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controlled (closed) or accessed (open) ?

simulated ?
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Questions by the Quantum Engineer
... To Be Answered by the Mathematician

To which extent can a quantum dynamical system be
controlled (closed) or accessed (open) ?

simulated ?

observed, sensed or tomographied ?

What can one infer just from its
Hamiltonian (or Kossakowski-Lindblad) generators?

... and their symmetries ?
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Bilinear Control Systems
Key Notions: System Algebra, Symmetries, Universality

See controlled Schrödinger eq. |ψ̇(t)⟩ = −i(H0 +
∑

j uj(t)Hj)|ψ(t)⟩ as

bilinear control system: ẋ(t) = (A +
∑

j uj(t)Bj)x(t) with x(0) = x0

Algebraic Characterisation
system algebra k := ⟨A,Bj | j = 1,2, ...,m⟩Lie

symmetries 1o: k′ := {s ∈ gl(N) | [s,A]=0=[s,Bj ], ∀j}
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Bilinear Control Systems
Key Notions: System Algebra, Symmetries, Universality

See controlled Liouville eqn. |ρ̇(t)⟩ = −i
(
Ĥ0 +

∑
j uj(t)Ĥj

)
|ρ(t)⟩ as

bilinear control system: Ẋ (t) = (adA +
∑

j uj(t)adBj )X (t) w . X (0) = X0

Algebraic Characterisation
system algebra 1 k := ⟨A,Bj | j = 1,2, ...,m⟩Lie

Reachable Set of States (k compact)
Reach(ρ0) = {Kρ0K † |K ∈ ⟨exp k⟩} =: OK(ρ0) = AdK(ρ0)

NB: adA(X) = [A,X ] =̂ Â vec(X) := (1l⊗A−A⊤⊗ 1l) vec(X) and AdK(·) := K(·)K† = (exp adk)(·)
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Bilinear Control Systems
Key Notions: System Algebra, Symmetries, Universality

See controlled Liouville eqn. |ρ̇(t)⟩ = −i
(
Ĥ0 +

∑
j uj(t)Ĥj

)
|ρ(t)⟩ as

bilinear control system: Ẋ (t) = (adA +
∑

j uj(t)adBj )X (t) w . X (0) = X0

Algebraic Characterisation
system algebra 1 k := ⟨A,Bj | j = 1,2, ...,m⟩Lie

system algebra 2: adk := ⟨adA, adBj | j = 1,2, ...,m⟩Lie

symmetries 2o: ad′k := {S ∈ gl(N2) | [S, adA]=0=[S, adBj ], ∀j}

NB: Notation adA =̂ Â := (1l ⊗ A − A⊤ ⊗ 1l)
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Bilinear Control Systems
Key Notions: System Algebra, Symmetries, Universality

See controlled Liouville eqn. |ρ̇(t)⟩ = −i
(
Ĥ0 +

∑
j uj(t)Ĥj

)
|ρ(t)⟩ as

bilinear control system: Ẋ (t) = (adA +
∑

j uj(t)adBj )X (t) w . X (0) = X0

Algebraic Characterisation
system algebra 1 k := ⟨A,Bj | j = 1,2, ...,m⟩Lie = su(n) (universal)

system algebra 2: adk := ⟨adA, adBj | j = 1,2, ...,m⟩Lie

symmetries 2o: ad′k := {S ∈ gl(N2) | [S, adA]=0=[S, adBj ], ∀j} = 2-dim. (triv.)

NB: Notation adA =̂ Â := (1l ⊗ A − A⊤ ⊗ 1l) Cor. 22 in JMP 52 (2011), 113510
Theorem details fast
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Symmetry vs. Controllability
Single Symmetry Condition JMP 52 113510 (2011), OSID 24 1740019 (2017)

Theorem (universality by trivial ad-symmetries)

Let {Hν | ν = d ;1,2, . . . ,m} be drift and control Hamiltonians of control
system Σ with irreducible simple system algebra k.

Then Σ is fully controllable, i.e. k = su(2n), if and only if
the joint commutant to adk is two-dimensional, i.e.

adk
′ = span{1l⊗2, |1l⟩⟨1l|}.

CARTAN details next

CARTAN subalgebras: so(N) and usp(N
2 ) have intertwiners S,S

HνS + SH t
ν = 0 with SS = 1l resp. SS = −1l

intertwiners add symmetry to adso,usp : [adHν
, |S⟩⟨S|⌜1 ] = 0, ∀ν

NB: |S⟩⟨S|⌜1 = K (S ⊗ S†)
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Let {Hν | ν = d ;1,2, . . . ,m} be drift and control Hamiltonians of control
system Σ with irreducible simple system algebra k.

Then Σ is fully controllable, i.e. k = su(2n), if and only if
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Symmetry vs. Controllability
Single Symmetry Condition JMP 52 113510 (2011), OSID 24 1740019 (2017)

Theorem (universality by trivial ad-symmetries)

Let {Hν | ν = d ;1,2, . . . ,m} be drift and control Hamiltonians of control
system Σ with irreducible simple system algebra k.

