

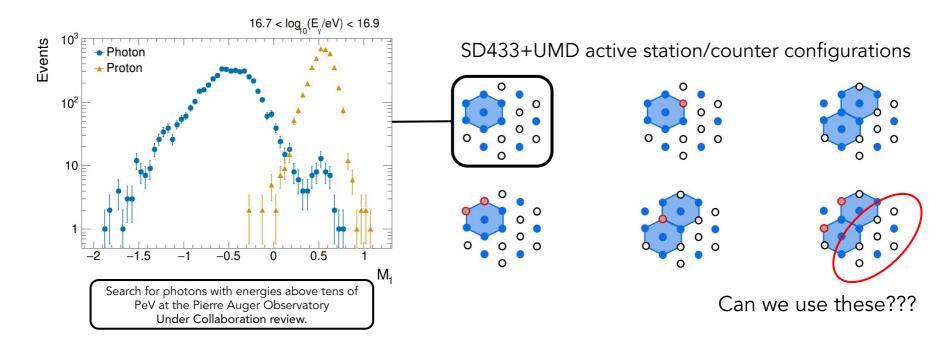
Graph Neural Networks for photon search at tens of PeV

E. Rodriguez, N. González, M. Roth, B. Wundheiler

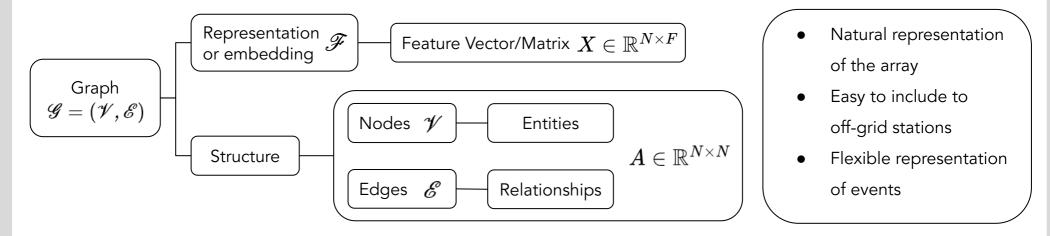
Motivation

Our aim is to complement current SD433-UMD photon searches using with ML methods

- To enhance discrimination
- Relax data selection cuts → increase exposure



Why graphs neural networks?

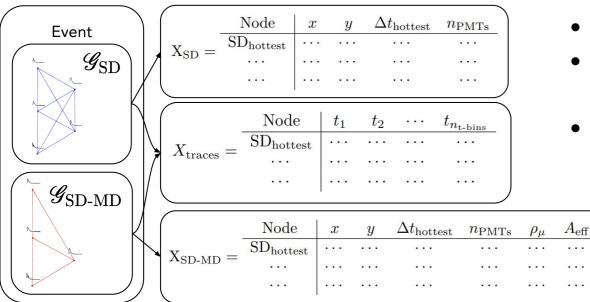


Toy example

			\boldsymbol{A}	B	C	D	E	F		Node	x	y	$\lg(S)$
(E) (F)	-	A	0	1	1	0	0	0		A	-216.5	-374.98	-0.05
		B	1	0	1	1	0	0		B	216.5	-374.98	-0.08
(C)	$\mathbf{A} =$	C	1	1	0	1	1	0	$\mathbf{X} =$	C	0	0	2.2
		D	0	1	1	0	1	1		D	216.5	0	0.77
		E	0	0	1	1	0	1		E	433	374.98	0.85
)B		F	0	0	0	1	1	0		F	807.98	374.98	0.29

Α

Hybrid SD-MD event representation with graphs



- Events are represented by 2 graphs
- Graphs are composed only by candidate stations/counters
- Connections up to 2nd neighbors

Flexible for all SD-MD configurations :)

Redundancy in the input :(

In this example:

 $egin{aligned} X_{ ext{SD}}:5 ext{ rows},4 ext{ cols}\ X_{ ext{SD-MD}}:4 ext{ rows},6 ext{ cols} \end{aligned}$

