bound.

Result (C)

There is an SDP of size O(n*) based on the Terwilliger algebra.
Codes with parameters (7,1,4))2, (8,9, 3))2, and ((10,5,4)), do not
exist.
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An attempt: Stabilizer codes

» Stabilizer group S = (g1,...,80—k), —1 € S, g; generators.

» Projector onto the code subspace

1 X 1
M= 2n7k Z(]l +gi) = 2nfk ZS
i=1

seS

» Simplest case: graph states g; = X; ®j€N(i) Z;
» Commutative group: [gj, gj] = 0 for all gj, gj.
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An attempt: Stabilizer codes

» Stabilizer group S = (g1,...,80—k), —1 € S, g; generators.

» Projector onto the code subspace

1 X 1
M= 2n7k Z(]l +gi) = 2nfk ZS
i=1

seS

» Simplest case: graph states g; = X; ®j€N(i) Z;
» Commutative group: [gj, gj] = 0 for all gj, gj.

Is there a stabilizer code with K = 1 with distance ¢
(i.e. a 0 — 1-uniform graph state)?

» Need maximal commuting subgroup of Pauli group.
» If E;E, = —E,E,, then not both can be in S.
> If 1 < wt(E,;) < J, then E; is not in S.
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Independence number
Independence number (maximum size of disconnected set)

a = max |H| st. (i,j)¢E forall i,jeH
HCV

S8 s

» It is known that a(G) < 6(G)

» 4 is efficiently computable, « is not
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Lovasz bound for stabilizer codes

P Index by “Pauli cube”:
Ens ={Es € &n| wt(E;) > 6}

» Confusability graph: ZX YX
a~bif EaEb = —EbEa.

> If a self-dual stabilizer code with
distance § exists, then there is an
independent set of size o = 2"

> As a consequence: 2" < 1+ 9(G). X XX

11 XI
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Lovdsz bound for all quantum codes

Key idea (c.f. uncertainty relations)

» Write (E,) for tr(E,e) with o = T/K.

» Construct moment matrix [ = (E§><Eb><EaEZ> for E, € &p,

1 (B)E - (En)E]
1 1 F01 R ro/\/
_ (E1)E] My ... Tin
(En)E, M n

» For two qubits, one would index with
(NI (IXYIX, ... (YZ)YZ,(ZZ)ZZ.
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Lovasz bound for all quantum codes (I1)

1 (E)E - (Ew)E]
1 1 I'01 cee I'ON
(EN)E Ma ... Ty
r = ) =0,
(E}VEn I wn

N=4"—1

Consider K = 1. Then:
> rab = I_aO = <Ea>2
> Zf-,v:o 22 = 27, corresponding to tr(g2) =1.

Note: If [ is a valid moment matrix, then so is (I +T7)/2.
Impose extra condition:

> My=0 if E,Ep=—EpE,.
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Lovész bound for all quantum codes (II1)

This corresponds to a hyperplane in the theta body

.
Tmcy:%mgMﬂ<i‘L>>0¢,:M%vamw:0ﬁa~b}

where the quantum confusability graph has £,\1 as vertices and

s b if 0 < wt(EsEp) <6 or
E,E, = —E,E,

a~a |if 0<wt(Ey) <
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Lovész bound for all quantum codes (II1)

This corresponds to a hyperplane in the theta body

.
TMG%:%MQMH(i;L>>OJ¢:MﬁVaMm:OHaNb}

where the quantum confusability graph has £,\1 as vertices and

s b if 0 < wt(EsEp) <6 or
E,E, = —E,E,

a~a |if 0 <wt(Ey) <9

Lovdsz bound on self-dual quantum codes

If a (n,1,0)) code exists, then
b) TH(G) contains an element with 2" =1 + Z;V:l M, and
a) 2" <Y(G)+1

> Already excludes the ((4,1,3)) code / four-qubit AME state.
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Symmetry-reduction

This scales badly: Pauli cube has 4" elements!

» Average [ over all row and column permutations which keep
triples of weights i = wt(E,), j = wt(Ep), and k = wt(ElEp)
invariant.

» The resulting matrix
M= Z alr~t
TEAutg

can be block-diagonalized with the Terwilliger algebra.

» This results in an SDP of size O(n*).
Gijswijt, Schrijver, Tanaka, J. Comb. Theory, A 113, 8, 2006, 1719-1731

— Efficiently computable Lovasz bounds!
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Complete SDP hierarchy for code existence

1. Formulate the Knill-Laflamme conditions ME;ELIT = ¢,pl1 as

K Z tr(EoETg) = Z tr(E o) tr(ETp)
Eeé&, Ec&,
wt(E)=j wt(E)=j

for j < 4. (In short: KB; = A; for j < 6)
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Complete SDP hierarchy for code existence

1. Formulate the Knill-Laflamme conditions ME;ELIT = ¢,pl1 as

K Z tr(EoETg) = Z tr(E o) tr(ETp)
Eeé&, Ec&,
wt(E)=j wt(E)=j
for j < 4. (In short: KB; = A; for j < 6)

2. State polynomial optimization: Consider non-commutative
letters {x;}. Form words w = Xx;, ...X;,. Associate
expectations (w) behaving as v(w) = (w)v and
(v(w)) = (v)(w). State monomials have the form
wj, (Wi,) ... (w;, ). Use Positivstellensatz for positive state
polynomials / corresponding moment hierarchy.

(Note: T from above is an intermediate level!) iy et al. 2023

» This recovers RHS in above condition. LHS...?
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Complete SDP hierarchy (I1)
3. Use the quantum MacWilliams identity

x+3y x—y
B(X,y)ZA( R )

where A(x,y) =37, A;(M)x"JyJ and likewise for B(x, y).

4. Hierarchy is dimension-free: restrict to qubits by
characterization of quasi-Clifford algebras with generator
relations oo = (—1)Xiajej, x5 € {0,1} and a? = 1.

Gastineau-Hills 1982
5. Impose that ¢ = 1/K: use swap-like constraints,

tr(gm) = tr ((1, 2,..., m)Q®m) =

expanded in Pauli matrices.

Km—l
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Applications

P Averaging the Lovdsz bound over distance-preserving
automorphism leads to the quantum Delsarte bound,

n
7 = max j{: Aj,
j=0

subjectto Ag =1, A; >0 with equality for 1 <j <94,

> Ki(i)Ai =0 forj=0,...,n.
i=0

If n < 2", then code does not exist.

» Hierarchy with O(n*) scaling: Average over distance and
zero-preserving autormorphisms. Symmetry-reduce using the

4-ary Terwilliger algebra. Gijswijt, Schrijver, Tanaka 2006

» Infeasibility certificates for (7,1,4)), ((8,9,3)), (10,5, 4))
codes.
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Contributions

» Complete hierarchies of SDP bounds for uncertainty relations
and the existence of quantum codes.

» Quantum analogies of the classical Lovdsz and Delsarte bounds.

» Numerically practical relaxations.

» Flexibility of applications, formally dimension-free: extensions
to qudit codes & more general confusability graphs possible.

M. Morén, FH, Uncertainty relations from state polynomial optimization,
arXiv:2408.10323
G. Munné, A. Nemec, FH, SDP bounds on quantum codes,

arXiv:2310.00612, PRL 132, 200202 (2024)

Support: Foundation for Polish Science TEAM-NET POIR.04.04.00-00-17C1/18-00 (AB, GM, FH) and QLCI (AN)
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Outlook

» Other applications for non-linear expressions in expectations?
» A theory for classical vs quantum moments?
» More general settings: quantum capacity of a graph?

> Rational certificates for exact non-existence proof.
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