

Application of Information Field Theory to UHECR Deflections in the Galactic Magnetic Field

Auger Youngsters 2024

Frederik Krieger, Martin Erdmann

Bayesian statistics

- probability = *degree of belief in event*
- incorporates prior knowledge about event

Comparison to frequentist statistics

	Frequentist	Bayesian
probability definition	relative frequency of event after (infinitely) many trials	degree of belief in event
hypothesis test	check data against null-hypothesis $\rightarrow p$ -value	probability of hypothesis → Bayes factor
parameter inference	point estimate $\hat{ heta}$ using MLE	posterior distribution $p(\theta d)$

Bayes' Theorem
$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Posterior approximation

- Markov chain Monte Carlo (MCMC)
- Bayesian neural networks, normalizing flows, variational autoencoders
- Information Field Theory (IFT)

• ...

Information Field Theory (IFT)

- information theory for fields
- inference of physical fields with many degrees of freedom from noisy & incomplete data
- leverage physical assumptions via priors

Theory basics

- Bayesian probability theory: $\mathcal{P}(s|d) = \frac{\mathcal{P}(d,s)}{\mathcal{P}(d)} \equiv \frac{e^{-\mathcal{H}(d,s)}}{\mathcal{Z}(d)}$
 - s: signal of interest
 - d: data
 - $\mathcal{P}(s|d)$: posterior distribution
 - $\mathcal{H}(d, s)$: information Hamiltonian
- measurement equation: d = R[s] + n
 - R: operator
 - n: noise

Approximating posteriors with IFT

NIFTy

- Numerical Information Field Theory
- software package written in python
- multiple inference algorithms, e.g.
 - Metric Gaussian Variational Inference (MGVI)
 - Geometric Variational Inference (geoVI)

JAX

- open-source machine learning framework from Google
- numpy-like syntax
- key features:
 - automatic differentiation
 - just-in-time compilation (JIT)
 - execution on GPUs and TPUs

UHECR deflections in the Galactic magnetic field

Galactic magnetic field (GMF)

- order of magnitude: μG
- coherent and turbulent components
- measured by Faraday rotation and polarized synchrotron radiation

- Lorentz force: $\frac{d\vec{v}}{dt} = q \ \vec{v} \times \vec{B}(\vec{x})$
- dependent on initial direction, GMF model (JF12, UF23) and rigidity $R = \frac{E}{Ze}$ of particle

Galactic magnetic field lenses for UHECR deflections

- only tiny fraction of UHECRs that enter the Galaxy arrive at Earth
 - \rightarrow forward simulation is expensive
- idea: backpropagation of UHECRs with opposite charge

GMF lenses

- backtracking of N particles originating at Earth in direction of pixel i and count how many CRs are deflected in direction j
- lens is matrix *L* with entries $L_{ij} = \frac{n(i \rightarrow j)}{N}$
- relates detected sky map at Earth \vec{a} to extragalactic illumination map \vec{b} via

$$\vec{a} = L \vec{b}$$

Modeling UHECR deflections for IFT

Goal: find sources of UHECRs

Challenges:

- deflections in GMF & EGMF
- uncertainty of GMF models
- no exact charge information, only X_{max}

Idea:

- reconstruct extragalactic illumination map to find overdensities in UHECR flux
 - \rightarrow possible origin direction of UHECRs
- IFT measurement equation: d = R[s] + n
 - *s*: extragalactic illumination map with charge and energy distribution
 - R: forward model \rightarrow lensing, draw X_{max} from charge
 - *n*: measurement noise (Poisson)
 - d: measured flux, energy and X_{max} distribution at Auger

Toy model: 2D Euclidian deflections

- $N \times N$ Euclidian grid with periodic boundaries
- signal: extragalactic illumination map with correlation structure and R^{-1} rigidity spectrum
- forward model: GMF lenses constructed from deflection maps
- simulated measurement: flux at Earth per rigidity bin with Poisson noise

sampled

with NIFTy

Toy model: ground truth

measured flux map

Toy model: fit results (mean prediction)

 \rightarrow mean reconstruction works well

Toy model: fit results (predicted uncertainties)

relative uncertainty per pixel

\rightarrow uncertainty reconstruction works as expected

Summary and outlook

- Information Field Theory as Bayesian framework to infer properties of physical fields
- leverage physical assumptions via priors
- posterior distributions provide uncertainty measure
- NIFTy with JAX: fast computation on GPUs

Next steps

- spherical coordinates (HEALPix)
- rigidity $\rightarrow X_{\text{max}}$ and energy
- physical motivated simulations

Reconstruction