 $egin{aligned} X_{ ext{traces}} : 5 ext{ rows}, n_{ ext{t-bins}} ext{ cols for } \mathscr{G}_{ ext{SD}} \ X_{ ext{traces}} : 4 ext{ rows}, n_{ ext{t-bins}} ext{ cols for } \mathscr{G}_{ ext{SD-MD}} \end{aligned}$

 $\mathscr{V}_{\mathrm{SD-MD}} \subseteq \mathscr{V}_{\mathrm{SD}} \ \mathscr{E}_{\mathrm{SD-MD}} \subseteq \mathscr{E}_{\mathrm{SD}} \ \mathscr{F}_{\mathrm{SD}} \subseteq \mathscr{F}_{\mathrm{SD-MD}}$

Dataset and augmentation

Models: EPOS-LHC; FLUKA INFN

Offline: v4r0p2-pre3

CORSIKA: 7.7xx

Energy range: $lg(E/eV) \in (16.5-17.5)$

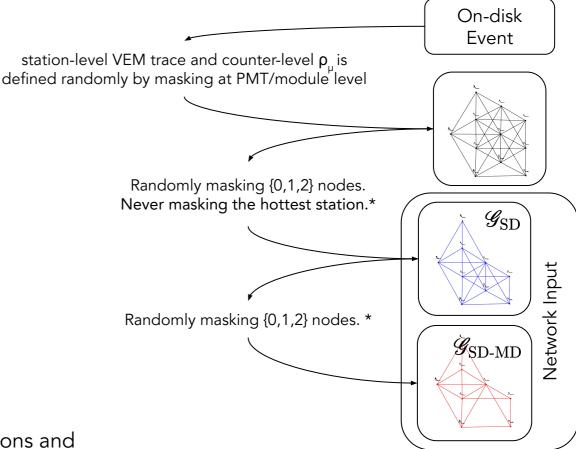
After quality cuts 105k protons / 103k photons

Train: 118k (57%)

Val: 40k (18%)

Test: 50k (25%)

All events were both reconstructed as protons and photons (N. González & I. Maris, <u>GAP2021-056</u>)

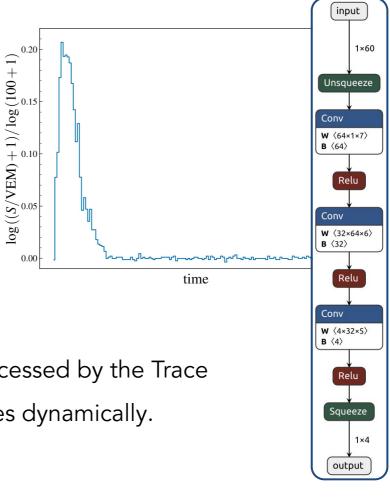


* No masking is done for graphs with 3 nodes.

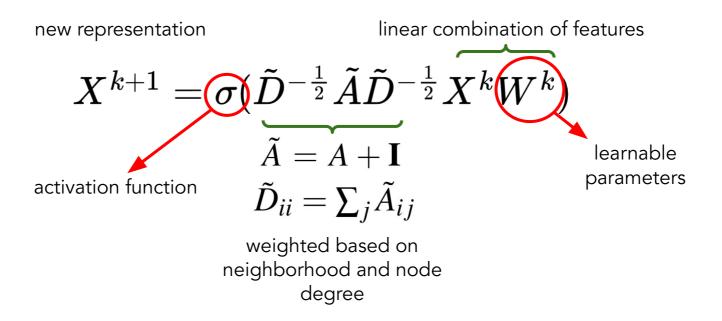
Trace Analyzer

- First 60 bins of the averaged VEM trace
- Randomly masking 0, 1, or 2 PMTs
- Batch normalization helps A LOT
- Only 4 features as output \rightarrow Thanks Fiona!
- One Trace Analyzer for the whole network

For each SD station, the average trace is processed by the Trace Analyzer and appended as node features dynamically.



