

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

Reachability, Accessibility, and Observability in Quantum Systems Theory Aspects of a Unified Lie Framework

Thomas Schulte-Herbrüggen

joint work with

Markus Wiener

Technical University of Munich (TUM)

Symposion on Geometry of Quantum Dynamics, University of Siegen, August 2024 🦂 🚊 🤛

Questions by the Quantum Engineer

... To Be Answered by the Mathematician

Overview

- I. Symmetries and Controllability
- II. Symmetries and Observability & Tomographiability
- III Accessibility at Large
- Conclusions & Outlook

To which extent can a quantum dynamical system be

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- controlled (closed) or accessed (open) ?
- simulated ?
- observed, sensed or tomographied ?

Questions by the Quantum Engineer

... To Be Answered by the Mathematician

Overview

- I. Symmetries and Controllability
- II. Symmetries and Observability & Tomographiability
- III Accessibility at Large
- Conclusions & Outlook

- To which extent can a quantum dynamical system be
 - controlled (closed) or accessed (open) ?
 - simulated ?
 - observed, sensed or tomographied ?

What can one infer just from its

■ Hamiltonian (or Kossakowski-Lindblad) generators?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

... and their symmetries ?

Systems Theory

- I. Symmetries and Controllability
- II. Symmetries and Observability & Tomographiability
- III Accessibility at Large
- Conclusions & Outlook

ПП

Bilinear Control Systems

Key Notions: System Algebra, Symmetries, Universality

See controlled Schrödinger eq. $|\dot{\psi}(t)\rangle = -i(H_0 + \sum_j u_j(t)H_j)|\psi(t)\rangle$ as

bilinear control system: $\dot{x}(t) = (A + \sum_{j} u_j(t)B_j)x(t)$ with $x(0) = x_0$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Algebraic Characterisation

system algebra $\mathfrak{k} := \langle A, B_j | j = 1, 2, ..., m \rangle_{\mathsf{Lie}}$ symmetries 1°: $\mathfrak{k}' := \{ s \in \mathfrak{gl}(N) | [s, A] = 0 = [s, B_j], \forall j \}$

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

Bilinear Control Systems

Key Notions: System Algebra, Symmetries, Universality

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

See controlled Liouville eqn.
$$|\dot{\rho}(t)\rangle = -i\left(\widehat{H}_0 + \sum_j u_j(t)\widehat{H}_j\right)|\rho(t)\rangle$$
 as
bilinear control system: $\dot{X}(t) = (\operatorname{ad}_A + \sum_j u_j(t)\operatorname{ad}_{B_j})X(t) w. X(0) = X_0$

~

 \sim

Algebraic Characterisation

system algebra 1 $\mathfrak{k} := \langle A, B_j | j = 1, 2, ..., m \rangle_{\text{Lie}}$

Reachable Set of States (\mathfrak{k} compact) **Reach**(ρ_0) = { $K\rho_0K^{\dagger} | K \in \langle \exp \mathfrak{k} \rangle$ } =: $\mathcal{O}_{\mathbf{K}}(\rho_0) = \operatorname{Ad}_{\mathbf{K}}(\rho_0)$

 $\mathsf{NB:} \operatorname{ad}_{A}(X) = [A, X] \triangleq \widehat{A} \operatorname{vec}(X) := (\mathbf{1} \otimes A - A^{\top} \otimes \mathbf{1}) \operatorname{vec}(X) \text{ and } \mathsf{Ad}_{\mathsf{K}}(\cdot) := \mathsf{K}(\cdot)\mathsf{K}^{\dagger} = (\operatorname{exp} \operatorname{ad}_{\mathfrak{k}})(\cdot)$

יין ויי

Bilinear Control Systems

Key Notions: System Algebra, Symmetries, Universality

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

See controlled Liouville eqn. $|\dot{\rho}(t)\rangle = -i\left(\widehat{H}_0 + \sum_j u_j(t)\widehat{H}_j\right)|\rho(t)\rangle$ as **bilinear control system:** $\dot{X}(t) = (\operatorname{ad}_A + \sum_j u_j(t)\operatorname{ad}_{B_j})X(t) w. X(0) = X_0$

Algebraic Characterisation

system algebra 1 $\mathfrak{k} := \langle A, B_j | j = 1, 2, ..., m \rangle_{\text{Lie}}$ system algebra 2: $\mathrm{ad}_{\mathfrak{k}} := \langle \mathrm{ad}_A, \mathrm{ad}_{B_j} | j = 1, 2, ..., m \rangle_{\text{Lie}}$ symmetries 2°: $\mathrm{ad}'_{\mathfrak{k}} := \{S \in \mathfrak{gl}(N^2) | [S, \mathrm{ad}_A] = 0 = [S, \mathrm{ad}_{B_i}], \forall j\}$

NB: Notation $\operatorname{ad}_A \triangleq \widehat{A} := (\mathbf{1} \otimes A - A^\top \otimes \mathbf{1})$

Bilinear Control Systems

Key Notions: System Algebra, Symmetries, Universality

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

See controlled Liouville eqn. $|\dot{\rho}(t)\rangle = -i\left(\widehat{H}_0 + \sum_j u_j(t)\widehat{H}_j\right)|\rho(t)\rangle$ as **bilinear control system:** $\dot{X}(t) = (\operatorname{ad}_A + \sum_j u_j(t)\operatorname{ad}_{B_j})X(t) w. X(0) = X_0$

Algebraic Characterisation

system algebra 1 $\mathfrak{k} := \langle A, B_j | j = 1, 2, ..., m \rangle_{\text{Lie}}$ $= \mathfrak{su}(n)$ (universal)system algebra 2: $\mathrm{ad}_{\mathfrak{k}} := \langle \mathrm{ad}_A, \mathrm{ad}_{B_j} | j = 1, 2, ..., m \rangle_{\text{Lie}}$ symmetries 2°: $\mathrm{ad}_{\mathfrak{k}}' := \{S \in \mathfrak{gl}(N^2) | [S, \mathrm{ad}_A] = 0 = [S, \mathrm{ad}_{B_j}], \forall j\}$ $= 2 - \dim.$ (triv.)

NB: Notation $\operatorname{ad}_A \cong \widehat{A} := (\mathbf{1} \otimes A - A^\top \otimes \mathbf{1})$

Cor. 22 in JMP **52** (2011), 113510

Symmetry vs. Controllability

Single Symmetry Condition

JMP 52 113510 (2011), OSID 24 1740019 (2017)

Theorem (universality by trivial ad-symmetries)

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

Let $\{H_{\nu} | \nu = d; 1, 2, ..., m\}$ be drift and control Hamiltonians of control system Σ with irreducible simple system algebra \mathfrak{k} .

Then Σ is fully controllable, i.e. $\mathfrak{t} = \mathfrak{su}(2^n)$, if and only if

■ the joint commutant to adt is two-dimensional, i.e.

 $\mathsf{ad}_{\mathfrak{k}}' = \mathsf{span}\{1\!\!1^{\otimes 2}, |1\!\!1\rangle \langle 1\!\!1|\}.$

CARTAN details

Symmetry vs. Controllability

Single Symmetry Condition

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem (universality by trivial ad-symmetries)

Overview

- I. Symmetries and Controllability
- II. Symmetries and Observability & Tomographiability
- III Accessibility at Large
- Conclusions & Outlook

Let $\{H_{\nu} | \nu = d; 1, 2, ..., m\}$ be drift and control Hamiltonians of control system Σ with irreducible simple system algebra \mathfrak{k} .

Then Σ is fully controllable, i.e. $\mathfrak{k} = \mathfrak{su}(2^n)$, if and only if

the joint commutant to adt is two-dimensional, i.e.

 $\mathsf{ad}_{\mathfrak{k}}' = \mathsf{span}\{1\!\!1^{\otimes 2}, |1\!\!1\rangle \langle 1\!\!1|\}.$

$$\mathfrak{su}(2)$$

 $\mathfrak{sp}(2)$
 $\mathfrak{so}(9)$
 $\mathfrak{so}(16)$
 $\mathfrak{so}(10)$

Symmetry vs. Controllability

Single Symmetry Condition

Theorem (universality by trivial ad-symmetries)

I. Symmetries and Controllability

Overview

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

Let $\{H_{\nu} | \nu = d; 1, 2, ..., m\}$ be drift and control Hamiltonians of control system Σ with irreducible simple system algebra \mathfrak{k} .

Then Σ is fully controllable, i.e. $\mathfrak{t} = \mathfrak{su}(2^n)$, if and only if

the joint commutant to adt is two-dimensional, i.e.

