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What can one infer just from its
m Hamiltonian (or Kossakowski-Lindblad) generators?

m ... and their symmetries ?
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. Reachable Set of States (¢ compact)

Reach(po) = {KpoK' | K € (expt)} =: Ok(po) = Adk(po)

NB: ad(X) = [A, X] 2 Avec(X) := (18 A— AT @ 1) vec(X) and Adk(-) := K(-)KT = (expady)(-)
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system algebra 2:  ade := (ada,adg |/ =1,2,..., Mije
|

symmetries 2°: ady := {S € gl(N?)|[S,ada]=0=[S,adg], Vj} = 2-dim. (v

NB: Notation ady = A := (1IA-AT®1) Cor. 22 in JMP 52 (2011), 113510
L ast )
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Wm Symmetry vs. Controllability

Single Symmetry Condition JMP 52 113510 (2011), OSID 24 1740019 (2017)

Theorem (universality by trivial ad-symmetries)

Overview

T Let{H,|v=d;1,2,...,m} be drift and control Hamiltonians of control
Controllabilty system ¥ with irreducible simple system algebra ¢.

Il. Symmetries and

Observabimy & Then % is fully controllable, i.e. t = su(2"), if and only if

Ill Accessibility at m the joint commutant to ad, is two-dimensional, i.e.
Large

Conclusions & adél = span{]l®2, |1><]l|}

Outlook
[ ]
m CARTAN subalgebras: so(N) and usp(g) have intertwiners S,S

H, S + SH! = 0 with SS = 1resp. SS = —1

m intertwiners add symmetry to adso usp : [ady, ,[S)(S|1] =0, Vv

NB: [S)(S|" = K(S® S1)



Wm Observability of Closed Systems

No Projectors onto Invariant Subspaces

Overview

Observability Result
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Let the system algebra ts of (¥X) be an irreducible subalgebra of su(N).
e Then the bilinear control system (X) is observable by C = C' if and only if

Il Accessibility at .. = B . .
Large m the joint commutant to ad, and P; := |C)(C]| is two-dimensional , i.e.
Conclusions & . g

Outlook m dim ({Pz} U {iady, |¥v=0,1,...,m})) =2.

[ ]
NB well known: a fully controllable system is always observable, but an observable system need not be
fully controllable.

Notation: C traceless partof Candady 1@ H—-HT @ 1.
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W m Systems Theory

Controllability & Observability in Linear Systems

Consider observed linear control system
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Systems Theory

Observability in (Bi)Linear Systems

Take observed (bi)linear system with constant control
[ Elliott (2008), Sec. 5.3.2; Grasselli & Isidori (1977)]

m control part: |X(t)) = (A+ uB)|X(t)) =: Au|X(t))
m observation part: y(t) = (C|X(t))

Observability Condition (cp. cyclic vectors)
(|
(ClAy
m observable < Ju € R s.th.rank . = N2
(CIAY™

NB: A, B,C,X € CN*Nand A:= 1@ A— AT ® 1acting on | X) = vec X (or likewise on (C|).



Wm Observability of Closed Systems

Observed Bilinear Control Systems

Consider observed N-level bilinear control system (%)

) = —i(Fo+ Su(t)H) p(t) p(0)=po and
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E'agcefessibi“tv at Consider the system (X) observed by C. W.r.t. the system algebra ¢y, its

Gorcusions & m observability space can be defined as
- Os(C) := spang{ad’(iC)|v =0,1,2,...}
with ady (iC) := {[ki, [ke, ... [k, iC]..]] | ki € {iHo,iHy, ... iHm}}

Definition ( variation of D’Alessandro (2003) and (2008) )

write C for traceless part of C
NB: Ox (C) comprises the orbit Ok, (iC) := K(iC)K' = expad,(iC) = 3 -\ ad¥(iC) C Ox(C).

=



Wm Observability of Closed Systems

Observed Bilinear Control Systems

Consider observed N-level bilinear control system (%)

) = —i(Fo+ Su(t)H) p(t) p(0)=po and
Overview
I. Symmetries and y(t) = tr{C p(t)}
Controllability with system algebra &5 := ((iHo, iH;|j=1,..., M) C su(N)

Il. Symmetries and
Observability &
Tomographiability
Observability
Tomographiability

E'agcefessibi“tv at The system (X) is observable by C iff for any pair 31, p» of states the equality

Condlusions & tr{C p1(t)} = tr{C p2(t)} Vt e R and joint controls u;(t)
Ouiteels implies 51 = g2, which is the case if and only if

. O5(C) = su(N) .