Then Σ is fully controllable, i.e. k = su(2n), if and only if
the joint commutant to adk is two-dimensional, i.e.

adk
′ = span{1l⊗2, |1l⟩⟨1l|}.

CARTAN subalgebras: so(N) and usp(N
2 ) have intertwiners S,S

HνS + SH t
ν = 0 with SS = 1l resp. SS = −1l

intertwiners add symmetry to adso,usp : [adHν
, |S⟩⟨S|⌜1 ] = 0, ∀ν

NB: |S⟩⟨S|⌜1 = K (S ⊗ S†)
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Observability of Closed Systems
No Projectors onto Invariant Subspaces

Observability Result

Let the system algebra kΣ of (Σ) be an irreducible subalgebra of su(N).
Then the bilinear control system (Σ) is observable by C = C† if and only if

the joint commutant to adk and Pc̃ := |C̃⟩⟨C̃| is two-dimensional , i.e.

dim
(
({Pc̃} ∪ {i adHν | ν = 0,1, . . . ,m})′

)
= 2.

NB well known: a fully controllable system is always observable, but an observable system need not be
fully controllable.

Notation: C̃ traceless part of C and adH =̂1l ⊗ H − H⊤ ⊗ 1l.
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Systems Theory
Controllability & Observability in Linear Systems

Consider observed linear control system

control part: ẋ(t) = Ax(t) + Bv
observation part: y(t) = Cx(t)

Conditions for Full Controllability and Observability (cp. cyclic vectors)

controllable ⇔ rank [B,AB,A2B, . . . ,AN−1B] = N

observable ⇔ rank


C
CA

...
CAN−1

 = N



Overview

I. Symmetries and
Controllability

II. Symmetries and
Observability &
Tomographiability
Observability

Tomographiability

III Accessibility at
Large

Conclusions &
Outlook

■

Systems Theory
Observability in (Bi)Linear Systems

Take observed (bi)linear system with constant control
[ Elliott (2008), Sec. 5.3.2; Grasselli & Isidori (1977) ]

control part: |Ẋ (t)⟩ = (Â + uB̂)|X (t)⟩ =: Âu|X (t)⟩
observation part: y(t) = ⟨C|X (t)⟩

Observability Condition (cp. cyclic vectors)

observable ⇐ ∃u ∈ R s.th. rank


⟨C|
⟨C|Âu

...

⟨C|Â N 2−1
u

= N 2

NB: A,B,C,X ∈ CN×N and Â := 1l ⊗ A − A⊤ ⊗ 1l acting on |X⟩ ≡ vecX (or likewise on ⟨C|).
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Observability of Closed Systems
Observed Bilinear Control Systems

Consider observed N-level bilinear control system (Σ)

ρ̇(t) = −i(Ĥ0 +Σjuj(t)Ĥj) ρ(t) ρ(0) ≡ ρ0 and
y(t) = tr{C ρ(t)}

with system algebra kΣ := ⟨(iH0, iHj | j = 1, . . . ,m⟩Lie ⊆ su(N)

Definition ( variation of D’Alessandro (2003) and (2008) )

Consider the system (Σ) observed by C. W.r.t. the system algebra kΣ, its

observability space can be defined as
OΣ(C) := spanR{ad

ν
k (iC̃) | ν = 0,1,2, ...}

with adνk (iC̃) :=
{
[k1, [k2, ...[kν , iC̃]...]] | ki ∈ {iH0, iH1, . . . , iHm}

}
write C̃ for traceless part of C

NB: OΣ(C) comprises the orbit OKΣ
(iC̃) := K(iC̃)K† = exp adk(iC̃) =

∞∑
ν=0

1
ν!

adνk (iC̃) ⊂ OΣ(C) .
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Observability of Closed Systems
Observed Bilinear Control Systems

Consider observed N-level bilinear control system (Σ)

ρ̇(t) = −i(Ĥ0 +Σjuj(t)Ĥj) ρ(t) ρ(0) ≡ ρ0 and
y(t) = tr{C ρ(t)}

with system algebra kΣ := ⟨(iH0, iHj | j = 1, . . . ,m⟩Lie ⊆ su(N)

Definition ( D’Alessandro (2003) and (2008) )

The system (Σ) is observable by C iff for any pair ρ̃1, ρ̃2 of states the equality
tr{C ρ̃1(t)} = tr{C ρ̃2(t)} ∀t ∈ R and joint controls uj(t)

implies ρ̃1 = ρ̃2, which is the case if and only if

OΣ(C)
iso
= su(N) .

write ρ̃ for traceless part of ρ
NB: su(N) comprises all (skew)hermitian matrices and thus is informationally complete.
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Observability of Closed Systems
Observed Bilinear Control Systems: CARTAN Control Algebra

A B

Example (symmetric observability space)

kΣ = ⟨iσx1, iσy1, iσ1x , iσ1y ⟩Lie and observable iC̃ = iσzz ⇒ OΣ(C) = pΣ with

kΣ =
(
su(2)⊗ 1l + 1l ⊗ su(2)

) iso
=

(
su(2)⊕ su(2)