 $\mathsf{ad}_{\mathfrak{k}}' = \mathsf{span}\{\mathbf{1}^{\otimes 2}, |\mathbf{1}\rangle\langle\mathbf{1}|\}.$

CARTAN subalgebras: $\mathfrak{so}(N)$ and $\mathfrak{usp}(\frac{N}{2})$ have intertwiners *S*,*S* $H_{\nu}S + SH_{\nu}^{t} = 0$ with $S\overline{S} = 1$ resp. $S\overline{S} = -1$

■ intertwiners add symmetry to $ad_{\mathfrak{so},\mathfrak{usp}}$: $[ad_{H_{\nu}}, |S\rangle\langle S|^{r_1}] = 0, \forall \nu$ NB: $|S\rangle\langle S|^{r_1} = K(S \otimes S^{\dagger})$

Observability of Closed Systems

No Projectors onto Invariant Subspaces

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

Observability Result

Let the system algebra \mathfrak{t}_{Σ} of (Σ) be an irreducible subalgebra of $\mathfrak{su}(N)$. Then the bilinear control system (Σ) is observable by $C = C^{\dagger}$ if and only if

• the joint commutant to $\operatorname{ad}_{\mathfrak{k}}$ and $P_{\tilde{c}} := |\tilde{C}\rangle\langle \tilde{C}|$ is two-dimensional, i.e.

 $\blacksquare \dim \left(\left(\{ \boldsymbol{P}_{\tilde{\boldsymbol{c}}} \} \cup \{ i \operatorname{ad}_{H_{\nu}} | \nu = 0, 1, \dots, m \} \right)' \right) = 2.$

NB well known: a fully controllable system is always observable, but an observable system need not be fully controllable.

Notation: \tilde{C} traceless part of C and $\operatorname{ad}_{H} \cong \mathbf{1} \otimes H - H^{\top} \otimes \mathbf{1}$.

<□> <圖> < E> < E> E のQ@

Systems Theory Controllability & Observability in Linear Systems

Consider observed *linear* control system

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability Observability Tomographiability

III Accessibility at Large

Conclusions & Outlook

• control part: $\dot{x}(t) = Ax(t) + Bv$ • observation part: y(t) = Cx(t)

Conditions for Full Controllability and Observability (cp. cyclic vectors) • controllable \Leftrightarrow rank $[B, AB, A^2B, \dots, A^{N-1}B] = N$ • observable \Leftrightarrow rank $\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{N-1} \end{bmatrix} = N$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Systems Theory Observability in (Bi)Linear Systems

Take observed *(bi)linear* system with constant control [Elliott (2008), Sec. 5.3.2; Grasselli & Isidori (1977)]

Overview

- I. Symmetries and Controllability
- II. Symmetries and Observability & Tomographiability Observability Tomographiability
- III Accessibility at Large
- Conclusions & Outlook

• control part:
$$|\dot{X}(t)\rangle = (\widehat{A} + u\widehat{B})|X(t)\rangle =: \widehat{A}_u|X(t)\rangle$$

• observation part: $y(t) = \langle C|X(t)\rangle$

Observability Condition

(cp. cyclic vectors)

■ observable
$$\Leftarrow \exists u \in \mathbb{R}$$
 s.th. rank $\begin{bmatrix} \langle C \\ \langle C | \widehat{A}_u \\ \vdots \\ \langle C | \widehat{A}_u^{N^2 - 1} \end{bmatrix} = N^2$

 $\mathsf{NB:} A, B, C, X \in \mathbb{C}^{N \times N} \text{ and } \widehat{A} := 1 \otimes A - A^{\top} \otimes 1 \text{ acting on } |X\rangle \equiv \mathsf{vec} X \text{ (or likewise on } \langle C |)_{\mathbb{B}}, \quad \text{ is } n \in \mathbb{C}$

г

10

Ъ

וווו

Observability of Closed Systems

Observed Bilinear Control Systems

Consider observed N-level bilinear control system (Σ)

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability Observability Tomographiability

III Accessibility at Large

Conclusions & Outlook

 $\dot{\rho}(t) = -i(\hat{H}_0 + \Sigma_j u_j(t)\hat{H}_j)\rho(t) \quad \rho(0) \equiv \rho_0 \quad \text{and}$ $\mathbf{y}(t) = \operatorname{tr}\{C \ \rho(t)\}$

with system algebra $\mathfrak{k}_{\Sigma} := \langle (iH_0, iH_j | j = 1, \dots, m \rangle_{\mathsf{Lie}} \subseteq \mathfrak{su}(N)$

Definition (variation of D'Alessandro (2003) and (2008))

Consider the system (Σ) observed by *C*. W.r.t. the system algebra \mathfrak{k}_{Σ} , its

• observability space can be defined as $\mathcal{O}_{\Sigma}(C) := \operatorname{span}_{\mathbb{R}} \{ \operatorname{ad}_{\mathfrak{k}}^{\nu}(\tilde{C}) | \nu = 0, 1, 2, ... \}$ with $\operatorname{ad}_{\mathfrak{k}}^{\nu}(\tilde{C}) := \{ [k_1, [k_2, ...[k_{\nu}, \tilde{C}]...]] | k_i \in \{iH_0, iH_1, ..., iH_m\} \}$

write \tilde{C} for traceless part of C

 $\mathsf{NB:} \ \mathcal{O}_{\Sigma}(\mathcal{C}) \text{ comprises the orbit } \ \mathcal{O}_{\mathsf{K}_{\Sigma}}(\tilde{\mathcal{C}}) := \mathsf{K}(\tilde{\mathcal{C}})\mathsf{K}^{\dagger} = \exp \mathsf{ad}_{\mathfrak{k}}(\tilde{\mathcal{C}}) = \sum_{\nu=0}^{\infty} \frac{1}{\nu!} \mathsf{ad}_{\mathbb{K}}^{\nu}(\tilde{\mathcal{C}}) \subset \mathcal{O}_{\Sigma}(\mathcal{C}) \ .$

וווו

Observability of Closed Systems

Observed Bilinear Control Systems

Consider observed N-level bilinear control system (Σ)

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability Observability Tomographiability

III Accessibility at Large

Conclusions & Outlook

 $\dot{
ho}(t) = -i(\hat{H}_0 + \Sigma_j u_j(t)\hat{H}_j)\,
ho(t) \quad
ho(0) \equiv
ho_0 \quad \text{and}$ $y(t) = \operatorname{tr}\{C \
ho(t)\}$

with system algebra $\mathfrak{k}_{\Sigma} := \langle (iH_0, iH_j | j = 1, \dots, m \rangle_{\mathsf{Lie}} \subseteq \mathfrak{su}(N)$

Definition (D'Alessandro (2003) and (2008))

The system (Σ) is observable by *C* iff for any pair $\tilde{\rho}_1, \tilde{\rho}_2$ of states the equality $\operatorname{tr}\{C \ \tilde{\rho}_1(t)\} = \operatorname{tr}\{C \ \tilde{\rho}_2(t)\} \quad \forall t \in \mathbb{R} \text{ and joint controls } u_j(t)$ implies $\tilde{\rho}_1 = \tilde{\rho}_2$, which is the case if and only if $\mathcal{O}_{\Sigma}(C) \stackrel{\text{iso}}{=} \mathfrak{su}(N)$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

write $\tilde{\rho}$ for traceless part of ρ

NB: $\mathfrak{su}(N)$ comprises all (skew)hermitian matrices and thus is informationally complete.

Observability of Closed Systems Observed Bilinear Control Systems: CARTAN Control Algebra Overview I. Symmetries and Controllability II. Symmetries and **Observability &** Example (symmetric observability space) Tomographiability $\mathfrak{k}_{\Sigma} = \langle i\sigma_{x1}, i\sigma_{y1}, i\sigma_{1x}, i\sigma_{1y} \rangle_{\text{Lie}}$ and observable $i\tilde{C} = i\sigma_{zz} \Rightarrow \mathcal{O}_{\Sigma}(C) = \mathfrak{p}_{\Sigma}$ with Tomographiability III Accessibility at Large $\mathfrak{k}_{\Sigma} = (\mathfrak{su}(2) \otimes 1 + 1 \otimes \mathfrak{su}(2)) \stackrel{\mathrm{iso}}{=} (\mathfrak{su}(2) \oplus \mathfrak{su}(2)) \stackrel{\mathrm{iso}}{=} \mathfrak{so}(4)$ Conclusions & $\mathfrak{p}_{\Sigma} = i\langle \sigma_{xx}, \sigma_{xv}, \sigma_{xz}; \sigma_{yx}, \sigma_{yv}, \sigma_{yz}; \sigma_{zx}, \sigma_{zv}, \sigma_{zz} \rangle$ Outlook NB: $\mathfrak{so}(4)$ semisimple and $\mathfrak{so}(N)$ simple for N > 5. pro memoria: g (semi)simple Lie algebra. CARTAN decomposition $g = \mathfrak{k} \oplus \mathfrak{p}$ with $\mathfrak{p} = \mathfrak{k}^{\perp} \cap \mathfrak{g}$ as well as $[\mathfrak{k},\mathfrak{k}] \subset \mathfrak{k}$ and $[\mathfrak{k},\mathfrak{p}] \subset \mathfrak{p}$, and $[\mathfrak{p},\mathfrak{p}] \subset \mathfrak{k}$.