Definition ( D’Alessandro (2003) and (2008) )

write g for traceless part of p
NB: su(N) comprises all (skew)hermitian matrices and thus is informationally complete.
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Observed Bilinear Control Systems: CARTAN Control Algebra
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Observabilty

by = (iox1, ioy1, io1x, io1y)Lie and observable iC = io,, = Os(C) = px with
1l Accessibility at ) )

e by = (su(@) @1+ 1®su(2)) = (su(2) @ su(2)) = s0(4)
Conclusions & ,

it pr = /<O'XXa0'xy7sz;Uy)(70yy70yz;azx>azy7ozz>

|
NB: so(4) semisimple and so(N) simple for N > 5.

pro memoria: g (semi)simple Lie algebra. CARTAN decomposition g = & @ p with p = ¢~ N g as well as
[6,¢] C tand [¢,p] Cp,and [p,p] C ¢.



Wm Observability of Closed Systems

Observed Bilinear Control Systems: CARTAN Control Algebra

Overview

|. Symmetries and
Controllability

Il. Symmetries and

Observability & ili
B Example (full observability space)

Observabilty

C— by = (iox1,ioy1, ioix, io1y)ie and observable iC = (0,401 + 012)
11l Accessibility at _ iso

Large by = (su(2) ®su(2)) = so(4)

Conclusions & ps = i<UXX7ny70'xz;ny;Uyy70'yz;0'zx,0'zyaO'zz>

Outlook
. 0s(C) = su4) = tr@ps

NB: so(4) semisimple and so(N) simple for N > 5.

pro memoria: g (semi)simple Lie algebra. CARTAN decomposition g = & @ p with p = £~ N g as well as
[6,€] C tand [¢,p] Cp,and [p,p] C ¢.
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Observability of Closed Systems

Observed Bilinear Control Systems: CARTAN Control Algebra

Let (X) be a bilinear control syst. observed by C with simple
system algebra ts = ((iHo, iH;|j=1,...,m)Le C g = su(N),
observability space Ox(C) := spanR{ad’g(iC) lv=0,1,2,...}.
Theorem (Structure of Observability Space)

m ¢y is in a CARTAN subalgebra of su(N) iff there is a unitary S with

|S) € ker(1® H; + H; ® 1) jointly for all j.

m tr Cso(N) iff SS = +1orts C usp(Y) iff SS = —1.

m Then for the observability space one has (with same S)
for|S) € ker(1® C+C ® 1)
symmetric space p C py for |S) € ker(1® C—C ® 1)
foriC = iCy + iC,, Cep # 0.

Lie algebra t C ts

linear space [ C su(N)

ml=05(C) ®05(C,) = tx ®ps = su(N)




Wm Observability of Closed Systems

Observed Bilinear Control Systems: CARTAN System Algebra

Overview

B System algebra t5 is simple irred. CARTAN subalg of su(N)
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SRR A bilinear control system (¥) with ¢x C so(N) ortx C usp(%) is observable by C if

l;“;“g'a“"'“'f:‘)‘:t t and only if the observable C = C; + C, has non-vanishing components in ts and
ccessipility af ~ ~

Large ! Py, ie. Cg 7& 0 7& Cp.

Conclusions &

Outook So for the unique vec. ‘Obata unitary’ |S) € ker(1® H; + H; ® 1)|y; one has to have

|
m |S)¢ker(1® C+C® 1) forboth choices of signs;

hence also |S)(S| ¢ (10 C+C o 1) .
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Consider observed N-level bilinear control system (%)
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Wm Observability of Closed Systems

Observed Bilinear Control Systems: beyond CARTAN

Consider observed N-level bilinear control system (%)

| p(t) = —i(Ho+Zju(t)A) p(t) p(0)=po and
?‘:y:::tries and y(t) - tr{C P( t)}
Ceriitialalfiy irred. simple system algebra ts := ((iHo, iH;|j =1, Mitie C g = su(N)
gbssim;}ﬁ;?and observability space Oy (C) := spang{ad(iC) | v = 0, 1 ,2, o}

Tomographiability
Observability
Tomographiability

Structure of Observability Space (by ade,-Invariant Subspaces)

