Absolute energy calibration of the Fluorescence Telescopes at the Pierre Auger Observatory with a roving laser system

Rukije Uzeiroska-Geyik

For the Pierre Auger Collaboration

Auger Youngsters Meeting 2024 - Siegen

September 5, 2024

Introduction

- \triangleright The data of the Fluorescence Detector (FD) allows for the reconstruction of longitudinal profiles and determination of total energy of extensive air shower
- \triangleright The FD sets the energy scale for the entire observatory
- \triangleright Calibration is crucial as it directly affects the accuracy of the detector's measurements.

FD Calibration Methods

BERGISCHE JNIVERSITÄT

Relative Calibration:

- \triangleright Monitors changes in the detector response over time or across different wavelengths, without providing a direct absolute sensitivity measure.
- ➢ Examples:
	- ➢ PMT, mirror, and UV filter calibration
	- ➢ Multi-Wavelength Calibration

Absolute Calibration:

- \triangleright Determines the overall detector response to a known light source, providing a direct measure of the detector's sensitivity.
- ➢ Examples:
	- ➢ Drum
	- ➢ XY-Scanner
	- ➢ Roving Laser System

Roving Laser System

➢ **Approach:**

- \triangleright Use a thoroughly tested laser in the lab
- \triangleright Perform laser shots in the atmosphere to simulate fluorescence light from extensive air showers

➢ **Measurement Process:**

- \triangleright Position the laser in front of the FD
- \triangleright Fire laser shots and measure the scattered light using the FD telescope
- \triangleright Predict the number of photons reaching the FD by applying Rayleigh and aerosol scattering models

➢ **Validation:**

- \triangleright Cross-check results with other calibration methods
- ➢ Analyze atmospheric effects like Rayleigh and aerosol scattering

Previous Campaigns

➢ **Calibrated Telescopes from Previous Campaigns:**

 October 2001: LL4 March 2002: LL4 May 2005: LL3/4/6, CO2/3 August 2006: LL3/4/6, CO3 July 2010: LL, CO Feb-Jun 2011: LL, LA, CO

➢ **Problems Encountered:**

- ➢ Imprecise energy measurements (E-Probe)
- ➢ Low statistics
- \triangleright Residual polarization
- \triangleright Contamination with green light
- \triangleright Even getting lost in the dark

➢ **Optimizations to Consider:**

- \triangleright Avoid previous issues
- \triangleright Calibrate other telescopes
- \triangleright Vary distances and angles

Technical Specifications of the Laser

- ➢ Pulsed laser
	- \triangleright Adjustable pulse repetition rate: 0-60 kHz
	- \triangleright Adjustable pulse energy up to 150 µJ (dependent on adjustable diode laser current)
- \triangleright Wavelength: 355 nm (UV)
	- \triangleright Comparable to fluorescence light
- \triangleright Leakage wavelengths due to the optical design at maximum power:
	- \triangleright Diode laser emission: 808 nm < 1%
	- \triangleright Fundamental beam: 1064 nm < 1%
	- \triangleright Second harmonic: 532 nm < 1%

Experimental Setup in the Lab

**BERGISCHE
UNIVERSITÄT WUPPERTAL**

Lab Measurements

Planned Measurements:

- \triangleright Determination of the relationship between diode current and laser output energy
- \triangleright Verification of the laser's internal energy at different pulse repetition frequencies using an external energy probe
- \triangleright Achieve maximum circular polarization of the beam using a $\lambda/4$ -plate
- \triangleright Check the fraction of leakage wavelengths at different energy levels (?)