) iso
= so(4)

pΣ = i⟨σxx , σxy , σxz ;σyx , σyy , σyz ;σzx , σzy , σzz⟩

NB: so(4) semisimple and so(N) simple for N ≥ 5.

pro memoria: g (semi)simple Lie algebra. CARTAN decomposition g = k⊕ p with p = k⊥ ∩ g as well as
[k, k] ⊆ k and [k, p] ⊆ p, and [p, p] ⊆ k.
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Observability of Closed Systems
Observed Bilinear Control Systems: CARTAN Control Algebra

A B

Example (full observability space)

kΣ = ⟨iσx1, iσy1, iσ1x , iσ1y ⟩Lie and observable iC̃ = i(σzz+σz1 + σ1z)

kΣ =
(
su(2)⊕ su(2)

) iso
= so(4)

pΣ = i⟨σxx , σxy , σxz ;σyx , σyy , σyz ;σzx , σzy , σzz⟩

OΣ(C) = su(4) = kΣ ⊕ pΣ

NB: so(4) semisimple and so(N) simple for N ≥ 5.

pro memoria: g (semi)simple Lie algebra. CARTAN decomposition g = k⊕ p with p = k⊥ ∩ g as well as
[k, k] ⊆ k and [k, p] ⊆ p, and [p, p] ⊆ k. CARTAN details next fast
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Observability of Closed Systems
Observed Bilinear Control Systems: CARTAN Control Algebra

Let (Σ) be a bilinear control syst. observed by C with simple

system algebra kΣ := ⟨(iH0, iHj | j = 1, . . . ,m⟩Lie ⊆ g ≡ su(N),

observability space OΣ(C) := spanR{ad
ν
k (iC̃) | ν = 0,1,2, ...}.

Theorem (Structure of Observability Space)

kΣ is in a CARTAN subalgebra of su(N) iff there is a unitary S with
|S⟩ ∈ ker(1l ⊗ Hj + Hj ⊗ 1l) jointly for all j .

kΣ ⊆ so(N) iff SS̄ = +1l or kΣ ⊆ usp(N
2 ) iff SS̄ = −1l.

Then for the observability space one has (with same S)

OΣ(C) =


Lie algebra k ⊆ kΣ for |S⟩ ∈ ker(1l ⊗ C̃+C̃ ⊗ 1l)

symmetric space p ⊆ pΣ for |S⟩ ∈ ker(1l ⊗ C̃−C̃ ⊗ 1l)

linear space l ⊆ su(N) for iC̃ = iC̃k + iC̃p, C̃k,p ̸= 0.

l = OΣ(C̃k)⊕OΣ(C̃p) = kΣ ⊕ pΣ = su(N)



Overview

I. Symmetries and
Controllability

II. Symmetries and
Observability &
Tomographiability
Observability

Tomographiability

III Accessibility at
Large

Conclusions &
Outlook

■

Observability of Closed Systems
Observed Bilinear Control Systems: CARTAN System Algebra

■ System algebra kΣ is simple irred. CARTAN subalg of su(N)

Theorem (Observability in Simple CARTAN System Algebras)

A bilinear control system (Σ) with kΣ ⊆ so(N) or kΣ ⊆ usp(N
2 ) is observable by C if

and only if the observable C̃ = C̃k + C̃p has non-vanishing components in kΣ and
pΣ, i.e. C̃k ̸= 0 ̸= C̃p.

So for the unique vec. ‘Obata unitary ’ |S⟩ ∈ ker(1l ⊗ Hj + Hj ⊗ 1l)|∀j one has to have

|S⟩ /∈ ker(1l ⊗ C̃±C̃ ⊗ 1l) for both choices of signs;

hence also |S⟩⟨S| /∈ (1l ⊗ C̃±C̃ ⊗ 1l)′ .
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Observability of Closed Systems
Observed Bilinear Control Systems: beyond CARTAN

Consider observed N-level bilinear control system (Σ)

ρ̇(t) = −i(Ĥ0 +Σjuj(t)Ĥj) ρ(t) ρ(0) ≡ ρ0 and
y(t) = tr{C ρ(t)}

irred. simple system algebra kΣ := ⟨(iH0, iHj | j = 1, . . . ,m⟩Lie ⊆ g ≡ su(N)

observability space OΣ(C) := spanR{ad
ν
k (iC̃) | ν = 0,1,2, ...}



Overview

I. Symmetries and
Controllability

II. Symmetries and
Observability &
Tomographiability
Observability

Tomographiability

III Accessibility at
Large

Conclusions &
Outlook

■

Observability of Closed Systems
Observed Bilinear Control Systems: beyond CARTAN

Consider observed N-level bilinear control system (Σ)

ρ̇(t) = −i(Ĥ0 +Σjuj(t)Ĥj) ρ(t) ρ(0) ≡ ρ0 and
y(t) = tr{C ρ(t)}

irred. simple system algebra kΣ := ⟨(iH0, iHj | j = 1, . . . ,m⟩Lie ⊆ g ≡ su(N)

observability space OΣ(C) := spanR{ad
ν
k (iC̃) | ν = 0,1,2, ...}

Structure of Observability Space (by adkΣ -Invariant Subspaces)