Graph Convolutional Networks (GCN)



Conceptually: fancy linear combination In practice: Forward Pass is just matrix multiplication

Geometry Analyzer using Graph ATtention (GATs)

- Using 3 Graph Attention layers
- 3 Geometry Analyzers
- 3 attention heads per layer
- Batch normalization here too

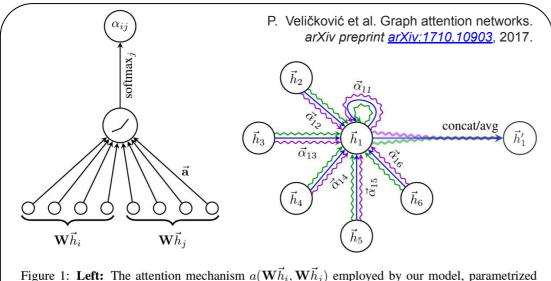
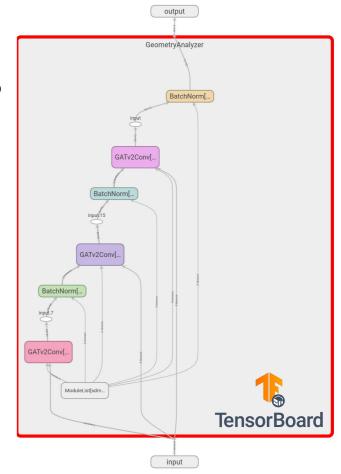
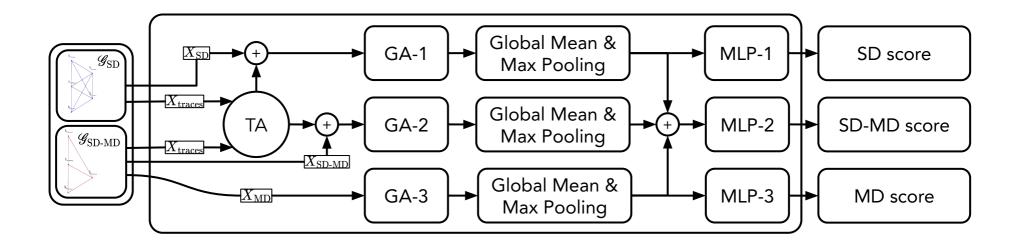


Figure 1: Left: The attention mechanism $a(\mathbf{W}h_i, \mathbf{W}h_j)$ employed by our model, parametrized by a weight vector $\vec{\mathbf{a}} \in \mathbb{R}^{2F'}$, applying a LeakyReLU activation. **Right:** An illustration of multihead attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and colors denote independent attention computations. The aggregated features from each head are concatenated or averaged to obtain \vec{h}'_1 .



The network



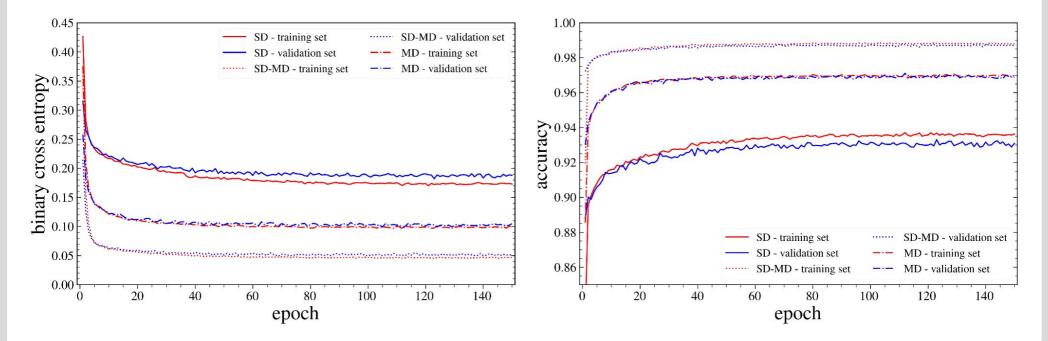
Selected inside the network

$X_{MD} =$	Node	x	y	$\Delta t_{ m hottest}$	$ ho_{\mu}$	$A_{ m eff}$
	$\mathrm{SD}_{\mathrm{hottest}}$	•••	•••		•••	
		••••				