1l Accessibility at

Large Lie algebra &5 for (iC) € ts
Conclusions ~
Outook Ox(C) C < orthocomplement myx for (iC) € (& Ng) =

- lin. space | C g = ty @my foriC = iCy, + /sz

[ = O0s(C:) ® Os(Cy) C g =su(N)

ing:=t@mwithm:=¢-Ngand [¢€ C ¢, [¢,m] C m take £ and m as ‘ade-invariant subspaces’ of g



Wm Observability of Closed Systems

Observed Bilinear Control Systems: beyond CARTAN

su(2)
:]-511(8)
sp(2)

GvariE 50(9) +=50(16) su(16)

XX XX XX
| Symmetes and wo(10) ®—0O—0O
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Observability

Tomograptiabity ty = (ix111 iy 111 iXX i 11X, i1 1Y) e, (XX = xx11 +yy11 + 1t + 1yy1 + 11xx + 11yy)

1l Accessibility at

e observable iC = ixxx1 = Ox(C) = my L &5 with

Conclusions &
Outlook

Example (adg-invariant observability space m)

ts = s0(10) (45 dimensional)
Os(C) = my :=s0(10)* Nsu(16) (210 dimensional)

NB: s0(10) C su(16) not CARTAN-type (FROBENIUS-SCHUR ind. 2 := fg x(g%)du = +1 for real or quat. type), but | complex (2 = 0)



Wm Observability of Closed Systems

Observed Bilinear Control Systems: beyond CARTAN

Overview XX XX XX

|. Symmetries and . O O
Controllability

Il. Symmetries and
Observability &

Tomographiability
Observability

Example (full observability space)

= bs = (ix111, iy 111, iXX, 111X, 111y ) e, (XX = xx11 + yy11 + 1xx1 + 1yyd + 11xx + 11yy)
Pl observable iC = i(xxx1+1z11)
Sonclusions & tx = s0(10) (45 dimensional)
. my = so0(10)t Nsu(16) (210 dimensional)
Os(C) = su(16) = ¢txrdmy =gy

NB: s0(10) C su(16) not of CARTAN-type, but complex (z = 0)

ing:=t@mwithm:=¢-Ngand [¢€ C ¢, [¢,m] C m take ¢ and m as ‘ade-invariant subspaces’ of g



Wm Observability of Closed Systems

Projectors onto Invariant Subspaces

Recall for projections onto invariant subspaces:

Elementary Fact (e.g. S. Roman, Advanced Linear Algebra (2008), Thm. 2.24)

Overview

I Symmetries and LetF :V — V be alinear map. W C V is F-invariant subspace if F(W) C W.
OTHOTERTY Let P be the projector from V onto W. Then

Il. Symmetries and
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Recall for projections onto invariant subspaces:
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I Symmetries and LetF:V — V be alinear map. W C V is F-invariant subspace if F(W) C W.
OTHOTERTY Let P be the projector from V onto W. Then
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Observ:

r— m W and W+ (in V) are both F-invariant if and only if FP = PF.
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Corollary (Commutant for Invariant Subspace)
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In g:=t@mby[t € CE[e,m] Cm botht andm = &' are ad,-invariant.

Hence the projectors Pk, Py, are in the commutant of ady : {Pe, Py} C (adg)’.
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Observability of Closed Systems

Projectors onto Invariant Subspaces

Corollary (Commutant for Invariant Subspace)

In g:=tombyl[t €] C¢E[e,m] Cm botht andm = &+ are ade-invariant.
Hence the projectors P, Py, are in the commutant of ade : {P¢, P} C (ade)’.

implies




Wm Observability of Closed Systems

Projectors onto Invariant Subspaces

Corollary (Commutant for Invariant Subspace)

Overview In g:=tambyl[t, e Ct [e,m] Cm botht andm = ¢+ are ad.-invariant.

|. Symmetries and

Controllability Hence the projectors Pk, Py, are in the commutant of ade : {Pe, P} C (ade)’.