OΣ(C) ⊆


Lie algebra kΣ for (iC̃) ∈ kΣ

orthocomplement mΣ for (iC̃) ∈ (k⊥Σ ∩ g) ≡ mΣ

lin. space l ⊆ g = kΣ ⊕mΣ for iC̃ = iC̃kΣ + iC̃mΣ

l = OΣ(Ck)⊕OΣ(Cm) ⊆ g ≡ su(N)

in g := k⊕m with m := k⊥ ∩ g and [k, k] ⊆ k , [k,m] ⊆ m take k and m as ‘adk-invariant subspaces’ of g
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Observability of Closed Systems
Observed Bilinear Control Systems: beyond CARTAN

A B

XX XX XX

Example (adk-invariant observability space m)

kΣ = ⟨ix111, iy111, iXX , i111x , i111y⟩Lie, (XX = xx11+ yy11+ 1xx1+ 1yy1+ 11xx + 11yy )

observable iC̃ = ixxx1 ⇒ OΣ(C) = mΣ ⊥ kΣ with

kΣ = so(10) (45 dimensional)
OΣ(C) = mΣ := so(10)⊥ ∩ su(16) (210 dimensional)

NB: so(10) ⊂ su(16) not CARTAN-type (FROBENIUS-SCHUR ind. ı :=
∫

g χ(g2)dµ = ±1 for real or quat. type), but complex (ı = 0)
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Observability of Closed Systems
Observed Bilinear Control Systems: beyond CARTAN

A B

XX XX XX

Example (full observability space)

kΣ = ⟨ix111, iy111, iXX , i111x , i111y⟩Lie, (XX = xx11+ yy11+ 1xx1+ 1yy1+ 11xx + 11yy )

observable iC̃ = i(xxx1+1z11)
kΣ = so(10) (45 dimensional)
mΣ = so(10)⊥ ∩ su(16) (210 dimensional)

OΣ(C) = su(16) = kΣ ⊕mΣ = gΣ

NB: so(10) ⊂ su(16) not of CARTAN-type, but complex (ı = 0)

in g := k⊕m with m := k⊥ ∩ g and [k, k] ⊆ k , [k,m] ⊆ m take k and m as ‘adk-invariant subspaces’ of g
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Observability of Closed Systems
Projectors onto Invariant Subspaces

Recall for projections onto invariant subspaces:

Elementary Fact (e.g. S. Roman, Advanced Linear Algebra (2008), Thm. 2.24)

Let F : V → V be a linear map. W ⊊ V is F-invariant subspace if F (W ) ⊆ W.
Let P be the projector from V onto W. Then

W is F-invariant if and only if PFP = FP and

W and W⊥ (in V ) are both F-invariant if and only if FP = PF.
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Observability of Closed Systems
Projectors onto Invariant Subspaces

Recall for projections onto invariant subspaces:

Elementary Fact (e.g. S. Roman, Advanced Linear Algebra (2008), Thm. 2.24)

Let F : V → V be a linear map. W ⊊ V is F-invariant subspace if F (W ) ⊆ W.
Let P be the projector from V onto W. Then

W is F-invariant if and only if PFP = FP and

W and W⊥ (in V ) are both F-invariant if and only if FP = PF.

Corollary (Commutant for Invariant Subspace)

In g := k⊕m by [k, k] ⊆ k, [k,m] ⊆ m both k and m = k⊥ are adk-invariant.

Hence the projectors Pk,Pm are in the commutant of adk : {Pk,Pm} ⊂ (adk)
′ .
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Observability of Closed Systems
Projectors onto Invariant Subspaces

Corollary (Commutant for Invariant Subspace)

In g := k⊕m by [k, k] ⊆ k, [k,m] ⊆ m both k and m = k⊥ are adk-invariant.

Hence the projectors Pk,Pm are in the commutant of adk : {Pk,Pm} ⊂ (adk)
′ .

implies

Proposition

Let (Σ) be an bilinear control system with irred. (semi)simple system algebra
kΣ = k1 ⊕ · · · ⊕ kκ and assume su(n) = kΣ ⊕m1 ⊕ · · · ⊕mµ with mj all adkΣ -invariant.1

Then system (Σ) is observable by C ∈ her(n) iff for its rk-1 projector Pc̃ = |C̃⟩⟨C̃|

[Pc̃ ,Pki ]
κ
i=1 ̸= 0 ̸= [Pc̃ ,Pmj ]

µ
j=1

1 So [adkΣ
, Pki

]κi=1 = 0 = [adkΣ
, Pmj ]

µ
j=1 again C̃ traceless part of C
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Observability of Closed Systems
Projectors onto Invariant Subspaces

Corollary (Commutant for Invariant Subspace)

In g := k⊕m by [k, k] ⊆ k, [k,m] ⊆ m both k and m = k⊥ are adk-invariant.