(MLP)
$$(N_{ ext{inputs}}, 16)
ightarrow (16, 8)
ightarrow (8, 1)$$

Training

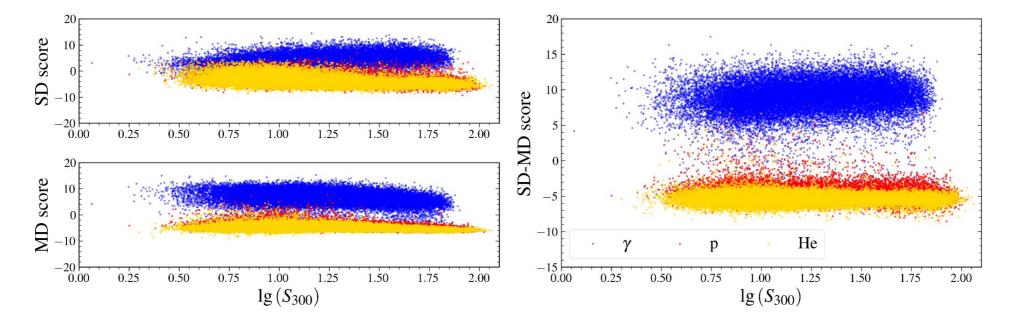
- Binary cross entropy as loss (global loss is the sum of the 3 losses)
- Adam optimizer
- Learning rate decreased when the global loss plateaus



- No masked stations/counters
- No masking for PMTs/Modules

The network has never seen the shower size and wasn't trained on helium.

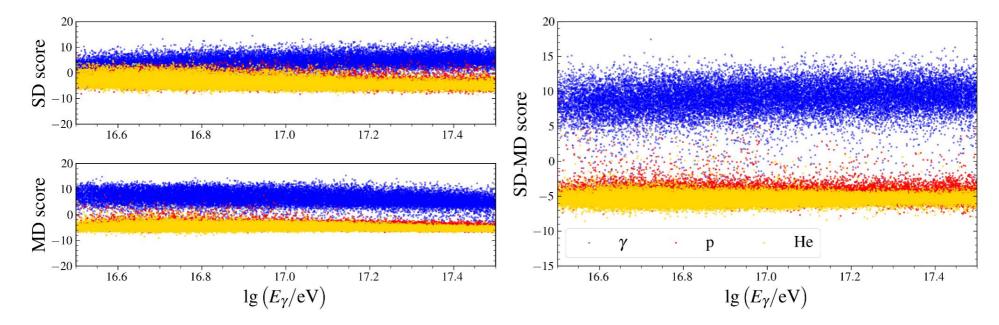
• Quality cuts: successful reconstruction and zenith angle below 45 deg



- No masked stations/counters
- No masking for PMTs/Modules

• Quality cuts: successful reconstruction and zenith angle below 45 deg

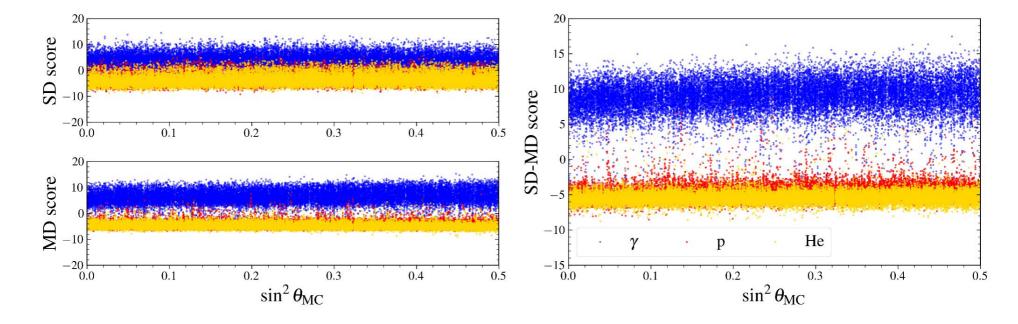
The network has never seen the energy and wasn't trained on helium.



