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Our aim is to complement current SD433-UMD photon searches using with ML methods

● To enhance discrimination

● Relax data selection cuts ⇾ increase exposure
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Motivation

Search for photons with energies above tens of 
PeV at the Pierre Auger Observatory

Under Collaboration review.

SD433+UMD active station/counter configurations

Can we use these???
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Why graphs neural networks?
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Toy example

● Natural representation 

of the array

● Easy to include to 

off-grid stations

● Flexible representation 

of events
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Hybrid SD-MD event representation with graphs

Event ● Events are represented by 2 graphs

● Graphs are composed only by 

candidate stations/counters

● Connections up to 2nd neighbors

In this example: 

Flexible for all SD-MD configurations  :)

Redundancy in the input  :(
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Dataset and augmentation

Models: EPOS-LHC; FLUKA INFN

Offline: v4r0p2-pre3

CORSIKA: 7.7xx

Energy range: lg(E/eV) ∈ (16.5-17.5)

After quality cuts
105k protons / 103k photons

Train: 118k (57%)

Val: 40k (18%)

Test: 50k (25%)

All events were both reconstructed as protons and 

photons (N. González & I. Maris, GAP2021-056)

On-disk
Event

Randomly masking {0,1,2} nodes. 
Never masking the hottest station.*

Randomly masking {0,1,2} nodes. *

* No masking is done for graphs with 3 nodes.

station-level VEM trace and counter-level ρμ is 
defined randomly by masking at PMT/module level

https://www.auger.org/gap-notes/download/145-gap-notes-2021/5387-gap2021-056
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Trace Analyzer 

● First 60 bins of the averaged VEM trace

● Randomly masking 0, 1, or 2 PMTs

● Batch normalization helps A LOT 

● Only 4 features as output → Thanks Fiona!

● One Trace Analyzer for the whole network

For each SD station, the average trace is processed by the Trace 

Analyzer and appended as node features dynamically.
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Graph Convolutional Networks (GCN)

new representation linear combination of features 

activation function

weighted based on 
neighborhood and node 

degree

learnable
parameters

Conceptually: fancy linear combination

In practice: Forward Pass is just matrix multiplication
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Geometry Analyzer using Graph ATtention (GATs)

P.  Veličković et al. Graph attention networks.
arXiv preprint arXiv:1710.10903, 2017.

● Using 3 Graph Attention layers

● 3 attention heads per layer

● 3 Geometry Analyzers

● Batch normalization here too

https://arxiv.org/abs/1710.10903
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The network
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Training

● Binary cross entropy as loss (global loss is the sum of the 3 losses)

● Adam optimizer

● Learning rate decreased when the global loss plateaus



11E. Rodriguez - ezequiel.rodriguez@iteda.cnea.gov.ar

Performance

The network has never seen the shower size 
and wasn’t trained on helium.

● No masked stations/counters

● No masking for PMTs/Modules

● Quality cuts: successful reconstruction and zenith angle below 45 deg
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Performance

The network has never seen the energy and 
wasn’t trained on helium.

● No masked stations/counters

● No masking for PMTs/Modules

● Quality cuts: successful reconstruction and zenith angle below 45 deg
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Performance

The network has never seen the zenith angle 
and wasn’t trained on helium.

● No masked stations/counters

● No masking for PMTs/Modules

● Quality cuts: successful reconstruction and zenith angle below 45 deg
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Performance

● No masked stations/counters

● No masking for PMTs/Modules

● Quality cuts: successful reconstruction and zenith angle below 45 deg

Photons are weighted by ∝E-2 
and hadrons ∝E-3.



15E. Rodriguez - ezequiel.rodriguez@iteda.cnea.gov.ar

Impact of missing the counter from the hottest station

● Removing the hottest counter reduces the discrimination potential

● The SD-MD score still shows the capacity to discriminate → increase exposure
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Outlook and summary

● Networks are able to separate photons from hadrons

○ Separation is independent on shower size and zenith angle

○ Cross-check with helium shows the network separates heavier primaries

● Networks should be re-trained based on more realistic input !!!

● Final graph representation and network architecture is still to be decided :( 

BUT GNNs work :)

● Performance and systematics will be explored after re-training
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Backup
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Score correlation and candidate cut outlook

● Criteria for photon search could consider more than 1 score

● Including another observable could also be considered
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Tuning simulations

● Treat start time correctly with PMT masking

● From data:

○ Saturation threshold histogram - How to deal with saturation?

○ Black tanks/ bad PMTs distributions

○ Bad/Missing counters/modules distributions

● VEM traces - Peak or Charge? Rescaling?

● How to deal with ageing? Is this possible for saturated stations?
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Performance
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Going heterogeneous?

Wang, Xiao, et al. "Heterogeneous graph attention 
network." The world wide web conference. 2019.

Put simply, we could have heterogeneous 
graphs such that …

x, y, t x, y, t

x, y, t

MD

SD

ML magic
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Going heterogeneous?

Wang, Xiao, et al. "Heterogeneous graph attention 
network." The world wide web conference. 2019.

ML magic

x, y, t x, y, t

x, y, t

MD

SD

SSD
RD

Should be straightforward to include information 
from other detectors for other analyses