Il. Symmetries and . .
Observabilty & implies
Tomographiability
Observability
Tomographiability

Proposition

e Let (X) be an bilinear control system with irred. (semi)simple system algebra

S by =& @ Bt and assume su(n) = by ®my & - - - & my, with m; all ad, -invariant.!
Outlook

n Then system (X) is observable by C € het(n) iff for its rk-1 projector P; = |5) (5\
u [Pi‘v PE/]?:1 7é 0 7é [Pﬁv Pm/ #:1

Example: su(8) = su(2) @ su(2) @ su(2) @ my  mp G mg & my withdims63 =3 +3+3+9+9+9+27

180 [adey, Pe;]iq = 0 = [adey ij];; again C traceless part of C



I Tomographiability |
I’ I’ I’ I’ Closed Bilinear Control Systems

Consider observed N-level closed bilinear control system (¥) on the orbit of pg

Orerview plt) = —i(Ho+Zu(t)A) p(t) p(0)=po and
Conratatity y(t) = t{Cp(t)}

Il. Symmetries and

%bnsz;v;t;ir']igbﬁ«my system algebra ts := ((iHo, iH;|j =1,...,MLe C adsy(n)
T

Ill Accessibility at Definition (suggestion)
Large
BT The closed system (X) is tomographiable by C w.r.t. po iff both

Outlook
|

the reachable set of po under (X) has non-empty interior (i.e. is accessible),

the observability space of C under (X) is informationally complete,
i.e. all of isu(N).

Notation: C is traceless part.
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Tomographiability Il
Open Bilinear Control Systems
Consider observed N-level open Markovian bilinear control system (%)

p(t) = —(iHo+ iZju(t)Fj + Taxs) p(t) p(0)=py and
y(t) = t{Cp(t)}

NB: Lie wedge s C ((iFy + ), iH)Le C gl(N?,R)
reachable set Reachs(pp) := Sy (vec(po)), Sy := (exptoy).

Definition (suggestion)

The open system (%) is tomographiable by C w.r.t. pg if and only if both
(X) is accessible w.r.t. pg, (i.e. Reachs(po) has non-empty interior)

the observability space of C under (¥) is informationally complete.

Notation: C is traceless part.




Wm Map Accessibility of Open Systems

Symmetry Conditions

Let X = —(iHo + Taks. + 1Y u;(t)H;) X(t) be a N-level bil. control system ¥ with
i

Overview system algebra gs := ((iHo + ), iH;|j=1,..., m)Le.

|. Symmetries and

orollar
Il. Symmetries and y
Ob: bility & - :
Tomographiably The following two are equivalent:

Il Accessibility at

Large The unital n-qubit system variant is (map)accessible (N = 2").

Conclusions &

Snlas The unital system algebra has commutant of dimension 2
n and (for N > 2) its t-part exceeds ad,, ) -
Likewise one may conjecture the equivalence of

The non-unital n-qubit system variant is (map)accessible.

The non-unital system algebra has commutant of dimension 1 .



Analogue to Controllability in Closed Systems

Wm Accessibility of Open Systems

Let X = —(iHo + Fakse + Y. uj(t)H;)X(t) be N-level bilinear control system (X) w.
J

Overview system algebra gy := <(I’:Io + IﬁGKSL)a I’:I/ [j=1,....me C gLK.

|. Symmetries and
Controllability

Corollary (standard )
Il. Symmetries and
Observability &
Tomographiability

Il Accessiblty at The system is map accessible .
arge
O T The reachable set Reach(1) is a subsemigroup S ¢ GtX w. non-empty

:ut'ook interior (GLK := (exp g*)).

The following are equivalent:



Wm Accessibility of Open Systems

Analogue to Controllability in Closed Systems

Let X = —(iHo + [ gks + /z ui(t)H;)X(t) be N-level bilinear control system () w

Overview system algebra gy = <(/H0 ol I_GKSL) IH |j =1,. >|_|e - gLK

|. Symmetries and
Controllability

Corollary ( Kurniawan, Dirr, Helmke, IEEE TAC 52, 1984 (2011) )

Il. Symmetries and

Ob. bility & g 2 o
Tomographinbilty The following are equivalent:

Ml Acossabiy at The unital n-qubit system is map accessible (N = 2").
O T B The reachable set Reach(]l) is a subsemigroup S ¢ Go"X w. non-empty

:”“°°k interior (G5X := (exp g5/)).
The unital system algebra is
gl(N?-1,R) = g5¥ or

)% £
so(N?-1) @ R.
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Accessibility of Open Systems

Analogue to Controllability in Closed Systems

Let X = —(iHo + Fakse + 1" ui(t)H;)X(t) be 2"-level bilinear control system () w.
J

syst. algs gs:= ((iHo + Fakst), iF;|j = 1,. .., m)e Co5* (unital), g"¥ (non-unital).