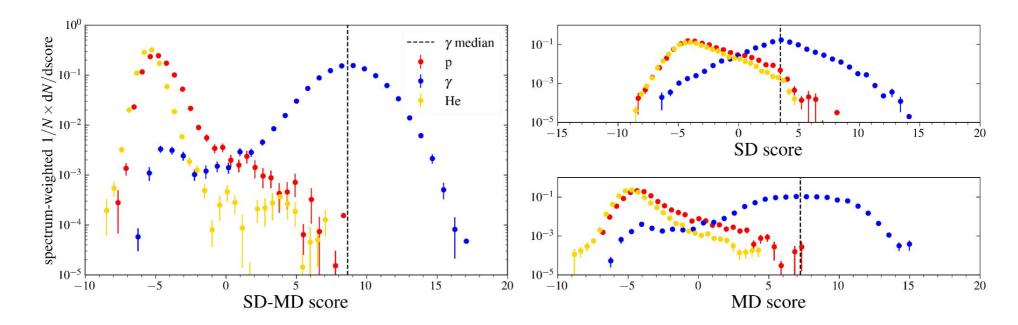
- No masked stations/counters
- No masking for PMTs/Modules

The network has never seen the zenith angle and wasn't trained on helium.

• Quality cuts: successful reconstruction and zenith angle below 45 deg



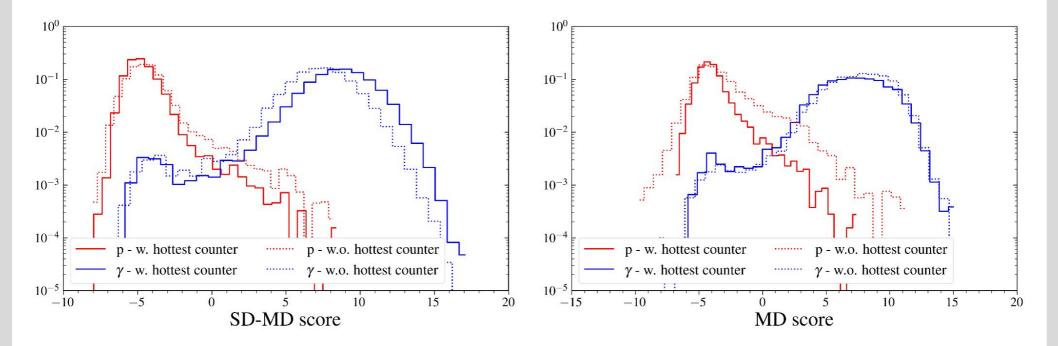
- No masked stations/counters
- No masking for PMTs/Modules
- Quality cuts: successful reconstruction and zenith angle below 45 deg



Photons are weighted by ∞E^{-2} and hadrons ∞E^{-3} .

Impact of missing the counter from the hottest station

- Removing the hottest counter reduces the discrimination potential
- The SD-MD score still shows the capacity to discriminate \rightarrow increase exposure



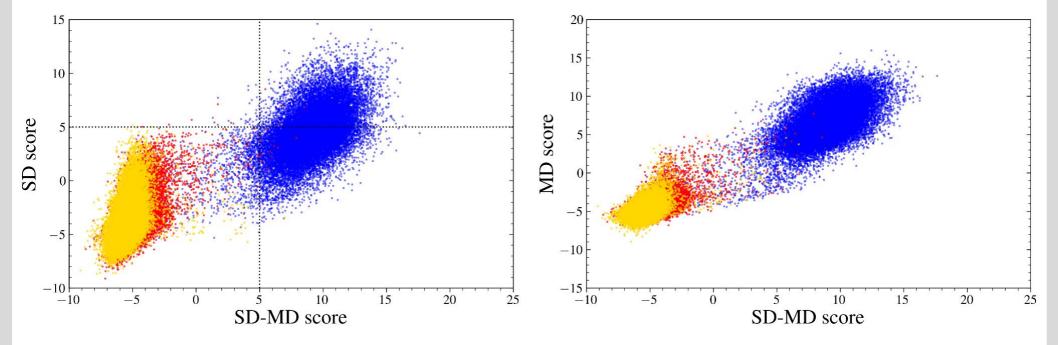
Outlook and summary

- Networks are able to separate photons from hadrons
 - Separation is independent on shower size and zenith angle
 - Cross-check with helium shows the network separates heavier primaries
- Networks should be re-trained based on more realistic input !!!
- Final graph representation and network architecture is still to be decided :(BUT GNNs work :)
- Performance and systematics will be explored after re-training

