Absolute energy calibration of the Fluorescence Telescopes at the Pierre Auger Observatory with a roving laser system

Rukije Uzeiroska-Geyik

For the Pierre Auger Collaboration

Auger Youngsters Meeting 2024 - Siegen

September 5, 2024

BERGISCHE UNIVERSITÄT WUPPERTAL

Introduction

- The data of the Fluorescence Detector (FD) allows for the reconstruction of longitudinal profiles and determination of total energy of extensive air shower
- The FD sets the energy scale for the entire observatory
- > Calibration is crucial as it directly affects the accuracy of the detector's measurements.

FD Calibration Methods

- Monitors changes in the detector response over time or across different wavelengths, without providing a direct absolute sensitivity measure.
- > Examples:
 - > PMT, mirror, and UV filter calibration
 - Multi-Wavelength Calibration

Absolute Calibration:

- Determines the overall detector response to a known light source, providing a direct measure of the detector's sensitivity.
- > Examples:

~2.2 n

- > Drum
- XY-Scanner
- Roving Laser System

Aperture

Camera

(a) "drum" calibration

Roving Laser System

> Approach:

- Use a thoroughly tested laser in the lab
- Perform laser shots in the atmosphere to simulate fluorescence light from extensive air showers

Measurement Process:

- Position the laser in front of the FD
- Fire laser shots and measure the scattered light using the FD telescope
- Predict the number of photons reaching the FD by applying Rayleigh and aerosol scattering models

> Validation:

- Cross-check results with other calibration methods
- Analyze atmospheric effects like Rayleigh and aerosol scattering

Previous Campaigns

Calibrated Telescopes from Previous Campaigns:

 October 2001:
 LL4

 March 2002:
 LL4

 May 2005:
 LL3/4/6, CO2/3

 August 2006:
 LL3/4/6, CO3

 July 2010:
 LL, CO

 Feb-Jun 2011:
 LL, LA, CO

Problems Encountered:

- Imprecise energy measurements (E-Probe)
- Low statistics
- Residual polarization
- Contamination with green light
- Even getting lost in the dark

> Optimizations to Consider:

- Avoid previous issues
- Calibrate other telescopes
- Vary distances and angles

Technical Specifications of the Laser

- Pulsed laser
 - Adjustable pulse repetition rate: 0-60 kHz
 - Adjustable pulse energy up to 150 µJ
 (dependent on adjustable diode laser current)
- ➤ Wavelength: 355 nm (UV)
 - Comparable to fluorescence light
- Leakage wavelengths due to the optical design at maximum power:
 - ➢ Diode laser emission: 808 nm < 1%</p>
 - ➢ Fundamental beam: 1064 nm < 1%</p>
 - Second harmonic: 532 nm < 1%</p>

Experimental Setup in the Lab

BERGISCHE UNIVERSITÄT WUPPERTAL

Lab Measurements

Planned Measurements:

- Determination of the relationship between diode current and laser output energy
- Verification of the laser's internal energy at different pulse repetition frequencies using an external energy probe
- > Achieve maximum circular polarization of the beam using a $\lambda/4$ -plate
- Check the fraction of leakage wavelengths at different energy levels (?)

BERGISCHE LINIVERSITÄT

Absolute energy calibration of the Fluorescence Detectors

uzeiroska-geyik@uni-wuppertal.de

Polarization Measurement

- Problem: Polarized laser light affects the phase function of Rayleigh scattering
- Goal: Minimize the residual degree of polarization
- > Measuring procedure to determine the optimal angle of the $\lambda/4$ -plate:
 - > Set a fixed angle for the $\lambda/4$ -plate.
 - Rotate the beamsplitter in defined steps (e.g., 45 degrees)
 - Measure the transmitted energy for each angle
 - Ideal case: With no residual polarization, the measured energy remains constant for each angle

Measurement of Leakage Wavelengths

- Problem: Rayleigh scattering Cross-Section:
- Impact: Leakage wavelengths can affect calibration uncertainty