Observability of Closed Systems Observed Bilinear Control Systems: CARTAN Control Algebra Overview I. Symmetries and Controllability II. Symmetries and **Observability &** Example (full observability space) Tomographiability $\mathfrak{t}_{\Sigma} = \langle i\sigma_{x1}, i\sigma_{y1}, i\sigma_{1x}, i\sigma_{1y} \rangle_{\text{Lie}}$ and observable $i\tilde{C} = i(\sigma_{zz} + \sigma_{z1} + \sigma_{1z})$ Tomographiability III Accessibility at $\mathfrak{k}_{\Sigma} = (\mathfrak{su}(2) \oplus \mathfrak{su}(2)) \stackrel{\mathrm{iso}}{=} \mathfrak{so}(4)$ Large $\mathfrak{p}_{\Sigma} = i \langle \sigma_{xx}, \sigma_{xy}, \sigma_{xz}; \sigma_{yx}, \sigma_{yy}, \sigma_{yz}; \sigma_{zx}, \sigma_{zy}, \sigma_{zz} \rangle$ Conclusions & Outlook $\mathcal{O}_{\Sigma}(\mathcal{C}) = \mathfrak{su}(4) = \mathfrak{k}_{\Sigma} \oplus \mathfrak{p}_{\Sigma}$ NB: $\mathfrak{so}(4)$ semisimple and $\mathfrak{so}(N)$ simple for N > 5.

pro memoria: \mathfrak{g} (semi)simple Lie algebra. CARTAN decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ with $\mathfrak{p} = \mathfrak{k}^{\perp} \cap \mathfrak{g}$ as well as $[\mathfrak{k}, \mathfrak{k}] \subseteq \mathfrak{k}$ and $[\mathfrak{k}, \mathfrak{p}] \subseteq \mathfrak{p}$, and $[\mathfrak{p}, \mathfrak{p}] \subseteq \mathfrak{k}$.

Observability of Closed Systems

Observed Bilinear Control Systems: CARTAN Control Algebra

Let (Σ) be a bilinear control syst. observed by *C* with simple system algebra $\mathfrak{k}_{\Sigma} := \langle (iH_0, iH_j | j = 1, ..., m \rangle_{\text{Lie}} \subseteq \mathfrak{g} \equiv \mathfrak{su}(N),$

observability space $\mathcal{O}_{\Sigma}(C) := \text{span}_{\mathbb{R}}\{\text{ad}_{\mathfrak{k}}^{\nu}(\tilde{iC}) \, | \, \nu = 0, 1, 2, ... \}.$

Theorem (Structure of Observability Space)

• \mathfrak{t}_{Σ} is in a CARTAN subalgebra of $\mathfrak{su}(N)$ iff there is a unitary S with $|S\rangle \in \ker(\mathbb{1} \otimes H_j + H_j \otimes \mathbb{1})$ jointly for all j.

•
$$\mathfrak{k}_{\Sigma} \subseteq \mathfrak{so}(N)$$
 iff $S\bar{S} = +1$ or $\mathfrak{k}_{\Sigma} \subseteq \mathfrak{usp}(\frac{N}{2})$ iff $S\bar{S} = -1$.

Then for the observability space one has (with same S)

 $\mathcal{O}_{\Sigma}(C) = \begin{cases} \text{Lie algebra } \mathfrak{k} \subseteq \mathfrak{k}_{\Sigma} & \text{for } |S\rangle \in \ker(\mathbb{1} \otimes \tilde{C} + \tilde{C} \otimes \mathbb{1}) \\ \text{symmetric space } \mathfrak{p} \subseteq \mathfrak{p}_{\Sigma} & \text{for } |S\rangle \in \ker(\mathbb{1} \otimes \tilde{C} - \tilde{C} \otimes \mathbb{1}) \\ \text{linear space } \mathfrak{l} \subseteq \mathfrak{su}(N) & \text{for } i\tilde{C} = i\tilde{C}_{\mathfrak{k}} + i\tilde{C}_{\mathfrak{p}}, \tilde{C}_{\mathfrak{k},\mathfrak{p}} \neq 0. \end{cases}$ $\blacksquare \mathfrak{l} = \mathcal{O}_{\Sigma}(\tilde{C}_{\mathfrak{k}}) \oplus \mathcal{O}_{\Sigma}(\tilde{C}_{\mathfrak{p}}) = \mathfrak{k}_{\Sigma} \oplus \mathfrak{p}_{\Sigma} = \mathfrak{su}(N)$

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability Observability Tomographiability

III Accessibility at Large

Conclusions & Outlook

Observability of Closed Systems

Observed Bilinear Control Systems: CARTAN System Algebra

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability Observability Tomographiability

III Accessibility at Large

Conclusions & Outlook

System algebra \mathfrak{k}_{Σ} is simple irred. CARTAN subalg of $\mathfrak{su}(N)$

Theorem (Observability in Simple CARTAN System Algebras)

A bilinear control system (Σ) with $\mathfrak{t}_{\Sigma} \subseteq \mathfrak{so}(N)$ or $\mathfrak{t}_{\Sigma} \subseteq \mathfrak{usp}(\frac{N}{2})$ is observable by C if and only if the observable $\tilde{C} = \tilde{C}_{\mathfrak{k}} + \tilde{C}_{\mathfrak{p}}$ has non-vanishing components in \mathfrak{t}_{Σ} and \mathfrak{p}_{Σ} , i.e. $\tilde{C}_{\mathfrak{k}} \neq 0 \neq \tilde{C}_{\mathfrak{p}}$.

So for the unique vec. 'Obata unitary' $|S\rangle \in \ker(1 \otimes H_j + H_j \otimes 1)|_{\forall j}$ one has to have

■ $|S\rangle \notin \text{ker}(1 \otimes \tilde{C} \pm \tilde{C} \otimes 1)$ for both choices of signs;

hence also $|S\rangle\langle S| \notin (\mathbf{1} \otimes \tilde{C} \pm \tilde{C} \otimes \mathbf{1})'$.

וווו

Observability of Closed Systems

Observed Bilinear Control Systems: beyond CARTAN

Consider observed N-level bilinear control system (Σ)

$$\dot{\rho}(t) = -i(\hat{H}_0 + \Sigma_j u_j(t)\hat{H}_j)\rho(t) \quad \rho(0) \equiv \rho_0 \text{ and}$$

$$y(t) = \operatorname{tr}\{C \rho(t)\}$$

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability Observability Tomographiability

III Accessibility at Large

Conclusions & Outlook

irred. simple system algebra $\mathfrak{k}_{\Sigma} := \langle (iH_0, iH_j | j = 1, ..., m \rangle_{\text{Lie}} \subseteq \mathfrak{g} \equiv \mathfrak{su}(N)$ observability space $\mathcal{O}_{\Sigma}(\mathbf{C}) := \text{span}_{\mathbb{R}} \{ \operatorname{ad}_{\mathfrak{k}}^{\nu}(i\tilde{\mathbf{C}}) | \nu = 0, 1, 2, ... \}$

Observability of Closed Systems

Observed Bilinear Control Systems: beyond CARTAN

Consider observed *N*-level bilinear control system (Σ)

Overview

I. Symmetries and Controllability

II. Symmetries and Observability 8 Tomographiability Tomographiability

III Accessibility at Large

Conclusions & Outlook

 $\dot{\rho}(t) = -i(\hat{H}_0 + \Sigma_i u_i(t)\hat{H}_i)\rho(t) \quad \rho(0) \equiv \rho_0$ and $v(t) = \operatorname{tr} \{ C \rho(t) \}$

irred. simple system algebra $\mathfrak{k}_{\Sigma} := \langle (iH_0, iH_i | j = 1, \dots, m \rangle_{\text{Lie}} \subseteq \mathfrak{g} \equiv \mathfrak{su}(N)$ observability space $\mathcal{O}_{\Sigma}(C) := \operatorname{span}_{\mathbb{P}} \{ \operatorname{ad}_{k}^{\nu}(\tilde{iC}) \mid \nu = 0, 1, 2, ... \}$

Structure of Observability Space (by ad_{by}-Invariant Subspaces)