In coherence-vector representation, elements in g~ and gk- and their commutants
(gbL) and (ght)’ take the form

AlO / al | 0
95L9r02(+0 0) and (ggL)sr’:< 5 5)

where with N = 27, a € RV~ and A € gi(N2—1,R) and o, 3, 7 € R.
NB: observe semidirect-product structure [(A, a), (B, b)| = ([A, B], Ab — Ba).
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Wm System Lie Algebra of Controlled Markov Maps

Let X = —(iHo + Fakse + " ui(t)H;)X(t) be 2"-level bilinear control system () w.
Overview J
I. Symmetries and syst. algs gs:= ((iHo + Takst). iH;|j = 1,..., m)iie Cag© (unital), g (non-unital).
Controllability

Il. Symmetries and

Observability & Embedding
Tomographiability

Il Accessibiy a The Lindblad-Kossakowski Lie algebra g-< is a semidirect sum
arge

8on|cluksions& QLK = g[(Nz — 1,R) ©Ds iO = géK Ds io
utlool
. of the unital part g5< with the ideal of translation generators iy ~ RN*~1.
It generates a group of affine maps
G:=GL(M>-1,R)®slh2>S
embracing the Markovian Lie-semigroup of GKSL-quantum maps S.

NB: The system algebra is also the smallest Lie algebra comprising the Lie wedge: gs D oy .



Wm Accessibility of Open Systems

Symmetry Conditions

Let X = —(iHo + Taks. + 1 Y. uj(t)A;)X(t) be a N-level bil. control system ¥ with
i

Overview system algebra gs := ((iHo + ), iH;|j=1,..., M)Le.
|. Symmetries and

Il. Symmetries and oro ary

Observability & . .

Tomographiability The following two are equivalent:

Il Accessibility at

Large The unital n-qubit system variant is (map)accessible (N = 2").

Conclusions &

Outlook The unital system algebra has commutant of dimension 2
L] and (for N > 2) its t-part exceeds ad,, ) -
Likewise one may conjecture the equivalence of

The non-unital n-qubit system variant is (map)accessible.
The non-unital system algebra has commutant of dimension 1 .



i

Overview

|. Symmetries and
Controllability

Il. Symmetries and
Observability &
Tomographiability

1l Accessibility at
Large

Conclusions &
Outlook

Conclusion: Symmetries in Bilinear Control Systems
(1) by Closed System'’s Algebra J. Math. Phys. 52, 113510 (2011)

closed free versus [B] closed observed versus [E] open Markovian

closed coherently controlled (cc) systems:
system algebra &5 := (iadp,, . .., iady,)Lie = adgyn) < dim ((Ex)') =2
get full controllability (universality) by irreducibility of ¢x (adjoint repr.!)




i

Overview

|. Symmetries and
Controllability

Il. Symmetries and
Observability &
Tomographiability

1l Accessibility at
Large

Conclusions &
Outlook

Conclusion: Symmetries in Bilinear Control Systems
(2) plus Observable (or fixed po)

closed free versus [B] closed observed versus [E] open Markovian

closed coherently controlled (cc) systems:
system algebra &5 := (iadp,, . .., iady,)Lie = adgyn) < dim ((Ex)') =2
get full controllability (universality) by irreducibility of ¢x (adjoint repr.!)

closed systems, cc with observable C:
check joint commutant (& U P¢ )’

B get full observability by irreducibility of {¢x U Pc}
B get (C, pp) observable pair by shared ¢5-invariant support (proj. Pr,)




Wm Conclusion: Symmetries in Bilinear Control Systems

(3) Open System’s Algebra

closed free versus [B] closed observed versus [E] open Markovian

closed coherently controlled (cc) systems:

Overview s X . ,
\ Symmetries and system algebra &5 := (iadp,, . .., iady,)Lie = adgyn) < dim ((Ex)') =2
ContRleblY get full controllability (universality) by irreducibility of €5 (adjoint repr.!)