Hence the projectors Pk,Pm are in the commutant of adk : {Pk,Pm} ⊂ (adk)
′ .

implies

Proposition

Let (Σ) be an bilinear control system with irred. (semi)simple system algebra
kΣ = k1 ⊕ · · · ⊕ kκ and assume su(n) = kΣ ⊕m1 ⊕ · · · ⊕mµ with mj all adkΣ -invariant.1

Then system (Σ) is observable by C ∈ her(n) iff for its rk-1 projector Pc̃ = |C̃⟩⟨C̃|

[Pc̃ ,Pki ]
κ
i=1 ̸= 0 ̸= [Pc̃ ,Pmj ]

µ
j=1

Example: su(8) = su(2) ⊕ su(2) ⊕ su(2) ⊕ m1 ⊕ m2 ⊕ m3 ⊕ m4 with dims 63 = 3 + 3 + 3 + 9 + 9 + 9 + 27

1 So [adkΣ
, Pki

]κi=1 = 0 = [adkΣ
, Pmj ]

µ
j=1 again C̃ traceless part of C
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Tomographiability I
Closed Bilinear Control Systems

Consider observed N-level closed bilinear control system (Σ) on the orbit of ρ0

ρ̇(t) = −i(Ĥ0 +Σjuj(t)Ĥj) ρ(t) ρ(0) ≡ ρ0 and
y(t) = tr{C ρ(t)}

system algebra kΣ := ⟨(iĤ0, iĤj | j = 1, . . . ,m⟩Lie ⊆ adsu(N)

Definition (suggestion)

The closed system (Σ) is tomographiable by C w.r.t. ρ0 iff both

1 the reachable set of ρ0 under (Σ) has non-empty interior (i.e. is accessible) ,

2 the observability space of C̃ under (Σ) is informationally complete,
i.e. all of i su(N).

Notation: C̃ is traceless part. open systems fast
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Tomographiability II
Open Bilinear Control Systems

Consider observed N-level open Markovian bilinear control system (Σ)

ρ̇(t) = −(iĤ0 + iΣjuj(t)Ĥj + Γ̂GKSL) ρ(t) ρ(0) ≡ ρ0 and
y(t) = tr{C ρ(t)}

NB: Lie wedge wΣ ⊆ ⟨(iĤ0 + Γ̂), iĤj⟩Lie ⊆ gl(N2,R)
reachable set ReachΣ(ρ0) := SΣ(vec(ρ0)), SΣ := ⟨expwΣ⟩.

Definition (suggestion)

The open system (Σ) is tomographiable by C w.r.t. ρ0 if and only if both

1 (Σ) is accessible w.r.t. ρ0 , (i.e. ReachΣ(ρ0) has non-empty interior)

2 the observability space of C̃ under (Σ) is informationally complete.

Notation: C̃ is traceless part.
Accessibility fast



Overview

I. Symmetries and
Controllability

II. Symmetries and
Observability &
Tomographiability

III Accessibility at
Large

Conclusions &
Outlook

■

Map Accessibility of Open Systems
Symmetry Conditions

Let Ẋ = −(iĤ0 + ΓGKSL + i
∑

j
uj(t)Ĥj)X (t) be a N-level bil. control system Σ with

system algebra gΣ := ⟨(iĤ0 + Γ), iĤj | j = 1, . . . ,m⟩Lie.

Corollary

The following two are equivalent:

1 The unital n-qubit system variant is (map)accessible (N = 2n).

2 The unital system algebra has commutant of dimension 2
and (for N > 2) its k-part exceeds adsu(N) .

Likewise one may conjecture the equivalence of

3 The non-unital n-qubit system variant is (map)accessible.
4 The non-unital system algebra has commutant of dimension 1 .
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Accessibility of Open Systems
Analogue to Controllability in Closed Systems

Let Ẋ = −(iĤ0 + Γ̂GKSL + i
∑

j
uj(t)Ĥj)X (t) be N-level bilinear control system (Σ) w.

system algebra gΣ := ⟨(iĤ0 + Γ̂GKSL), iĤj | j = 1, . . . ,m⟩Lie ⊆ gLK .

Corollary (standard )

The following are equivalent:
1 The system is map accessible .
2 The reachable set Reach(1l) is a subsemigroup S ⊂ GLK w. non-empty

interior (GLK := ⟨exp gLK ⟩).
3 The unital system algebra is

gΣ
iso
=

gl(N2-1,R) = gLK
0 or

so(N2-1)⊕ R .
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Accessibility of Open Systems
Analogue to Controllability in Closed Systems

Let Ẋ = −(iĤ0 + Γ̂GKSL + i
∑

j
uj(t)Ĥj)X (t) be N-level bilinear control system (Σ) w.

system algebra gΣ := ⟨(iĤ0 + Γ̂GKSL), iĤj | j = 1, . . . ,m⟩Lie ⊆ gLK .

Corollary ( Kurniawan, Dirr, Helmke, IEEE TAC 52, 1984 (2011) )

The following are equivalent:
1 The unital n-qubit system is map accessible (N = 2n).
2 The reachable set Reach(1l) is a subsemigroup S ⊂ G0

LK w. non-empty
interior (GLK

0 := ⟨exp gLK
0 ⟩).