 $\mathcal{O}_{\Sigma}(\boldsymbol{C}) \subseteq \begin{cases} \text{Lie algebra } \mathfrak{k}_{\Sigma} & \text{for } (i\tilde{\boldsymbol{C}}) \in \mathfrak{k}_{\Sigma} \\ \text{orthocomplement } \mathfrak{m}_{\Sigma} & \text{for } (i\tilde{\boldsymbol{C}}) \in (\mathfrak{k}_{\Sigma}^{\perp} \cap \mathfrak{g}) \equiv \mathfrak{m}_{\Sigma} \\ \text{lin. space } \mathfrak{l} \subseteq \mathfrak{g} = \mathfrak{k}_{\Sigma} \oplus \mathfrak{m}_{\Sigma} & \text{for } i\tilde{\boldsymbol{C}} = i\tilde{\boldsymbol{C}}_{\mathfrak{k}_{\Sigma}} + i\tilde{\boldsymbol{C}}_{\mathfrak{m}_{\Sigma}} \end{cases}$

 $\mathfrak{l} = \mathcal{O}_{\Sigma}(\mathcal{C}_{\mathfrak{k}}) \oplus \mathcal{O}_{\Sigma}(\mathcal{C}_{\mathfrak{m}}) \subset \mathfrak{a} \equiv \mathfrak{su}(N)$

in $\mathfrak{g} := \mathfrak{k} \oplus \mathfrak{m}$ with $\mathfrak{m} := \mathfrak{k}^{\perp} \cap \mathfrak{g}$ and $[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k}, [\mathfrak{k}, \mathfrak{m}] \subset \mathfrak{m}$ take \mathfrak{k} and \mathfrak{m} as 'ad p-invariant subspaces' of \mathfrak{g}

Observability of Closed Systems

Observed Bilinear Control Systems: beyond CARTAN

Example (adt-invariant observability space m)

 $\mathfrak{k}_{\Sigma} = \langle ix111, iy111, iXX, i111x, i111y \rangle_{\text{Lie}}, (XX = xx11 + yy11 + 1xx1 + 1yy1 + 11xx + 11yy)$ observable $\tilde{IC} = ixxx1 \Rightarrow \mathcal{O}_{\Sigma}(C) = \mathfrak{m}_{\Sigma} \perp \mathfrak{k}_{\Sigma}$ with

$$\begin{split} \mathfrak{k}_{\Sigma} &= \mathfrak{so}(10) \quad \text{(45 dimensional)} \\ \mathcal{O}_{\Sigma}(\mathcal{C}) &= \mathfrak{m}_{\Sigma} := \mathfrak{so}(10)^{\perp} \cap \mathfrak{su}(16) \quad \text{(210 dimensional)} \end{split}$$

NB: $\mathfrak{so}(10) \subset \mathfrak{su}(16)$ not CARTAN-type (FROBENIUS-SCHUR ind. $\iota := \int_g \chi(g^2) d\mu = \pm 1$ for real or quat. type), but complex ($\iota = 0$)

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability Observability Tomographiability

III Accessibility at Large

Conclusions & Outlook

Observability of Closed Systems Observed Bilinear Control Systems: beyond CARTAN

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability Observability Tomographiability

III Accessibility at Large

Conclusions & Outlook

Example (full observability space)

$$\begin{split} \mathfrak{k}_{\Sigma} &= \langle ix111, iy111, iXX, i111x, i111y \rangle_{\text{Lie}}, (XX = xx11 + yy11 + 1xx1 + 1yy1 + 11xx + 11yy) \\ \text{observable } i\tilde{C} &= i(xxx1 + 1z11) \\ \mathfrak{k}_{\Sigma} &= \mathfrak{so}(10) \quad (45 \text{ dimensional}) \\ \mathfrak{m}_{\Sigma} &= \mathfrak{so}(10)^{\perp} \cap \mathfrak{su}(16) \quad (210 \text{ dimensional}) \\ \mathcal{O}_{\Sigma}(C) &= \mathfrak{su}(16) \quad = \quad \mathfrak{k}_{\Sigma} \oplus \mathfrak{m}_{\Sigma} = \mathfrak{g}_{\Sigma} \end{split}$$

NB: $\mathfrak{so}(10) \subset \mathfrak{su}(16)$ not of CARTAN-type, but complex (i = 0)

in $\mathfrak{g} := \mathfrak{k} \oplus \mathfrak{m}$ with $\mathfrak{m} := \mathfrak{k}^{\perp} \cap \mathfrak{g}$ and $[\mathfrak{k}, \mathfrak{k}] \subseteq \mathfrak{k}$, $[\mathfrak{k}, \mathfrak{m}] \subseteq \mathfrak{m}$ take \mathfrak{k} and \mathfrak{m} as 'ad_{\mathfrak{k}}-invariant subspaces' of $\mathfrak{g}_{\mathfrak{n}, \mathfrak{n}}$.

Observability of Closed Systems

Projectors onto Invariant Subspaces

Recall for projections onto invariant subspaces:

Elementary Fact (e.g. S. Roman, Advanced Linear Algebra (2008), Thm. 2.24)

I. Symmetries and Controllability

Overview

II. Symmetries and Observability & Tomographiability Observability Tomographiability

III Accessibility at Large

Conclusions & Outlook

Let $F : V \to V$ be a linear map. $W \subsetneq V$ is F-invariant subspace if $F(W) \subseteq W$. Let P be the projector from V onto W. Then

▲□▶▲□▶▲□▶▲□▶ □ の000

■ W is F-invariant if and only if PFP = FP and

• W and W^{\perp} (in V) are both F-invariant if and only if FP = PF.

Observability of Closed Systems

Projectors onto Invariant Subspaces

Recall for projections onto invariant subspaces:

Elementary Fact (e.g. S. Roman, Advanced Linear Algebra (2008), Thm. 2.24)

I. Symmetries and Controllability

Overview

II. Symmetries and Observability & Tomographiability Observability Tomographiability

III Accessibility at Large

Conclusions & Outlook

Let $F : V \to V$ be a linear map. $W \subsetneq V$ is F-invariant subspace if $F(W) \subseteq W$. Let P be the projector from V onto W. Then

- W is F-invariant if and only if PFP = FP and
- W and W^{\perp} (in V) are both F-invariant if and only if FP = PF.

Corollary (Commutant for Invariant Subspace)

In $\mathfrak{g} := \mathfrak{k} \oplus \mathfrak{m}$ by $[\mathfrak{k}, \mathfrak{k}] \subseteq \mathfrak{k}$, $[\mathfrak{k}, \mathfrak{m}] \subseteq \mathfrak{m}$ both \mathfrak{k} and $\mathfrak{m} = \mathfrak{k}^{\perp}$ are $\mathrm{ad}_{\mathfrak{k}}$ -invariant.

Hence the projectors $P_{\mathfrak{k}}, P_{\mathfrak{m}}$ are in the commutant of $\operatorname{ad}_{\mathfrak{k}}$: $\{P_{\mathfrak{k}}, P_{\mathfrak{m}}\} \subset (\operatorname{ad}_{\mathfrak{k}})'$.

וווו

Observability of Closed Systems

Projectors onto Invariant Subspaces

Corollary (Commutant for Invariant Subspace)

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

Tomographiability

III Accessibility at Large

Conclusions & Outlook

In $\mathfrak{g} := \mathfrak{k} \oplus \mathfrak{m}$ by $[\mathfrak{k}, \mathfrak{k}] \subseteq \mathfrak{k}$, $[\mathfrak{k}, \mathfrak{m}] \subseteq \mathfrak{m}$ both \mathfrak{k} and $\mathfrak{m} = \mathfrak{k}^{\perp}$ are $\operatorname{ad}_{\mathfrak{k}}$ -invariant.

Hence the projectors $P_{\mathfrak{k}}, P_{\mathfrak{m}}$ are in the commutant of $\operatorname{ad}_{\mathfrak{k}}$: $\{P_{\mathfrak{k}}, P_{\mathfrak{m}}\} \subset (\operatorname{ad}_{\mathfrak{k}})'$.

implies

Proposition

Let (Σ) be an bilinear control system with irred. (semi)simple system algebra $\mathfrak{k}_{\Sigma} = \mathfrak{k}_1 \oplus \cdots \oplus \mathfrak{k}_{\kappa}$ and assume $\mathfrak{su}(n) = \mathfrak{k}_{\Sigma} \oplus \mathfrak{m}_1 \oplus \cdots \oplus \mathfrak{m}_{\mu}$ with \mathfrak{m}_j all $\mathrm{ad}_{\mathfrak{k}_{\Sigma}}$ -invariant.¹

Then system (Σ) is observable by $C \in \mathfrak{her}(n)$ iff for its rk-1 projector $P_{\tilde{c}} = |\widetilde{C}\rangle\langle\widetilde{C}|$ $[P_{\tilde{c}}, P_{\mathfrak{k}_j}]_{j=1}^{\kappa} \neq 0 \neq [P_{\tilde{c}}, P_{\mathfrak{m}_j}]_{j=1}^{\mu}$

¹ So $[\operatorname{ad}_{\mathfrak{k}_{\Sigma}}, P_{\mathfrak{k}_{j}}]_{i=1}^{\kappa} = 0 = [\operatorname{ad}_{\mathfrak{k}_{\Sigma}}, P_{\mathfrak{m}_{j}}]_{j=1}^{\mu}$

Image: a gain C traceless page of S <

וווו

Observability of Closed Systems

Projectors onto Invariant Subspaces

Corollary (Commutant for Invariant Subspace)

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability Observability Tomographiability

III Accessibility at Large

Conclusions & Outlook

In $\mathfrak{g} := \mathfrak{k} \oplus \mathfrak{m}$ by $[\mathfrak{k}, \mathfrak{k}] \subseteq \mathfrak{k}$, $[\mathfrak{k}, \mathfrak{m}] \subseteq \mathfrak{m}$ both \mathfrak{k} and $\mathfrak{m} = \mathfrak{k}^{\perp}$ are $\operatorname{ad}_{\mathfrak{k}}$ -invariant.