Il. Symmetries and
Observability &
Tomographiability

" closed systems, cc with observable C:
1l Accessibility at Ll
Large check joint commutant (& U P¢ )’

Gl ES B get full observability by irreducibility of {¢x U Pc}

Outlook

[ B get (C, pp) observable pair by shared ¢5-invariant support (proj. Pr,)

open systems, cc with constant (non)unital Markovian noise:
system alg. gx,, = ((iadp, 100 ), - - -, iadm, Juie W. dim ((g5,)") = 1[2]
get (non)unital map accessibility by irreducibility of gs, (resp. gx)




Wm Markovian Thermal Operations

Lie-Semigroup Frame OSID 30 (2023), 2350005

Overview

|. Symmetries and
Controllability

II. Symmetries and Def.: Thermal Operations

Observabili_ty & ( T)
Tomographiabilty (1) couple system pg to _(by ®pg )

1l Accessibility at

— (2) energy-conserving evolution (by U € {Hy ® 1g + 1s ® Hg}')
Conclusions &

Outiook (3) project back onto system (by trp)

|

Ad
ps(0) @ ply (T;j> psa(U)

LB](l) (3{“3

ps(0) ToET ps(U).



I Markovianity at Large
I’ I’ I’ I’ Lie-Semigroup Frame ROMP 64 (2009), 93 & OSID 30 (2023), 2350005

Overview Markovianity Filter (via Lie Wedges L(-))

|. Symmetries and
Controllability

Il. Symmetries and MCPTP := <exp (L(CPTP ) SG = <exp (mGKSL))>SG

Observabili_ty &

ety MTO(Ho.T) = (exp (L(TO(F6.1))) g

Large )
Conclusions & MENTO(Ho,T) := (exp (L(EnTO (Ho,T )))>SG /
Outlook

. MGibbs(Ho,T) := (exp (L(Gibbs(Ho.T)))) s

where  L(Gibbs(Ho,T)) = {L € waks | € /T € ker(L)}
L(EnTO(Ho,T)) = {L € L(Gibbs(Ho.T)) | adw, € L'}
L(TO(Ho.T)) asin main Thm. of OSID 30 (2023), 2350005
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Wm Markovian Thermal Operations

Lie-Semigroup Frame OSID 30 (2023), 2350005

Overview

|. Symmetries and
Controllability

R nyewl  Starting Point: Thermal Operations

Observabili_ty & ( T)

VBT Iy (1) couple system pg to _(by ®pg )

1l Accessibility at

Large (2) energy-conserving evolution (by U € {Hy ® 1g + 15 ® Hg})
Conclusions &

Outiook (3) project back onto system (by trg)
[ |

Markov-Filter

Ad
ps(0) ® Pg) (T;/> pse(U)

LB]\(l) (S)J(trg

0 U).
ps(0) m’ ps(U)



Wm Markovian Thermal Operations

Lie-Semigroup Frame OSID 30 (2023), 2350005

Theorem (Lie wedge L(TO(Ho.T)))

Overview

|. Symmetries and

Controllabilty Given Hg € het(m), Hit € her(mn) s.th. [Hiot, Ho ® 1+ 1® Hg] = 0.

Il. Symmetries and

Observability & If (t) solves Cb(l') = — (iadH +FB7tot)¢(t) ,®(0) = id with any H € her(n)
Tomographiability Sth [H, Ho] _ 0 and

1l Accessibility at
Large m

Conclusions & FB,tOI = Z (%(V/I( V/k() + ()V/L V]k> o V/k()vj}<) )

Outlook

jk=1
| | / c
with Vix = e~ 5/ CT) tr gy o (Hiot) where 35T Ej|9;)(gjl is any spectral
decomposition of the bath Hamiltonian Hg,

then (®(t))+>0 Is a continuous one-parameter semigroup in TO(Hy,T) with

—(fady +FBM) being an element in the Lie wedge L(TO(Ho.T)).



Wm Markovian Thermal Operations

Lie-Semigroup Frame OSID 30 (2023), 2350005

Theorem (Lie wedge L(TO(H,.T)))
(

Overview

|. Symmetries and

Gontrollabilty If &(t) solves &(t) = —
Il. Symmetries and m

Observability & = i
Tomographigbility I_B,tot = § (% ( V/L V/k() + () V/];L( V/k) - V/k() Vﬁ() )
11l Accessibility at J,k=1

Large

iady +T1ot) ®(1), ®(0) = id where

then (®(1))i=0 C TO(Ho,T) w. —(iady +T g.ot) in its Lie wedge L(TO(Hp,T)).