 $\sigma \propto \frac{1}{\lambda^4}$

- Goal: Determine if lab measurements are necessary
- > Procedure:
 - Run offline simulations
 - Based on simulation results, decide if additional lab measurements are needed
- Consider beam filtering with mirrors that only reflect
 355 nm, as done in 2002
- Note: Measurements will be conducted only in the laboratory to ensure handy setup conditions in the field

10

Experimental setup for the field

- Laser system placed inside a metal box
- Box fixed on a telescope mount
- Box prevents reflected light from escaping in other directions
- Handy features of new design:
 - High energy and angular accuracy
 - > Mobility
 - Logistical independence
 - Automation capacity

BERGISCHE JNIVERSITÄ NUPPERTAI

Field Measurements

- Place the laser at a 4 km distance in front of one telescope
- Vertical alignment of the laser system
- Laser parameters:
 - Pulse frequency: 1 Hz
 - Pulse energy: 100 200 µJ
- > Measuring procedure:
 - ➢ 50 shots with an energy probe
 - 200 shots directed towards the sky
 - > 50 shots with an energy probe
- Rotate the laser 360° around the zenith
 - Repeat the measurement procedure
- Measurements for different distances and zenith angles

BERGISCHE

Next Steps

> Turn on laser..

Absolute energy	<pre>/ calibration</pre>	of the	Fluorescence	Detectors
-----------------	--------------------------	--------	--------------	------------------

Backup

The Fluorescence Detector

- The FD comprises four observation sites
- Loma Amarilla, Los Morados, Los Leones, Coihueco
 - ➢ 6 telescopes per building
 - Field of view per telescope: 30° × 30° in azimuth and elevation
- 3 additional High Elevation Auger Telescopes (HEAT)
 - Extend the field of view of the Coihueco telescopes by in 30° elevation

Telescope of the Fluorescence Detector

- Shutter and a curtain to protect the camera from unexpected direct light
- Fluorescence light enters through an aperture system with a UV-transparent filter to reduce background light
- Light then strikes a 13 m² segmented spherical mirror
- The mirror's curvature focuses the light onto a camera with 440 pixels equipped with PMTs
- Light pulses in the pixels are digitized every 100 ns

Operating a Class 4 Laser: Safety and Setup

- ➢ Four Different Laser Classes
 ➢ Higher laser class → Greater danger
- Explorer One Laser: Class 4
- > Paperwork:
 - Registration of the laser with the relevant authority
 - Appointment of a Laser Safety Officer
 - Documentation of the hazard assessment
- Setup Efforts:
 - Covering the laser to prevent UV light from escaping into the lab
 - Box lined with black cardboard to absorb stray light
 - Signage with warning signs
 - Warning lamp outside the door when the laser is turned on
 - Interlock system ensures the laser is turned off when the door is opened

- Diode Laser Emission:
 - > 808 nm: Emitted by the diode laser, serves as the pump light for the Nd:YAG crystal.

Fundamental Beam:

- > 1064 nm: Fundamental emission wavelength of the excited Nd:YAG laser.
- Second Harmonic:
 - 532 nm: Produced through second harmonic generation (SHG) by doubling the 1064 nm wavelength in the crystal.

Previous Campaigns

October 2	2001 May 2	005	July 201	0			
	March 2002	А	ugust 2006	Fe	eb-Jun 2011		
2001	LL4	low s polari	tatistics, light pollu zation	ution	residual		Energy probe
2002	LL4	12%	uncertainty, residu	ial p	olarization		
2005	LL3/4/6, CO2/3	7% u	ncertainty, unpola	rizec	337 nm laser	Laser	Beam path
2006	LL3/4/6, CO3	~10% difference to drum cal, total uncertain corrected to 12% (energy measurement)					UPS and batteries Pointing adjustment
2010	LL, CO	routir	e operation		GPS		
2011	LL, LA, CO	busin	ess as usual				
Absolute e	energy calibration of the Fl	uorescend	e Detectors		uzeiroska-geyik@uni-wupp	ertal.de	19