Hence the projectors $P_{\mathfrak{k}}, P_{\mathfrak{m}}$ are in the commutant of $\operatorname{ad}_{\mathfrak{k}}$: $\{P_{\mathfrak{k}}, P_{\mathfrak{m}}\} \subset (\operatorname{ad}_{\mathfrak{k}})'$.

implies

Proposition

Let (Σ) be an bilinear control system with irred. (semi)simple system algebra $\mathfrak{k}_{\Sigma} = \mathfrak{k}_1 \oplus \cdots \oplus \mathfrak{k}_{\kappa}$ and assume $\mathfrak{su}(n) = \mathfrak{k}_{\Sigma} \oplus \mathfrak{m}_1 \oplus \cdots \oplus \mathfrak{m}_{\mu}$ with \mathfrak{m}_j all $\mathrm{ad}_{\mathfrak{k}_{\Sigma}}$ -invariant.¹

Then system (Σ) is observable by $C \in \mathfrak{her}(n)$ iff for its rk-1 projector $P_{\tilde{c}} = |\widetilde{C}\rangle\langle\widetilde{C}|$ $[P_{\tilde{c}}, P_{\mathfrak{t}_i}]_{i=1}^{\kappa} \neq 0 \neq [P_{\tilde{c}}, P_{\mathfrak{m}_i}]_{i=1}^{\mu}$

again \tilde{C} traceless part of \mathcal{C}_{\circ}

 $\mathsf{Example:} \ \mathfrak{su}(8) = \mathfrak{su}(2) \oplus \mathfrak{su}(2) \oplus \mathfrak{su}(2) \oplus \mathfrak{m}_1 \oplus \mathfrak{m}_2 \oplus \mathfrak{m}_3 \oplus \mathfrak{m}_4 \ \text{ with dims } 63 = 3 + 3 + 3 + 9 + 9 + 9 + 27$

¹ So $[\operatorname{ad}_{\mathfrak{k}_{\Sigma}}, P_{\mathfrak{k}_{j}}]_{j=1}^{\kappa} = 0 = [\operatorname{ad}_{\mathfrak{k}_{\Sigma}}, P_{\mathfrak{m}_{j}}]_{j=1}^{\mu}$

Tomographiability I Closed Bilinear Control Systems

Consider observed *N*-level closed bilinear control system (Σ) on the orbit of ρ_0

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability Observability Tomographiability

III Accessibility at Large

Conclusions & Outlook

$$\dot{\rho}(t) = -i(\hat{H}_0 + \Sigma_j u_j(t)\hat{H}_j)\rho(t) \quad \rho(0) \equiv \rho_0 \quad \text{and} \\ y(t) = \operatorname{tr}\{C \rho(t)\}$$

system algebra
$$\mathfrak{k}_{\Sigma}:=\langle(i\widehat{H}_0,i\widehat{H}_j\,|\,j=1,\dots,m
angle_{\sf Lie}\subseteq {\sf ad}_{\mathfrak{su}(N)}$$

Definition (suggestion)

The closed system (Σ) is tomographiable by *C* w.r.t. ρ_0 iff both

1 the reachable set of ρ_0 under (Σ) has non-empty interior (i.e. is accessible),

2 the observability space of \tilde{C} under (Σ) is informationally complete, i.e. all of $i \mathfrak{su}(N)$.

Notation: \tilde{C} is traceless part.

ηΙη

Tomographiability II Open Bilinear Control Systems

Consider observed N-level open Markovian bilinear control system (Σ)

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability Observability Tomographiability

III Accessibility at Large

Conclusions & Outlook

 $\dot{\rho}(t) = -(i\hat{H}_0 + i\Sigma_j u_j(t)\hat{H}_j + \hat{\Gamma}_{GKSL})\rho(t) \quad \rho(0) \equiv \rho_0 \text{ and }$ $\mathbf{y}(t) = \operatorname{tr}\{C \ \rho(t)\}$

NB: Lie wedge
$$\mathfrak{w}_{\Sigma} \subseteq \langle (i\hat{H}_0 + \hat{\Gamma}), i\hat{H}_j \rangle_{\mathsf{Lie}} \subseteq \mathfrak{gl}(N^2, \mathbb{R})$$

reachable set $\mathsf{Reach}_{\Sigma}(\rho_0) := \mathbf{S}_{\Sigma}(\mathsf{vec}(\rho_0)), \ \mathbf{S}_{\Sigma} := \overline{\langle \exp \mathfrak{w}_{\Sigma} \rangle}.$

Definition (suggestion)

The open system (Σ) is tomographiable by *C* w.r.t. ρ₀ if and only if both
1 (Σ) is accessible w.r.t. ρ₀, (i.e. Reach_Σ(ρ₀) has non-empty interior)
2 the observability space of *C* under (Σ) is informationally complete.

Notation: \tilde{C} is traceless part.

Map Accessibility of Open Systems

Symmetry Conditions

Overview

- I. Symmetries and Controllability
- II. Symmetries and Observability & Tomographiability
- III Accessibility at Large
- Conclusions & Outlook

Let $\dot{X} = -(i\hat{H}_0 + \Gamma_{GKSL} + i\sum_j u_j(t)\hat{H}_j)X(t)$ be a *N*-level bil. control system Σ with system algebra $\mathfrak{g}_{\Sigma} := \langle (i\hat{H}_0 + \Gamma), i\hat{H}_j | j = 1, \dots, m \rangle_{\text{Lie.}}$

Corollary

- The following two are equivalent:
 - **1** The unital n-qubit system variant is $(map)accessible (N = 2^n)$.
 - 2 The unital system algebra has commutant of dimension 2 and (for N > 2) its ε-part exceeds ad_{su(N)}.

Likewise one may conjecture the equivalence of

- 3 The non-unital n-qubit system variant is (map)accessible.
- 4 The non-unital system algebra has commutant of dimension 1.

Accessibility of Open Systems

Analogue to Controllability in Closed Systems

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

Let
$$\dot{X} = -(i\hat{H}_0 + \hat{\Gamma}_{GKSL} + i\sum_j u_j(t)\hat{H}_j)X(t)$$
 be *N*-level bilinear control system (Σ) w.
system algebra $\mathfrak{g}_{\Sigma} := \langle (i\hat{H}_0 + \hat{\Gamma}_{GKSL}), i\hat{H}_j | j = 1, \dots, m \rangle_{\text{Lie}} \subseteq \mathfrak{g}^{LK}$.

Corollary (standard)

The following are equivalent:

- **1** The system is map accessible.
- 2 The reachable set Reach(1) is a subsemigroup S ⊂ G^{LK} w. non-empty interior (G^{LK} := ⟨exp g^{LK}⟩).

3 The unital system algebra is

$$\mathfrak{g}_{\Sigma} \stackrel{\mathrm{iso}}{=} \begin{cases} \mathfrak{gl}(N^2 - 1, \mathbb{R}) = \mathfrak{g}_0^{LK} \text{ or} \\ \mathfrak{so}(N^2 - 1) \oplus \mathbb{R} \,. \end{cases}$$

Accessibility of Open Systems

Analogue to Controllability in Closed Systems

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

Let $\dot{X} = -(i\hat{H}_0 + \hat{\Gamma}_{GKSL} + i\sum_j u_j(t)\hat{H}_j)X(t)$ be *N*-level bilinear control system (Σ) w. system algebra $\mathfrak{g}_{\Sigma} := \langle (i\hat{H}_0 + \hat{\Gamma}_{GKSL}), i\hat{H}_j | j = 1, \dots, m \rangle_{\text{Lie}} \subseteq \mathfrak{g}^{LK}$.

