A search for neutron fluxes from Galactic candidate sources

EB members: Lorenzo Caccianiga, <u>Danelise de Oliveira Franco</u>, Federico Maria Mariani, Paul Sommers, Geraldina Golup, Esteban Roulet, Lorenzo Cazon

Der Forschung | der Lehre | der Bildung

Pierre Auger Collaboration

Targeted search

2014

Vertical $0^{\circ} \le \theta \le 60^{\circ}$

Inclined $60^{\circ} \le \theta \le 80^{\circ}$

2012

Blind search

Goals

Update the **vertical** full array data set FoV: -90° $\leq \delta \leq 25^{\circ}$ - Energy: ≥ 1 EeV

Study new data sets **Infill** - FoV: -90° $\leq \delta \leq 20^{\circ}$ - Energy: ≥ 0.1 EeV **Inclined** - FoV -85° $\leq \delta \leq 45^{\circ}$ - Energy ≥ 1 EeV

Update the target sets with new candidate sources

Data set

Events recorded by the Surface Detector (SD) between January 1, 2004 and December 31, 2022 (1,500 m array) and August 1, 2008 and December 21, 2022 (750 m m array).

1,500 m array data set

Events above 1 EeV

 $-90^{\circ} \le dec \le 45^{\circ}$

Energy range	No. events		
1 EeV – 2 EeV	2,011,357		
2 EeV – 3 EeV	382,809		
≥3 EeV	267,440		
≥1EeV	2,661,606		

750 m array data set

Events above 0.1 EeV

 $-90^{\circ} \le dec \le 20^{\circ}$

Energy range	No. events		
0.1 EeV – 0.2 EeV	1,088,012		
0.2 EeV – 0.3 EeV	249,642		
≥ 0.3 EeV	167,758		
≥ 0.1 EeV	1,505,412		

Target sets

12 target sets resulting in a total of **888** sources with a declination up to 45°.

Of those, **166** are within a distance \leq 1 kpc and have a declination up to 20°.

- Millisecond Pulsars
- γ-ray Pulsars
- Low Mass X-ray Binaries
- High Mass X-ray Binaries
- γ TeV emitters Pulsar Wind Nebulae
- γ TeV emitters Other

- γ TeV emitters UNIDentified
- Microquasars
- Magnetars
- LHAASO PeVatrons
- Crab Nebula
- Galactic Center

Probability density method

We assign a weight representing the probability density of an event coming from the direction of the target:

How can we identify a neutron flux?

By summing all the weights in the data set, we obtain the cosmic ray density at the position of the

 $\rho_{\rm obs} = \sum w_i$

target:

Scrambling technique

We sampled 2 events:

simulated event Event 1: UTC

Event 2: *θ*, *σ*

An azimuth angle from a uniform distribution between 0 and 2π

We can compare the observed CR density with the CR density obtained from an isotropic distribution:

 $\rho_{\rm scr}$

The *p*-value is the fraction of the 10,000 simulated data sets with a CR density greater than the observed value.

Upper Limit on the neutron flux

The upper limit on the number of neutrons is the number N that satisfies:

fraction of simulated datasets in which the density at the target is less than the observed density after adding N events

 $f_N < (1 - \mathrm{CL})f_0$

- Confidence level: 95%

Directional exposure

Flux upper limit

$$\Phi_{UL} = \frac{N_{UL}}{\omega_{\rm dir}}$$

SD-1500 array

Class	R.A.	Dec.	Flux U.L.	E-Flux U.L.	<i>p</i> -value	p^*	
	[deg]	[deg]	$[km^{-2} yr^{-1}]$	$[eV cm^{-2} s^{-1}]$			
msec PSRs	286.2	2.1	0.026	0.19	0.0075	0.88	_
γ -ray PSRs	296.6	-54.1	0.023	0.17	5.0×10^{-5}	0.013	
LMXB	237.0	-62.6	0.017	0.12	0.0069	0.51	$\overline{N} \rightarrow \text{Total number of targets in a target set}$
HMXB	308.1	41.0	0.13	0.97	0.014	0.57	$p^* = 1 - (1 - p)^{\bigcirc}$. From the interval in the set of the set
TeV γ -ray - PWN	128.8	-45.6	0.016	0.12	0.0070	0.18	
TeV γ -ray - other	128.8	-45.2	0.014	0.11	0.022	0.63	
TeV γ -ray - UNID	305.0	40.8	0.15	1.1	0.0066	0.31	
Microquasars	308.1	41.0	0.13	0.95	0.014	0.19	
Magnetars	249.0	-47.6	0.011	0.079	0.15	0.99	
LHAASO	292.3	17.8	0.038	0.28	0.024	0.20	\sim 201 γ -ray pulsars
Crab	83.6	22.0	0.020	0.15	0.71	0.71	
Galactic Center	266.4	-29.0	0.0053	0.039	0.86	0.86	

SD-750 array

Class	R.A.	Dec.	Flux U.L.	E-Flux U.L.	<i>p</i> -value	p^*
	[deg]	[deg]	$[km^{-2} yr^{-1}]$	$[eV cm^{-2} s^{-1}]$		
msec PSRs	140.5	-52.0	1.7	12.5	0.043	0.66
γ -ray PSRs	288.4	10.3	5.3	38.9	0.0056	0.47
HMXB	116.9	-53.3	2.1	15.1	0.0092	0.071
TeV γ -ray - PWN	277.9	-9.9	1.8	13.4	0.12	0.48
TeV γ -ray - other	288.2	10.2	5.5	40.2	0.0033	0.036
Magnetars	274.7	-16.0	1.6	11.8	0.13	0.44

D. de Oliveira Franco [Pierre Auger Coll.], PoS(ICRC2023)246

Summary and conclusions

We performed a targeted search for point sources of neutrons in the EeV range.

We did not find any clear evidence of a neutron flux.

We established upper limits for the neutron flux.

Our analysis do not constrain short outbursts. In the future, we plan to search for correlations with transient events, besides the update of the blind search.

