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Why worldlines/worldsheets? And what are they?



Path integrals for quantum field theory

In a (euclidean) Feynman path integral we compute vacuum expectation values as

weighted sums over all field configurations.

〈O〉 =
1

Z

∫
D[φ] e−

1
~ S[φ] O[φ]

In the lattice formulation we regularize the Feynman path integral by introducing a finite

space time lattice Λ

x ∈ R4 → x ∈ Λ ⊂ N4 , φ(x) → φx , D[φ] →
∏
x∈Λ

dφx

S[φ] →
∑
x∈Λ

(
m2 |φx |2 + λ |φx |4 −

∑
ν

φ∗x [φx+ν̂ − 2φx + φx−ν̂ ]
)

Path integral becomes a very high dimensional integral

〈O〉 =
1

Z

∫
D[φ] e−S[φ] O[φ]



Monte Carlo simulation

In a Monte Carlo simulation one generates a finite number of field configurations

φ(j), j = 1, 2 ... N with probability

P [φ(j)] =
1

Z
e−S[φ(j)]

Vacuum expectation values assume the form of mean values

〈O〉 =
1

N

N∑
j=1

O[φ(j)] + O(1/
√
N)



Complex action problem / sign problem

• In general, lattice field theories with finite chemical potential µ
or a topological term have actions S[φ] with an imaginary part.

S[φ] = SR[φ] + i SI [φ]

• The Boltzmann factor

e−S[φ] ∈ C

thus has a complex phase and cannot be used as a probability weight.

• Standard Monte Carlo simulation techniques are not available
for a non-perturbative analysis.

”Complex action problem” or ”Sign problem”

• Generic feature of finite density field theories both, on the lattice
and in the continuum, for bosonic and fermionic theories.

• In some cases an exact mapping to a worldline/worldsheet representation
solves the problem.



What is a worldline/worldsheet representation?

• A worldline/worldsheet representation is a change of variables
for the dynamical degrees of freedom.

• The original degrees of freedom, such as φx ∈ C or Ax,µ ∈ R
are replaced by integer-valued occupation numbers

jx,µ ∈ Z for matter flux

px,µν ∈ Z for gauge flux

• The worldline/worldsheet variables
are subject to constraints.

• Configurations of worldlines/worldsheets
come with weight factors.
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How does one get to worldlines and worldsheets?



Worldline representation for the charged scalar φ4 field

• Lattice action: ( φx ∈ C , M2 = 8 +m2 )

S =
∑
x

[
M2 |φx|2 + λ |φx|4

]
−
∑
x,ν

[
φ?x φx+ν̂ + φx φ

?
x+ν̂

]

• Expand the nearest neighbor terms of e−S:∏
x,ν

exp (φ?x φx+ν̂)× exp
(
φx φ

?
x+ν̂

)
=
∏
x,ν

∞∑
kx,ν=0

(φ?x φx+ν̂)
kx,ν

kx,ν !
×

∞∑
lx,ν=0

(φx φ
?
x+ν̂)

lx,ν

lx,ν !

=
∑
{k,l}

∏
x,ν

1

kx,ν ! lx,ν !

∏
x

φ
∑
ν(lx,ν+kx−ν̂,ν)

x φ?x
∑
ν(kx,ν+lx−ν̂,ν)

• The kx,ν and lx,ν will turn into the new worldline degrees of freedom.



Worldline representation - integrating out the original fields

• Integral over φx at site x: (Sj, Tj are sums of the ky,ν , ly,ν connected to x)

∫
C

d φx e−M
2|φx|2−λ|φx|4 (φx)

Sj (φ?x)
Tj

• Polar coordinates φx = reiθ to separate radial and U(1) parts (symmetry):

∫ ∞
0

dr r Sj +Tj + 1 e−M
2r2−λr4

∫ π

−π
dθ e iθ (Sj−Tj) = I(Sj + Tj) δ(Sj − Tj)

• At every site there is a weight factor I(Sj + Tj) and a constraint.

• The constraint δ(Sj − Tj) enforces vanishing flux of jx,ν = kx,ν − lx,ν at each site.



Worldline representation - final form

• The original partition function is mapped exactly to a sum over configurations
of the dual variables kx,ν , lx,ν ∈ N0

Z =
∑
{k,l}
W [ k, l ] C[ j ] with jx,ν = kx,ν − lx,ν

• Weight factor from radial d.o.f. and combinatorics:

W [ k, l ] =
∏
x,ν

1

kx,ν ! lx,ν !

∏
x

I
(∑

ν

[ kx,ν+kx−ν̂,ν + lx,ν+lx−ν̂,ν ]
)

I(n) =

∫ ∞
0

dr r n+ 1 e−M
2r2−λr4

• Zero divergence constraint from integrating over the symmetry group

C[ j ] =
∏
x

δ
(∑

ν

[ jx,ν − jx−ν̂,ν ]
)

⇔ ∀ x :
∑
ν

[ jx,ν − jx−ν̂,ν ] = 0



Admissible configurations are loops:

• Admissible configurations of dual variables are oriented loops of flux:

• Chemical potential µ couples to temporal winding number of the flux ⇒ eµΩ[j] ∈ R

• MC simulations directly in terms of worldlines overcome the complex action problem.

• Net particle number is a topological invariant = temporal winding number of flux Ω[j].

• For gauge degrees of freedom the fluxes live on the plaquettes of the lattice
Fµν(x) → px,µν ∈ Z.