Corollary (Kurniawan, Dirr, Helmke, IEEE TAC 52, 1984 (2011))

The following are equivalent:

- **1** The unital *n*-qubit system is map accessible $(N = 2^n)$.
- 2 The reachable set Reach(1) is a subsemigroup S ⊂ G₀^{LK} w. non-empty interior (G₀^{LK} := ⟨exp g₀^{LK}⟩).
- 3 The unital system algebra is

$$\mathfrak{g}_{\Sigma} \stackrel{\text{iso}}{=} \begin{cases} \mathfrak{gl}(N^2 \text{-} 1, \mathbb{R}) = \mathfrak{g}_0^{LK} \text{ or } \\ \mathfrak{so}(N^2 \text{-} 1) \oplus \mathbb{R} \,. \end{cases}$$

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

Let $\dot{X} = -(i\hat{H}_0 + \hat{\Gamma}_{GKSL} + i\sum_j u_j(t)\hat{H}_j)X(t)$ be 2^n -level bilinear control system (Σ) w. syst. algs $\mathfrak{g}_{\Sigma} := \langle (i\hat{H}_0 + \hat{\Gamma}_{GKSL}), i\hat{H}_j | j = 1, \dots, m \rangle_{\text{Lie}} \subseteq \mathfrak{g}_0^{\text{LK}}$ (unital), \mathfrak{g}^{LK} (non-unital).

Note

Accessibility of Open Systems Analogue to Controllability in Closed Systems

In coherence-vector representation, elements in \mathfrak{g}_0^{KL} and \mathfrak{g}^{KL} and their commutants $(\mathfrak{g}_0^{KL})'$ and $(\mathfrak{g}^{KL})'$ take the form

$$\begin{split} \mathfrak{g}_{0}^{\mathsf{KL}} \ni \Gamma_{0} &= \left(\begin{array}{c|c} A & 0 \\ \hline 0 & 0 \end{array} \right) \quad \text{and} \quad \left(\mathfrak{g}_{0}^{\mathsf{KL}} \right)' \ni \Gamma_{0}' = \left(\begin{array}{c|c} \alpha 1 & 0 \\ \hline 0 & \beta \end{array} \right) \\ \mathfrak{g}^{\mathsf{KL}} \ni \Gamma &= \left(\begin{array}{c|c} A & a \\ \hline 0 & 0 \end{array} \right) \quad \text{and} \quad \left(\mathfrak{g}^{\mathsf{KL}} \right)' \ni \Gamma' = \left(\begin{array}{c|c} \gamma 1 & 0 \\ \hline 0 & \gamma \end{array} \right), \end{split}$$

where with $N = 2^n$, $a \in \mathbb{R}^{(N^2-1)}$ and $A \in \mathfrak{gl}(N^2-1, \mathbb{R})$ and $\alpha, \beta, \gamma \in \mathbb{R}$. NB: observe semidirect-product structure [(A, a), (B, b)] = ([A, B], Ab - Ba).

יין ויי

System Lie Algebra of Controlled Markov Maps Relation to Lie Wedges Rep. Mat

Rep. Math. Phys. 64 (2009) 93

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

Let
$$X = -(iH_0 + \hat{\Gamma}_{GKSL} + i\sum_j u_j(t)H_j)X(t)$$
 be 2^n -level bilinear control system (Σ) we syst. algs $\mathfrak{g}_{\Sigma} := \langle (i\hat{H}_0 + \hat{\Gamma}_{GKSL}), i\hat{H}_j | j = 1, \dots, m \rangle_{\text{Lie}} \subseteq \mathfrak{g}_0^{\text{LK}}$ (unital), \mathfrak{g}^{LK} (non-unital).

Embedding

The Lindblad-Kossakowski Lie algebra \mathfrak{g}^{LK} is a semidirect sum

$$\mathfrak{g}^{LK}:=\mathfrak{gl}(N^2-1,\mathbb{R})\oplus_s\mathfrak{i}_0=\mathfrak{g}_0^{LK}\oplus_s\mathfrak{i}_0$$

of the unital part g_0^{LK} with the ideal of translation generators $i_0 \simeq \mathbb{R}^{N^2-1}$. It generates a group of affine maps

 $\mathbf{G} := \mathbf{GL}(N^2 - 1, \mathbb{R}) \otimes_{\boldsymbol{s}} \mathbf{I}_0 \supseteq \mathbf{S}$

embracing the Markovian Lie-semigroup of GKSL-quantum maps S.

NB: The system algebra is also the smallest Lie algebra comprising the Lie wedge: $\mathfrak{g}_{\Sigma} \supseteq \mathfrak{w}_{\Sigma}$.

Accessibility of Open Systems

Symmetry Conditions

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

Let $\dot{X} = -(i\hat{H}_0 + \Gamma_{GKSL} + i\sum_j u_j(t)\hat{H}_j)X(t)$ be a *N*-level bil. control system Σ with system algebra $\mathfrak{g}_{\Sigma} := \langle (i\hat{H}_0 + \Gamma), i\hat{H}_j | j = 1, \dots, m \rangle_{\text{Lie}}.$

Corollary

The following two are equivalent:

1 The unital n-qubit system variant is $(map)accessible (N = 2^n)$.

2 The unital system algebra has commutant of dimension 2 and (for N > 2) its \mathfrak{k} -part exceeds $ad_{\mathfrak{su}(N)}$.

Likewise one may conjecture the equivalence of

- 3 The non-unital n-qubit system variant is (map)accessible.
- 4 The non-unital system algebra has commutant of dimension 1.

🕨 Proof Sketch I 👌 🗏 🕨 num. support

Conclusion: Symmetries in Bilinear Control Systems

(1) by Closed System's Algebra

J. Math. Phys. 52, 113510 (2011)

closed free versus 2 closed observed versus 3 open Markovian

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

1 closed coherently controlled (cc) systems: system algebra $\mathfrak{k}_{\Sigma} := \langle i \operatorname{ad}_{H_0}, \ldots, i \operatorname{ad}_{H_m} \rangle_{\operatorname{Lie}} = \operatorname{ad}_{su(N)} \Leftrightarrow \dim ((\mathfrak{k}_{\Sigma})') = 2$ get full controllability (universality) by irreducibility of \mathfrak{k}_{Σ} (adjoint repr.!)

closed systems, cc with observable C: check joint commutant $(\mathfrak{k}_{\Sigma} \cup P_C)'$

get full observability by irreducibility of $\{\mathfrak{k}_{\Sigma} \cup P_{C}\}$

get (C, ρ_0) observable pair by shared \mathfrak{t}_{Σ} -invariant support (proj. P_m)

3 open systems, cc with constant (non)unital Markovian noise: system alg. $\mathfrak{g}_{\Sigma_{[0]}} := \langle (i \operatorname{ad}_{H_0} + \widehat{\Gamma}_{GKLS}^{[0]}), \ldots, i \operatorname{ad}_{H_m} \rangle_{\text{Lie}} w. \dim ((\mathfrak{g}_{\Sigma_{[0]}})') = 1[2]$ get (non)unital map accessibility by irreducibility of \mathfrak{g}_{Σ_0} (resp. \mathfrak{g}_{Σ})

Conclusion: Symmetries in Bilinear Control Systems (2) plus Observable (or fixed ρ_0)

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

1 closed coherently controlled (cc) systems: system algebra $\mathfrak{k}_{\Sigma} := \langle i \operatorname{ad}_{H_0}, \dots, i \operatorname{ad}_{H_m} \rangle_{\operatorname{Lie}} = \operatorname{ad}_{su(N)} \Leftrightarrow \dim ((\mathfrak{k}_{\Sigma})') = 2$

closed free versus 2 closed observed versus 3 open Markovian

get full controllability (universality) by irreducibility of \mathfrak{k}_{Σ} (adjoint repr.!)

- 2 closed systems, cc with observable C: check joint commutant $(\mathfrak{k}_{\Sigma} \cup P_{C})'$
 - **get** full observability by irreducibility of $\{\mathfrak{k}_{\Sigma} \cup P_{C}\}$
 - **get** (C, ρ_0) observable pair by shared \mathfrak{t}_{Σ} -invariant support (proj. P_m)

3 open systems, cc with constant (non)unital Markovian noise: system alg. $\mathfrak{g}_{\Sigma_{[0]}} := \langle (i \operatorname{ad}_{H_0} + \widehat{\Gamma}_{GKLS}^{[0]}), \ldots, i \operatorname{ad}_{H_m} \rangle_{\text{Lie}} w. \dim ((\mathfrak{g}_{\Sigma_{[0]}})') = 1[2]$ get (non)unital map accessibility by irreducibility of \mathfrak{g}_{Σ_0} (resp. \mathfrak{g}_{Σ})

Conclusion: Symmetries in Bilinear Control Systems (3) Open System's Algebra

1 closed free versus 2 closed observed versus 3 open Markovian

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

1 closed coherently controlled (cc) systems: system algebra $\mathfrak{k}_{\Sigma} := \langle i \operatorname{ad}_{H_0}, \ldots, i \operatorname{ad}_{H_m} \rangle_{\operatorname{Lie}} = \operatorname{ad}_{su(N)} \Leftrightarrow \dim ((\mathfrak{k}_{\Sigma})') = 2$ get full controllability (universality) by irreducibility of \mathfrak{k}_{Σ} (adjoint repr.!)