3 The unital system algebra is

gΣ
iso
=

gl(N2-1,R) = gLK
0 or

so(N2-1)⊕ R .
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Accessibility of Open Systems
Analogue to Controllability in Closed Systems

Let Ẋ = −(iĤ0 + Γ̂GKSL + i
∑

j
uj(t)Ĥj)X (t) be 2n-level bilinear control system (Σ) w.

syst. algs gΣ:= ⟨(iĤ0 + Γ̂GKSL), iĤj | j = 1, . . . ,m⟩Lie ⊆gLK
0 (unital), gLK (non-unital).

Note

In coherence-vector representation, elements in gKL
0 and gKL and their commutants

(gKL
0 )′ and (gKL)′ take the form

gKL
0 ∋ Γ0 =

(
A 0
0 0

)
and

(
gKL

0
)′ ∋ Γ′0 =

(
α1l 0
0 β

)

gKL ∋ Γ =

(
A a
0 0

)
and

(
gKL)′ ∋ Γ′ =

(
γ1l 0
0 γ

)
,

where with N = 2n, a ∈ R(N2−1) and A ∈ gl(N2−1,R) and α, β, γ ∈ R.

NB: observe semidirect-product structure
[
(A,a), (B,b)

]
=

(
[A,B ],Ab − Ba

)
.
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System Lie Algebra of Controlled Markov Maps
Relation to Lie Wedges Rep. Math. Phys. 64 (2009) 93

Let Ẋ = −(iĤ0 + Γ̂GKSL + i
∑

j
uj(t)Ĥj)X (t) be 2n-level bilinear control system (Σ) w.

syst. algs gΣ:= ⟨(iĤ0 + Γ̂GKSL), iĤj | j = 1, . . . ,m⟩Lie ⊆gLK
0 (unital), gLK (non-unital).

Embedding

The Lindblad-Kossakowski Lie algebra gLK is a semidirect sum

gLK := gl(N2 − 1,R)⊕s i0 = gLK
0 ⊕s i0

of the unital part gLK
0 with the ideal of translation generators i0 ≃ RN2−1.

It generates a group of affine maps

G := GL(N2 − 1,R)⊗s I0 ⊇ S
embracing the Markovian Lie-semigroup of GKSL-quantum maps S.

NB: The system algebra is also the smallest Lie algebra comprising the Lie wedge: gΣ ⊇ wΣ .
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Accessibility of Open Systems
Symmetry Conditions

Let Ẋ = −(iĤ0 + ΓGKSL + i
∑

j
uj(t)Ĥj)X (t) be a N-level bil. control system Σ with

system algebra gΣ := ⟨(iĤ0 + Γ), iĤj | j = 1, . . . ,m⟩Lie.

Corollary

The following two are equivalent:

1 The unital n-qubit system variant is (map)accessible (N = 2n).

2 The unital system algebra has commutant of dimension 2
and (for N > 2) its k-part exceeds adsu(N) .

Likewise one may conjecture the equivalence of

3 The non-unital n-qubit system variant is (map)accessible.
4 The non-unital system algebra has commutant of dimension 1 .

Proof Sketch I num. support
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Conclusion: Symmetries in Bilinear Control Systems
(1) by Closed System’s Algebra J. Math. Phys. 52, 113510 (2011)

1 closed free versus 2 closed observed versus 3 open Markovian

1 closed coherently controlled (cc) systems:
system algebra kΣ := ⟨i adH0 , . . . , i adHm⟩Lie = adsu(N) ⇔ dim

(
(kΣ)

′) = 2
get full controllability (universality) by irreducibility of kΣ (adjoint repr.!)

2 closed systems, cc with observable C:
check joint commutant

(
kΣ ∪ PC

)′
■ get full observability by irreducibility of {kΣ ∪ PC}
■ get (C, ρ0) observable pair by shared kΣ-invariant support (proj. Pm)

3 open systems, cc with constant (non)unital Markovian noise:
system alg. gΣ[0] := ⟨(i adH0 +Γ̂

[0]
GKLS), . . . , i adHm⟩Lie w. dim

(
(gΣ[0])

′) = 1[2]

get (non)unital map accessibility by irreducibility of gΣ0 (resp. gΣ)
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Conclusion: Symmetries in Bilinear Control Systems
(2) plus Observable (or fixed ρ0)

1 closed free versus 2 closed observed versus 3 open Markovian

1 closed coherently controlled (cc) systems:
system algebra kΣ := ⟨i adH0 , . . . , i adHm⟩Lie = adsu(N) ⇔ dim

(
(kΣ)

′) = 2
get full controllability (universality) by irreducibility of kΣ (adjoint repr.!)

