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Ultra-high-energy cosmic rays (UHECRs)
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• Can we identify coherently deflected (by toroidal and disk 

component of galactic magnetic field (GMF)) CRs originating 

from active galactic nuclei (AGN) in data?

• Current GMF-models are uncertain



GMF Model
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• GMF: coherent + turbulent deflections

• Turbulent deflections: Gaussian smearing

• GMF model consists of simulated spherical

harmonic functions

• Spherical harmonics expansion resemble

impact GMF has on deflections of CRs 

e.g. ���� = 2

• Observables: arrival direction (AD), 

energy and ���� of CRs



Method
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• Use conditional invertible neural network (cINN) 

to reconstruct spherical harmonics expansion

coefficients

• Normalizing flows: Bijective functions

• Mapping between posteriors (complex

distribution) and latents

• Training: forward 

• Evaluation: backward 



Transformer
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• 200 CRs with x,y,z (AD), 

energy, 	
��

• Attention module focuses

on most prominent 

coherently deflected CRs

• helps preprocessing 

conditions for cINN



Goal
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• cINNs have many hyperparameters which influence performance

• Which network hyperparameters suit best for fitting coefficients of spherical harmonic function

(e.g. ����  2  8 parameters) for 200 CRs of 26 AGN sources?



Network hyperparameters

• Data

• ����

• Number of training data

• Batch size

• cINN

• Number of invertible blocks

• Internal size

• Transformer

• Transformer dimension (= dimension of condition)

• Number of layers
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Example reconstruction
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truth reconstruction
• Reconstruction works fine

• Uncertainties are small in 

regions with sources



Sensitivity of the method
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• Evaluating test data of size

1600 at 4 source positions

• Histogram values of

�   Ψ����� � Ψ����

• � should be close to 0



A measure for fitness of networks
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 Averages over 4 

source positions
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Results & Outlook
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Results:

• Fitness parameter allows to identify best-performing network

• Networks are stable to variations of hyperparameters

• ~1 million trainable parameters are needed for good reconstruction

• Trend: Larger cINN and larger transformer work best for 200 CRs with 5 parameters each

(w.r.t. tested parameter space)

Outlook:

• Use Pierre Auger Observatory‘s exposure

• Include background CRs



Backup
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Network architecture - Embedding
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(200, 5)

,	���
(200, 128)



Reduce learning rate on plateau + iteration decay
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• Reduce learning rate on plateau:

• Takes:

• patience

• reduction Factor

• threshold (0.0)

• if validation loss does not decrease after patience, reduces learning

rate by a factor

• allows for a threshold of deviations between validation losses of each

epoch

• Iteration decay:

• Takes:

• iteration decay parameter (2.5e-6)

• decreases initial learning rate with every epoch by a factor of

1/(1+iteration decay parameter*epoch)



Loss function for cINNs
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forward backward



Loss function for cINNs
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Kullback-Leibler Divergenz KL

 true posterior not dependent

on network parameters

 omit constant

 provides a measure on the difference of 

two probability distributions

, is input

- is condition

 change of variables



Results
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Results
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Loss function for cINNs
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How to calculate Jacobian?

can become negative 



cINN

Input Node
(dim = 8) Fully connected

Network architecture - cINN
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Coupling Layer 1 (GLOW)

Fully connected

Permutation Layer

Coupling Layer 2 (GLOW)

Fully connected

Coupling Layer N (GLOW)

.

.

.

.

.

.

Fully connected

Output Node

Linear
(input size = 68)

Dropout function

ReLU

Linear

(output size = 8)

.

.

.

.

.

.

Output
(size = 8)



Transformer
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A measure for fitness of networks
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Normalizing flows
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• Bijective functions

• Map between

posteriors (input) and 

latents (output)

• Training: forward

• Evaluation: backward



Example reconstruction
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truth reconstruction
• Reconstruction works fine

• Uncertainties are small in 

regions with sources



Sensitivity of the method
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• Evaluating test data of size

1600 at 4 source positions

• Histogram values of

�   Ψ����� � Ψ����

• � should be close to 0