2 closed systems, cc with observable C: check joint commutant $(\mathfrak{k}_{\Sigma} \cup P_{C})'$

get full observability by irreducibility of $\{\mathfrak{k}_{\Sigma} \cup P_{C}\}$

get (C, ρ_0) observable pair by shared \mathfrak{t}_{Σ} -invariant support (proj. P_m)

3 open systems, cc with constant (non)unital Markovian noise:
 system alg. g<sub>Σ_[0] := ⟨(i ad_{H₀} + f^[0]_{GKLS}),..., i ad_{H_m}⟩_{Lie} w. dim ((g<sub>Σ_[0])') = 1[2]
 get (non)unital map accessibility by irreducibility of g_{Σ₀} (resp. g_Σ)
</sub></sub>

Lie-Semigroup Frame

OSID 30 (2023), 2350005

▲□▶▲□▶▲□▶▲□▶ □ の000

Overview

- I. Symmetries and Controllability
- II. Symmetries and Observability & Tomographiability
- III Accessibility at Large
- Conclusions & Outlook

Def.: Thermal Operations

- (1) couple system ρ_S to bath of $T \ge 0$ (by $\otimes \rho_B^{(T)}$)
- (2) energy-conserving evolution (by $U \in \{H_0 \otimes \mathbb{1}_B + \mathbb{1}_S \otimes H_B\}'$)
- (3) project back onto system (by tr_B)

$$\begin{array}{ccc} \rho_{S}(0) \otimes \rho_{B}^{(T)} & \xrightarrow{\operatorname{Ad}_{U}} & \rho_{SB}(U) \\ & & & & \\ & & & \\ & & & & \\$$

Markovianity at Large Lie-Semigroup Frame

ROMP 64 (2009), 93 & OSID 30 (2023), 2350005

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

Markovianity Filter (via Lie Wedges $L(\cdot)$)

$$\mathsf{MCPTP} := \overline{\left\langle \mathsf{exp}\left(\mathsf{L}(\mathsf{CPTP})
ight)
ight
angle}_{\mathsf{SG}} \equiv \overline{\left\langle \,\mathsf{exp}\left(\mathfrak{w}_{\mathit{GKSL}}
ight)
ight
angle}_{\mathsf{SG}}$$

 $\mathsf{MTO}(\mathcal{H}_0, \mathcal{T}) := \left. \left\langle \exp\left(\mathsf{L}(\overline{\mathsf{TO}(\mathcal{H}_0, \mathcal{T})})\right) \right\rangle_{\mathsf{SG}} \right.$

 $\mathsf{MEnTO}(H_0,T) := \overline{\langle \mathsf{exp}\left(\mathsf{L}(\mathsf{EnTO}(H_0,T))\right) \rangle}_{\mathsf{SG}}$

 $\mathsf{MGibbs}(H_0,T) := \overline{\langle \exp\left(\mathsf{L}(\mathsf{Gibbs}(H_0,T))\right) \rangle}_{\mathsf{SG}}$

where $\begin{aligned} \mathsf{L}(\mathsf{Gibbs}(\mathcal{H}_0, \mathcal{T})) &= \left\{ L \in \mathfrak{w}_{\mathit{GKSL}} \mid e^{-\mathcal{H}_0/\mathcal{T}} \in \mathsf{ker}(L) \right\} \\ \mathsf{L}(\mathsf{EnTO}(\mathcal{H}_0, \mathcal{T})) &= \left\{ L \in \mathsf{L}(\mathsf{Gibbs}(\mathcal{H}_0, \mathcal{T})) \mid \mathsf{ad}_{\mathcal{H}_0} \in L' \right\} \\ \mathsf{L}(\overline{\mathsf{TO}(\mathcal{H}_0, \mathcal{T})}) \text{ as in main Thm. of OSID 30 (2023), 2350005} \end{aligned}$

ПП

Acknowledgements

Thanks go to:

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

Markus Wiener; Robert Zeier (computer algebra мадма), Frederik vom Ende, Emanuel Malvetti, Gunther Dirr (Markovianity Filter)

EU programmes; excellence network; Munich Centre Q. Sci. Technol. MCQST, Munich Quantum Valley MQV

References:

J. Magn. Reson. **172**, 296 (2005), *PRA* **72**, 043221 (2005), *PRA* **84**, 022305 (2011) *PRL* **102** 090401 (2009), *JPB* **44**, 154013 (2011) *Rev. Math. Phys.* **22**, 597 (2010), *Rep. Math. Phys.* **64**, 93 (2009); *J. Math. Phys.* **52**, 113510 (2011); *EPJ.:Quant.Technol.* **1**, 11 (2014); *NJP* **16**, 065010 (2014), IEEE TAC **57**, 2050 (2012); *Nature* **506**, 204 (2014), *Nature Comm.* **5** 3371 (2014) and **7** 12279 (2016), *PRA* **92**, 042309 (2015), *Eur. Phys. J.* **D 69** (2015), 279, arXiv:1605.06473, Open Syst. Info. Dyn. **24**, 1740019 (2017) and **26**, 1950014 (2019) **Q. Sci. Technol. 4**, 034001 (2019), IEEE-CDC **58** (2019), 2322, Proc. MTNS (2022) pp1069+1073+1253 EPJ Quant. Technol. **9**, 19 (2022), arXiv:2303.01891, Open Syst. Info. Dyn. **30** (2023), 2350005

Lie-Semigroup Frame

OSID 30 (2023), 2350005

▲□▶▲□▶▲□▶▲□▶ □ の000

Overview

- I. Symmetries and Controllability
- II. Symmetries and Observability & Tomographiability
- III Accessibility at Large
- Conclusions & Outlook
- Markov-Filte

Starting Point: Thermal Operations

- (1) couple system ρ_S to bath of $T \ge 0$ (by $\otimes \rho_B^{(T)}$)
- (2) energy-conserving evolution (by $U \in \{H_0 \otimes \mathbb{1}_B + \mathbb{1}_S \otimes H_B\}'$)
- (3) project back onto system (by tr_B)

$$\begin{array}{ccc} \rho_{S}(0) \otimes \rho_{B}^{(T)} & \xrightarrow{\operatorname{Ad}_{U}} & \rho_{SB}(U) \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\$$

Lie-Semigroup Frame

OSID 30 (2023), 2350005

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

Markov-Filte

Theorem (Lie wedge $L(TO(H_0,T))$)

Given $H_B \in \mathfrak{her}(m)$, $H_{tot} \in \mathfrak{her}(mn)$ s.th. $[H_{tot}, H_0 \otimes 1 + 1 \otimes H_B] = 0$. If $\Phi(t)$ solves $\dot{\Phi}(t) = -(i \operatorname{ad}_H + \widehat{\Gamma}_{B, tot})\Phi(t)$, $\Phi(0) = \operatorname{id}$ with any $H \in \mathfrak{her}(n)$ s.th. $[H, H_0] = 0$ and

$$\widehat{\Gamma}_{B,\text{tot}} := \sum_{j,k=1} \left(\frac{1}{2} \left(V_{jk}^{\dagger} V_{jk}(\cdot) + (\cdot) V_{jk}^{\dagger} V_{jk} \right) - V_{jk}(\cdot) V_{jk}^{\dagger} \right),$$

l

with $V_{jk} = e^{-E'_k/(2T)} \operatorname{tr}_{|g_k\rangle\langle g_j|}(H_{\text{tot}})$ where $\sum_{j=1}^{m} E'_j |g_j\rangle\langle g_j|$ is any spectral decomposition of the bath Hamiltonian H_B , then $(\Phi(t))_{t\geq 0}$ is a continuous one-parameter semigroup in $\overline{\operatorname{TO}}(H_0,T)$ with $-(i\operatorname{ad}_H + \widehat{\Gamma}_{B,\text{tot}})$ being an element in the Lie wedge $\operatorname{L}(\overline{\operatorname{TO}}(H_0,T))$.