2 closed systems, cc with observable C:
check joint commutant

(
kΣ ∪ PC

)′
■ get full observability by irreducibility of {kΣ ∪ PC}
■ get (C, ρ0) observable pair by shared kΣ-invariant support (proj. Pm)

3 open systems, cc with constant (non)unital Markovian noise:
system alg. gΣ[0] := ⟨(i adH0 +Γ̂

[0]
GKLS), . . . , i adHm⟩Lie w. dim

(
(gΣ[0])

′) = 1[2]

get (non)unital map accessibility by irreducibility of gΣ0 (resp. gΣ)
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Conclusion: Symmetries in Bilinear Control Systems
(3) Open System’s Algebra

1 closed free versus 2 closed observed versus 3 open Markovian

1 closed coherently controlled (cc) systems:
system algebra kΣ := ⟨i adH0 , . . . , i adHm⟩Lie = adsu(N) ⇔ dim

(
(kΣ)

′) = 2
get full controllability (universality) by irreducibility of kΣ (adjoint repr.!)

2 closed systems, cc with observable C:
check joint commutant

(
kΣ ∪ PC

)′
■ get full observability by irreducibility of {kΣ ∪ PC}
■ get (C, ρ0) observable pair by shared kΣ-invariant support (proj. Pm)

3 open systems, cc with constant (non)unital Markovian noise:
system alg. gΣ[0] := ⟨(i adH0 +Γ̂

[0]
GKLS), . . . , i adHm⟩Lie w. dim

(
(gΣ[0])

′) = 1[2]

get (non)unital map accessibility by irreducibility of gΣ0 (resp. gΣ)
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Markovian Thermal Operations
Lie-Semigroup Frame OSID 30 (2023), 2350005

Def.: Thermal Operations

(1) couple system ρS to bath of T ≥ 0 (by ⊗ρ(T )
B )

(2) energy-conserving evolution (by U ∈ {H0 ⊗ 1lB + 1lS ⊗ HB}′)
(3) project back onto system (by trB)
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Markovianity at Large
Lie-Semigroup Frame ROMP 64 (2009), 93 & OSID 30 (2023), 2350005

Markovianity Filter (via Lie Wedges L(·))

MCPTP := ⟨exp
(
L(CPTP)

)
⟩SG ≡

〈
exp

(
wGKSL)

)〉
SG

MTO(H0,T ) := ⟨exp
(
L(TO(H0,T ))

)
⟩SG

MEnTO(H0,T ) := ⟨exp
(
L(EnTO(H0,T ))

)
⟩SG

MGibbs(H0,T ) := ⟨exp
(
L(Gibbs(H0,T ))

)
⟩SG

where L(Gibbs(H0,T )) =
{

L ∈ wGKSL |e−H0/T ∈ ker(L)
}

L(EnTO(H0,T )) =
{

L ∈ L(Gibbs(H0,T )) | adH0 ∈ L′}
L(TO(H0,T )) as in main Thm. of OSID 30 (2023), 2350005
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Markov-Filter

Markovian Thermal Operations
Lie-Semigroup Frame OSID 30 (2023), 2350005

Starting Point: Thermal Operations

(1) couple system ρS to bath of T ≥ 0 (by ⊗ρ(T )
B )

(2) energy-conserving evolution (by U ∈ {H0 ⊗ 1lB + 1lS ⊗ HB}′)
(3) project back onto system (by trB)



Overview

I. Symmetries and
Controllability

II. Symmetries and
Observability &
Tomographiability

III Accessibility at
Large

Conclusions &
Outlook

■
Markov-Filter

Markovian Thermal Operations
Lie-Semigroup Frame OSID 30 (2023), 2350005

Theorem (Lie wedge L
(
TO(H0,T)

)
)

Given HB ∈ her(m), Htot ∈ her(mn) s.th. [Htot,H0 ⊗ 1l + 1l ⊗ HB] = 0.

If Φ(t) solves Φ̇(t) = −
(
i adH +Γ̂B,tot

)
Φ(t) ,Φ(0) = id with any H ∈ her(n)

s.th. [H,H0] = 0 and

Γ̂B,tot :=
m∑

j,k=1

(
1
2

(
V †

jkVjk (·) + (·)V †
jkVjk

)
− Vjk (·)V †

jk

)
,

with Vjk = e−E ′
k/(2T ) tr|gk ⟩⟨gj |(Htot) where

∑m
j=1 E ′

j |gj⟩⟨gj | is any spectral
decomposition of the bath Hamiltonian HB,
then (Φ(t))t≥0 is a continuous one-parameter semigroup in TO(H0,T ) with

−(i adH +Γ̂B,tot) being an element in the Lie wedge L
(
TO(H0,T)

)
.
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Markov-Filter

Markovian Thermal Operations
Lie-Semigroup Frame OSID 30 (2023), 2350005

Theorem (Lie wedge L
(
TO(H0,T)

)
)

If Φ(t) solves Φ̇(t) = −
(
i adH +Γ̂B,tot

)
Φ(t) ,Φ(0) = id where

Γ̂B,tot :=
m∑

j,k=1

(
1
2

(
V †

jkVjk (·) + (·)V †
jkVjk

)
− Vjk (·)V †

jk

)
,

then (Φ(t))t≥0 ⊂ TO(H0,T ) w. −(i adH +Γ̂B,tot) in its Lie wedge L
(
TO(H0,T )

)
.