Backup

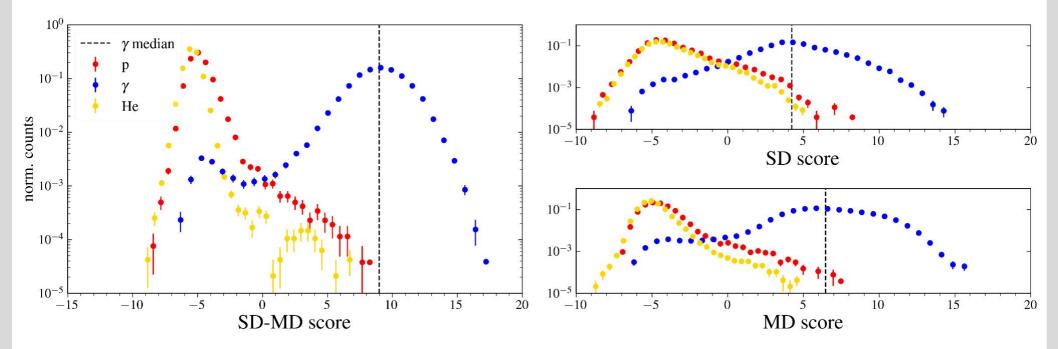
Score correlation and candidate cut outlook

- Criteria for photon search could consider more than 1 score
- Including another observable could also be considered



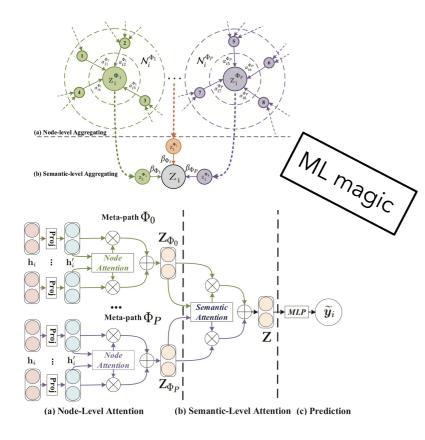
Tuning simulations

- Treat start time correctly with PMT masking
- From data:
 - Saturation threshold histogram How to deal with saturation?
 - Black tanks/ bad PMTs distributions
 - Bad/Missing counters/modules distributions
- VEM traces Peak or Charge? Rescaling?
- How to deal with ageing? Is this possible for saturated stations?



Going heterogeneous?

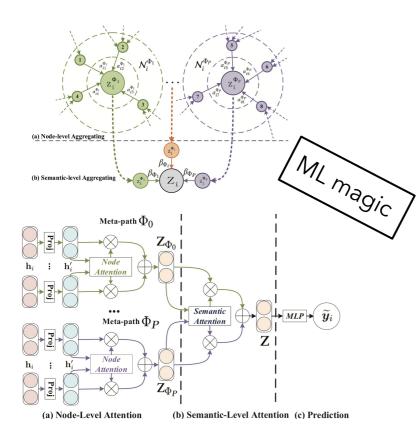
Wang, Xiao, et al. "Heterogeneous graph attention network." *The world wide web conference*. 2019.

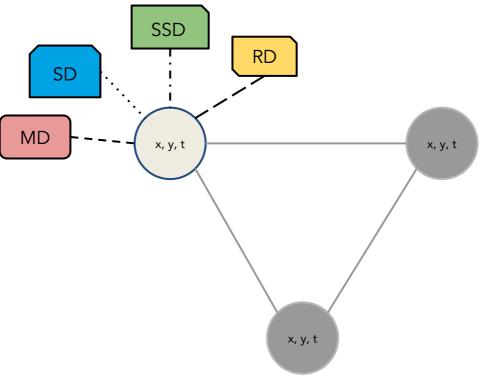


Put simply, we could have heterogeneous graphs such that ... SD MD x, y, t x, y, t x, y, t

Going heterogeneous?

Wang, Xiao, et al. "Heterogeneous graph attention network." *The world wide web conference*. 2019.





Should be straightforward to include information from other detectors for other analyses