Lie-Semigroup Frame

OSID 30 (2023), 2350005

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

Markov Filta

Theorem (Lie wedge $L(TO(H_0,T))$)

If $\Phi(t)$ solves $\dot{\Phi}(t) = -(i \operatorname{ad}_{H} + \widehat{\Gamma}_{B, \operatorname{tot}})\Phi(t)$, $\Phi(0) = \operatorname{id}$ where $\widehat{\Gamma}_{B, \operatorname{tot}} := \sum_{j,k=1}^{m} \left(\frac{1}{2} (V_{jk}^{\dagger} V_{jk}(\cdot) + (\cdot) V_{jk}^{\dagger} V_{jk}) - V_{jk}(\cdot) V_{jk}^{\dagger} \right)$, then $(\Phi(t))_{t \ge 0} \subset \overline{\operatorname{TO}(H_{0}, T)}$ w. $-(i \operatorname{ad}_{H} + \widehat{\Gamma}_{B, \operatorname{tot}})$ in its Lie wedge $L(\overline{\operatorname{TO}(H_{0}, T)})$.

Proof Idea

For curve of thermal operation $\gamma(t) : t \mapsto tr_B(e^{-itH_{tot}}((\cdot) \otimes \rho_B^{(T)})e^{itH_{tot}})$ with $\gamma(0) = id$, show

(1) $\dot{\gamma}(0) \in E(L(\overline{TO(H_0,T)}))$ with $\overline{TO(H_0,T)}$ being a compact, convex semigroup,

(2) $\ddot{\gamma}(0) \in L(\overline{TO}(H_0,T))$ for $H_B = \sum_{j=1}^m E'_j |g_j\rangle\langle g_j|$ so $e^{-H_B/T} = \sum_{j=1}^m e^{-E'_j/T} |g_j\rangle\langle g_j|$. Thus altogether one gets $-(i \operatorname{ad}_H + \widehat{\Gamma}_{B,\operatorname{tot}}) = -i \operatorname{ad}_H + \frac{1}{2}\operatorname{tr}(e^{-H_B/T})\ddot{\gamma}(0) \in L(\overline{TO}(H_0,T))$.

Lie-Semigroup Frame

OSID 30 (2023), 2350005

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

Markov-Filt

Theorem (Lie wedge $L(TO(H_0,T))$)

If $\Phi(t)$ solves $\dot{\Phi}(t) = -(i \operatorname{ad}_{H} + \widehat{\Gamma}_{B, \operatorname{tot}})\Phi(t)$, $\Phi(0) = \operatorname{id}$ where $\widehat{\Gamma}_{B, \operatorname{tot}} := \sum_{j,k=1}^{m} \left(\frac{1}{2} (V_{jk}^{\dagger} V_{jk}(\cdot) + (\cdot) V_{jk}^{\dagger} V_{jk}) - V_{jk}(\cdot) V_{jk}^{\dagger} \right)$, then $(\Phi(t))_{t\geq 0} \subset \overline{\operatorname{TO}(H_{0},T)}$ w. $-(i \operatorname{ad}_{H} + \widehat{\Gamma}_{B, \operatorname{tot}})$ in its Lie wedge $L(\overline{\operatorname{TO}(H_{0},T)})$.

Proof Idea.

For curve of thermal operation $\gamma(t) : t \mapsto tr_B(e^{-itH_{tot}}((\cdot) \otimes \rho_B^{(T)})e^{itH_{tot}})$ with $\gamma(0) = id$, show

(1) $\dot{\gamma}(0) \in E(L(TO(H_0,T)))$ with $TO(H_0,T)$ being a compact, convex semigroup,

(2) $\ddot{\gamma}(0) \in L(\overline{TO(H_0,T)})$ for $H_B = \sum_{j=1}^m E'_j |g_j\rangle\langle g_j|$ so $e^{-H_B/T} = \sum_{j=1}^m e^{-E'_j/T} |g_j\rangle\langle g_j|$. Thus altogether one gets $-(i \operatorname{ad}_H + \widehat{\Gamma}_{B, \operatorname{tot}}) = -i \operatorname{ad}_H + \frac{1}{2}\operatorname{tr}(e^{-H_B/T})\ddot{\gamma}(0) \in L(\overline{TO(H_0,T)})$.

Lie-Semigroup Frame

OSID 30 (2023), 2350005

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

Markov-Fil

Definition (via the respective Lie wedges)

 $MTO(H_0,T) := \overline{\langle \exp(L(\overline{TO}(H_0,T))) \rangle}_{SG}$ $MEnTO(H_0,T) := \overline{\langle \exp(L(EnTO(H_0,T))) \rangle}_{SG}$ $MGibbs(H_0,T) := \overline{\langle \exp(L(Gibbs(H_0,T))) \rangle}_{SG}$

Lie-Semigroup Frame

OSID 30 (2023), 2350005

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

Markov-Fil

Definition (via the respective Lie wedges)

 $MTO(H_0,T) := \overline{\langle \exp(L(\overline{TO}(H_0,T))) \rangle}_{SG}$ $MEnTO(H_0,T) := \overline{\langle \exp(L(EnTO(H_0,T))) \rangle}_{SG}$ $MGibbs(H_0,T) := \overline{\langle \exp(L(Gibbs(H_0,T))) \rangle}_{SG}$

Markovianity at Large Lie-Semigroup Frame

ROMP 64 (2009), 93 & OSID 30 (2023), 2350005

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

Markov-Filter

Definition (via Lie Wedges)

$$\mathsf{MCPTP} := \overline{\langle \mathsf{exp}\left(\mathsf{L}(\mathsf{CPTP})
ight)
angle}_{\mathsf{SC}}$$

 $\mathsf{MTO}(H_0,T) := \overline{\langle \mathsf{exp}\left(\mathsf{L}(\overline{\mathsf{TO}(H_0,T)})\right)} \rangle_{\mathsf{SG}}$

 $\mathsf{MEnTO}(H_0,T) := \overline{\langle \mathsf{exp}\left(\mathsf{L}(\mathsf{EnTO}(H_0,T))\right) \rangle}_{\mathsf{SG}}$

 $\mathsf{MGibbs}(H_0,T) := \overline{\langle \exp\left(\mathsf{L}(\mathsf{Gibbs}(H_0,T))\right) \rangle}_{\mathsf{SG}}$

▲□▶▲□▶▲□▶▲□▶ □ の000

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

Markov Filtor

Definition (via Lie Wedges)

Lie-Semigroup Frame

 $\mathsf{MCPTP} := \overline{\left\langle \mathsf{exp}\left(\mathsf{L}(\mathsf{CPTP})\right) \right\rangle}_{\mathsf{SG}} \equiv \overline{\left\langle \; \mathsf{exp}\left(\mathfrak{w}_{\mathit{GKSL}}\right) \right)}_{\mathsf{SG}}$

 $\mathsf{MTO}(H_0,T) := \langle \exp\left(\mathsf{L}(\overline{\mathsf{TO}(H_0,T)})\right) \rangle_{\mathsf{SG}}$

 $\mathsf{MEnTO}(H_0,T) := \overline{\langle \exp\left(\mathsf{L}(\mathsf{EnTO}(H_0,T))\right) \rangle}_{\mathsf{sc}}$

 $\mathsf{MGibbs}(H_0,T) := \overline{\langle \exp(\mathsf{L}(\mathsf{Gibbs}(H_0,T))) \rangle}_{\mathsf{sc}}$

Markovianity at Large

ROMP 64 (2009), 93 & OSID 30 (2023), 2350005

Overview

I. Symmetries and Controllability

II. Symmetries and Observability & Tomographiability

III Accessibility at Large

Conclusions & Outlook

Markov-Filte

Markovianity Filter (via Lie Wedges $L(\cdot)$)

$$\mathsf{MCPTP} := \overline{\left\langle \mathsf{exp}\left(\mathsf{L}(\mathsf{CPTP})
ight)
ight
angle}_{\mathsf{SG}} \equiv \overline{\left\langle \,\mathsf{exp}\left(\mathfrak{w}_{\mathit{GKSL}}
ight)
ight
angle}_{\mathsf{SG}}$$

 $\mathsf{MTO}(\mathcal{H}_0, \mathcal{T}) := \left. \left\langle \exp\left(\mathsf{L}(\overline{\mathsf{TO}(\mathcal{H}_0, \mathcal{T})})\right) \right\rangle_{\mathsf{SG}} \right.$

 $\mathsf{MEnTO}(H_0,T) := \overline{\langle \mathsf{exp}\left(\mathsf{L}(\mathsf{EnTO}(H_0,T))\right) \rangle}_{\mathsf{SG}}$

 $\mathsf{MGibbs}(H_0,T) := \overline{\langle \exp\left(\mathsf{L}(\mathsf{Gibbs}(H_0,T))\right) \rangle}_{\mathsf{SG}}$

where $L(Gibbs(H_0,T)) = \left\{ L \in \mathfrak{w}_{GKSL} \mid e^{-H_0/T} \in \ker(L) \right\}$ $L(EnTO(H_0,T)) = \left\{ L \in L(Gibbs(H_0,T)) \mid \operatorname{ad}_{H_0} \in L' \right\}$ $L(\overline{TO}(H_0,T)) \text{ as in main Thm. above}$