Proof Idea.
For curve of thermal operation γ(t) : t 7→ trB(e−itHtot ((·)⊗ ρ

(T )
B )eitHtot ) with γ(0) = id, show

(1) γ̇(0) ∈ E(L(TO(H0,T ))) with TO(H0,T ) being a compact, convex semigroup,

(2) γ̈(0) ∈ L(TO(H0,T )) for HB =
∑m

j=1 E ′
j |gj ⟩⟨gj | so e−HB/T =

∑m
j=1 e−E′

j /T |gj ⟩⟨gj |.

Thus altogether one gets −(i adH +Γ̂B,tot) = −i adH + 1
2 tr(e−HB/T )γ̈(0) ∈ L(TO(H0,T )) .
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Markov-Filter

Markovian Thermal Operations
Lie-Semigroup Frame OSID 30 (2023), 2350005

Theorem (Lie wedge L
(
TO(H0,T)

)
)

If Φ(t) solves Φ̇(t) = −
(
i adH +Γ̂B,tot

)
Φ(t) ,Φ(0) = id where

Γ̂B,tot :=
m∑

j,k=1

(
1
2

(
V †

jkVjk (·) + (·)V †
jkVjk

)
− Vjk (·)V †

jk

)
,

then (Φ(t))t≥0 ⊂ TO(H0,T ) w. −(i adH +Γ̂B,tot) in its Lie wedge L
(
TO(H0,T )

)
.

Proof Idea.
For curve of thermal operation γ(t) : t 7→ trB(e−itHtot ((·)⊗ ρ

(T )
B )eitHtot ) with γ(0) = id, show

(1) γ̇(0) ∈ E(L(TO(H0,T ))) with TO(H0,T ) being a compact, convex semigroup,

(2) γ̈(0) ∈ L(TO(H0,T )) for HB =
∑m

j=1 E ′
j |gj ⟩⟨gj | so e−HB/T =

∑m
j=1 e−E′

j /T |gj ⟩⟨gj |.

Thus altogether one gets −(i adH +Γ̂B,tot) = −i adH + 1
2 tr(e−HB/T )γ̈(0) ∈ L(TO(H0,T )) .
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Markovian Thermal Operations
Lie-Semigroup Frame OSID 30 (2023), 2350005

Definition (via the respective Lie wedges)

MTO(H0,T ):= ⟨exp
(
L(TO(H0,T ))

)
⟩SG

MEnTO(H0,T ):= ⟨exp
(
L(EnTO(H0,T ))

)
⟩SG

MGibbs(H0,T ):= ⟨exp
(
L(Gibbs(H0,T ))

)
⟩SG
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Markovian Thermal Operations
Lie-Semigroup Frame OSID 30 (2023), 2350005

Definition (via the respective Lie wedges)

MTO(H0,T ):= ⟨exp
(
L(TO(H0,T ))

)
⟩SG

MEnTO(H0,T ):= ⟨exp
(
L(EnTO(H0,T ))

)
⟩SG

MGibbs(H0,T ):= ⟨exp
(
L(Gibbs(H0,T ))

)
⟩SG
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Markovianity at Large
Lie-Semigroup Frame ROMP 64 (2009), 93 & OSID 30 (2023), 2350005

Definition (via Lie Wedges)

MCPTP := ⟨exp
(
L(CPTP)

)
⟩SG

MTO(H0,T ) := ⟨exp
(
L(TO(H0,T ))

)
⟩SG

MEnTO(H0,T ) := ⟨exp
(
L(EnTO(H0,T ))

)
⟩SG

MGibbs(H0,T ) := ⟨exp
(
L(Gibbs(H0,T ))

)
⟩SG
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Markov-Filter

Markovianity at Large
Lie-Semigroup Frame ROMP 64 (2009), 93 & OSID 30 (2023), 2350005

Definition (via Lie Wedges)

MCPTP := ⟨exp
(
L(CPTP)

)
⟩SG ≡

〈
exp

(
wGKSL)

)〉
SG

MTO(H0,T ) := ⟨exp
(
L(TO(H0,T ))

)
⟩SG

MEnTO(H0,T ) := ⟨exp
(
L(EnTO(H0,T ))

)
⟩SG

MGibbs(H0,T ) := ⟨exp
(
L(Gibbs(H0,T ))

)
⟩SG
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Markovianity at Large
Lie-Semigroup Frame ROMP 64 (2009), 93 & OSID 30 (2023), 2350005

Markovianity Filter (via Lie Wedges L(·))

MCPTP := ⟨exp
(
L(CPTP)

)
⟩SG ≡

〈
exp

(
wGKSL)

)〉
SG

MTO(H0,T ) := ⟨exp
(
L(TO(H0,T ))

)
⟩SG

MEnTO(H0,T ) := ⟨exp
(
L(EnTO(H0,T ))

)
⟩SG

MGibbs(H0,T ) := ⟨exp
(
L(Gibbs(H0,T ))

)
⟩SG

where L(Gibbs(H0,T )) =
{

L ∈ wGKSL |e−H0/T ∈ ker(L)
}

L(EnTO(H0,T )) =
{

L ∈ L(Gibbs(H0,T )) | adH0 ∈ L′}
L(TO(H0,T )) as in main Thm. above