Conclusions &
Outlook

Markov-Filter



Wm Markovian Thermal Operations

Lie-Semigroup Frame OSID 30 (2023), 2350005

Theorem (Lie wedge L(TO(H,.T)))

Overview

|. Symmetries and

Controllability If (t) solves q)(t) = —(iadH +FB,tot)¢(t) ,®(0) =id where

I Symme_t_ries and . m .
oy Posor = 3 (B(VVi() + OOVEViK) = Vi(IVE)
11l Accessibility at J,k=1

Large PN
. then (®(t))1>0 C TO(Ho,T) w. —(iady 4T pot) in its Lie wedge L(TO(Hy,T)).

Conclusions &
Outlook

Markov-Filter

Proof Idea.
For curve of thermal operation ~(t) : t — trg(e~™et((\) ® p(BT))e”Hm) with v(0) = id, show

(1) 4(0) € E(L(TO(Hy,T))) with TO(Ho,T) being a compact, convex semigroup,

() 4(0) € L(TO(Fp.T)) for Hg = - El|g;){gy| s0 e=Hs/T = -, &5/ T|gj)(gj].
Thus altogether one gets —(iady +T g tor) = —fiady + 3 tr(e~H8/T)5(0) € L(TO(Ho,T)) . []



Wm Markovian Thermal Operations

Lie-Semigroup Frame OSID 30 (2023), 2350005

Overview

|. Symmetries and
Controllability

Il. Symmetries and
Observability &
Tomographiability

1l Accessibility at
Large

Condlusons & Definition (via the respective Lie wedges)

MTO(Ho,T):= (exp (L(TO(Ho.T))))sg
MENTO(Hy,T):= (exp (L(ENTO(Hp,T))))

MGibbs(Hy,T):= (exp (L(Gibbs(Ho,T))))

SG

SG



Wm Markovian Thermal Operations

Lie-Semigroup Frame OSID 30 (2023), 2350005

Overview

|. Symmetries and
Controllability

Il. Symmetries and
Observability &
Tomographiability

1l Accessibility at
Large

o ek Definition (via the respective Lie wedges)

MTO(Ho.T):= (exp (L(TO(Ho.T))))gq
MENTO(Ho,T):= (exp (L(ENTO(Hy,T))))

SG

MGibbs(Hp,T):= (exp (L(Gibbs(Ho,T))))sg



I Markovianity at Large
I’ I’ I’ I’ Lie-Semigroup Frame ROMP 64 (2009), 93 & OSID 30 (2023), 2350005

Overview Definition (via Lie Wedges)

|. Symmetries and
Controllability

II. Symmetries and MCPTP := <exp (L(CPTP))>SG

Observability &
Tomographiability

Il Accessibility at MTO(HO,T) = (exp (L(TO(HO,T))) >SG

Large
Outook MENTO(Ho,T) := (exp (L(ENTO(Ho.T))))gq

MGibbs(Ho,T) := (exp (L(Gibbs(Ho,7))))eg




I Markovianity at Large
I’ I’ I’ I’ Lie-Semigroup Frame ROMP 64 (2009), 93 & OSID 30 (2023), 2350005

@
Overview Definition (via Lie Wedges) 4

|. Symmetries and
Controllability

1L Symmetries and MCPTP := (exp (L(CPTP)))q = (exp (vgkst))) |
?obmograzrl]itgb%lity se s¢ ‘\ﬁ‘
:_'Lgcefessm”“y a MTO(Ho,T) := (exp (L(TO(Ho,T))))gq

Otk MENTO(Ho,T) := (exp (L(ENTO(Ho.T))))gq

MGibbs(Ho,T) := (exp (L(Gibbs(Ho.T))))q

G



I Markovianity at Large
I’ I’ I’ I’ Lie-Semigroup Frame ROMP 64 (2009), 93 & OSID 30 (2023), 2350005

Overview Markovianity Filter (via Lie Wedges L(-))

|. Symmetries and
Controllability

Il. Symmetries and MCPTP := <exp (L(CPTP ) SG = <exp (mGKSL))>SG

Observabili_ty &

ety MTO(Ho.T) = (exp (L(TO(F6.1))) g

Large )
Conclusions & MENTO(Ho,T) := (exp (L(EnTO (Ho,T )))>SG /
Outlook

. MGibbs(Ho,T) := (exp (L(Gibbs(Ho.T)))) s

where  L(Gibbs(Ho,T)) = {L € waks | € /T € ker(L)}
L(EnTO(Ho,T)) = {L € L(Gibbs(Ho.T))| ads, € L'}
L(TO(Ho.T)) asin main Thm. above