Absolute energy calibration of the Fluorescence Detectors **|** uzeiroska-geyik@uni-wuppertal.de | 8

Absolute energy calibration of the Fluorescence Detectors **|** uzeiroska-geyik@uni-wuppertal.de | 9

Polarization Measurement

- ➢ Problem: Polarized laser light affects the phase function of Rayleigh scattering
- \triangleright Goal: Minimize the residual degree of polarization
- \triangleright Measuring procedure to determine the optimal angle of the $\lambda/4$ -plate:
	- \triangleright Set a fixed angle for the $\lambda/4$ -plate.
	- \triangleright Rotate the beamsplitter in defined steps (e.g., 45 degrees)
	- \triangleright Measure the transmitted energy for each angle
	- \triangleright Ideal case: With no residual polarization, the measured energy remains constant for each angle

Measurement of Leakage Wavelengths

➢ Problem: Rayleigh scattering Cross-Section: 1

 $\sigma \propto$

- λ^4 \triangleright Impact: Leakage wavelengths can affect calibration uncertainty
- Goal: Determine if lab measurements are necessary
- ➢ Procedure:
	- \triangleright Run offline simulations
	- \triangleright Based on simulation results, decide if additional lab measurements are needed
- \triangleright Consider beam filtering with mirrors that only reflect 355nm, as done in 2002
- \triangleright Note: Measurements will be conducted only in the laboratory to ensure handy setup conditions in the field

Experimental setup for the field

- ➢ Laser system placed inside a metal box
- ➢ Box fixed on a telescope mount
- \triangleright Box prevents reflected light from escaping in other directions
- ➢ Handy features of new design:
	- \triangleright High energy and angular accuracy
	- ➢ Mobility
	- ➢ Logistical independence
	- \triangleright Automation capacity

Field Measurements

- \triangleright Place the laser at a 4 km distance in front of one telescope
- ➢ Vertical alignment of the laser system
- ➢ Laser parameters:
	- ➢ Pulse frequency: 1Hz
	- ➢ Pulse energy: 100 200μJ
- ➢ Measuring procedure:
	- \geq 50 shots with an energy probe
	- \geq 200 shots directed towards the sky
	- \geq 50 shots with an energy probe
- ➢ Rotate the laser 360° around the zenith
	- \triangleright Repeat the measurement procedure
- ➢ Measurements for different distances and zenith angles

BERGISCHE

Next Steps

➢ **Turn on laser..**

Absolute energy calibration of the Fluorescence Detectors | uzeiroska-geyik@uni-wuppertal.de | 13

Backup

The Fluorescence Detector

- \triangleright The FD comprises four observation sites
- ➢ Loma Amarilla, Los Morados, Los Leones, Coihueco
	- \triangleright 6 telescopes per building
	- ➢ Field of view per telescope: 30[∘] × 30[∘] in azimuth and elevation
- ➢ 3 additional High Elevation Auger Telescopes (HEAT)
	- \triangleright Extend the field of view of the Coihueco telescopes by in 30[∘] elevation

Telescope of the Fluorescence Detector

- \triangleright Shutter and a curtain to protect the camera from unexpected direct light
- ➢ Fluorescence light enters through an aperture system with a UV-transparent filter to reduce background light
- \triangleright Light then strikes a 13 m² segmented spherical mirror
- \triangleright The mirror's curvature focuses the light onto a camera with 440 pixels equipped with PMTs
- \triangleright Light pulses in the pixels are digitized every 100 ns

➢ Four Different Laser Classes \triangleright Higher laser class \rightarrow Greater danger

- ➢ Explorer One Laser: Class 4
- ➢ Paperwork:
	- \triangleright Registration of the laser with the relevant authority
	- ➢ Appointment of a Laser Safety Officer
	- ➢ Documentation of the hazard assessment
- ➢ Setup Efforts:
	- ➢ Covering the laser to prevent UV light from escaping into the lab
	- \triangleright Box lined with black cardboard to absorb stray light
	- \triangleright Signage with warning signs
	- \triangleright Warning lamp outside the door when the laser is turned on
	- \triangleright Interlock system ensures the laser is turned off when the door is opened

Operating a Class 4 Laser: Safety and Setup

- ➢ Diode Laser Emission:
	- ➢ 808 nm: Emitted by the diode laser, serves as the pump light for the Nd:YAG crystal.

➢ Fundamental Beam:

- ➢ 1064 nm: Fundamental emission wavelength of the excited Nd:YAG laser.
- ➢ Second Harmonic:
	- ➢ 532 nm: Produced through second harmonic generation (SHG) by doubling the 1064 nm wavelength in the crystal.

Previous Campaigns