Four examples for the use of worldlines and worldsheets

• Non-perturbative study of BEC in the gauged relativistic Bose Gas
PRL 2013, NPB 2013, PLB 2013, CPC 2013

• Low temperature condensation and scattering parameters
PRL 2018, PRL 2015

• Breaking of charge conjugation symmetry in 2d U(1) lattice field theories at θ = π
Preprint in preparation, PRL 2020, NPB 2018

• Breaking of the self dual symmetry in QED with electric and magnetic charges
JHEP 06 2022, JHEP 04 2022, NPB 2019



Example 1: Gauged relativistic Bose gas / U(1) gauge Higgs model at
finite chemical potential µ

• Relativistic Bose gas with a chemical potential µ

S[A, φ] =
1

4e2

∫
d4xFρσFρσ +∫

d4x
[
|(∂ν+iAν)φ |2 +µ[φ∗(∂4+iA4)φ− φ(∂4−iA4)φ∗] + (m2−µ2) |φ |2 +λ |φ |4

]

• The chemical potential leads to an imaginary part of the euclidean action
and thus to a complex action problem.

• The worldline/worldsheet representation completely
solves the complex action problem.

• Monte Carlo simulation of the
worldlines/worldsheets allows to
access non-perturbative physics,
such as phase transitions.
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Generalized worm algorithm for gauge Higgs systems

Worm starts by inserting a unit of matter flux. Adding segments transports the defect across
the lattice until the defect is healed in a final step.
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Y. Delgado Mercado, C. Gattringer, A. Schmidt, Comp. Phys. Comm. 184, 2013



BEC in the confining phase at low T
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• In the confining phase the dependence on the chemical potential µ sets in only
when µ reaches the mass of the lowest excitation. ”Silver Blaze behaviour”

• The corresponding BEC is accompanied by a condensation of the
worldline/worldsheet variables.

PRL 2013, NPB 2013, PLB 2013, CPC 2013



Example 2: Low temperature condensation and scattering parameters

At very very low temperature one observes ”condensation thresholds”.

Expectation value 〈N〉 of the particle number as a function of the
chemical potential µ at very low temperature (charged scalar field):
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• At critical values µn(L) one observes jumps from 〈N〉 = n−1 to 〈N〉 = n.

• The condensation thresholds µn(L) depend on the spatial extent L.



Connection of condensation thresholds and n-particle energies

• Grand canonical partition sum and grand potential:

Z = Tr e−β(Ĥ −µ N̂) = e−β Ω(µ)

• Low T : In each particle sector Z is governed by the minimal grand potential Ω(µ)

Ω(µ)
T→0−→



ΩN=0
min = 0 , µ ∈ [0, µ1]

ΩN=1
min = m − 1µ , µ ∈ [µ1, µ2]

ΩN=2
min = W2 − 2µ , µ ∈ [µ2, µ3]

ΩN=3
min = W3 − 3µ , µ ∈ [µ3, µ4]

. . .

• m: physical mass, W2: minimal 2-particle energy, W3: minimal 3-particle energy . . .

• Use continuity of Ω(µ) to relate the critical µn to m and the Wn.

m(L) = µ1(L) , W2(L) = µ1(L) + µ2(L) , ... Wn(L) =
n∑
k=1

µk(L)



Connection of condensation thresholds and n-particle energies

• The multi-particle energies are governed by low energy parameters.

• In particular their finite volume dependence can be related to scattering data.

(K. Huang, C.N. Yang, M. Lüscher, S.R. Beane, W. Detmold, M.J. Savage, S.R. Sharpe, M.T. Hansen)

I = −8.914,J = 16.532

m(L) = m∞ +
A

L
3
2

e−L m∞

W2(L) = 2m+
4πa

mL3

[
1− a

L

I
π

+
( a
L

)2 I 2−J
π2

+O
( a
L

)3]
W3(L) = 3m+

12πa

mL3

[
1− a

L

I
π

+
( a
L

)2 I 2+J
π2

+O
( a
L

)3]
m(L) = µ1(L) , W2(L) = µ1(L) + µ2(L) , W3(L) = µ1(L) + µ2(L) + µ3(L)

• We thus expect that one can describe the thresholds µn(L) with scattering data.



Comparison of threshold data with the finite volume relations
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• Good agreement: Condensation can indeed be described with scattering data.

• Key technical ingredient: Worldline representation

PRL 2018, PRL 2015



Example 3: Breaking of C in 2d U(1) lattice field theories at θ = π

• Self-interacting 2d fermions coupled to U(1) gauge fields with topological term:

S =

∫
T2

d2x
(
ψγµDµψ − J (ψψ)2 +

1

4e2
F 2
µν

)
, Q =

∫
T2

d2x

2π
F12 ∈ Z

• Charge conjugation:

Aµ → −Aµ , ψ ↔ ψ , Q → −Q

• The partition sum ....

Z =

∫
D[A]D[ψ, ψ] e−S + i θ Q

.... is C invariant also for θ = π.

• Can charge conjugation invariance be broken spontaneously for θ = π?

• Worldline/worldsheet representation solves complex action problem and provides an
integer-valued lattice regularization of Q. In this special case one also gets rid of the
fermion signs.



Breaking of C for 2d fermions coupled to U(1) gauge fields at θ = π

• Topological charge density and susceptibility:
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• Spontaneous breaking of charge conjugation symmetry at θ = π
with a critical point in the Ising universality class.

Preprint in preparation, PRL 2020, NPB 2018



Example 4: Breaking of a self-dual symmetry in QED with electric and
magnetic charges

• By introducing magnetic charges the Maxwell equations can be made self-dual.

• Can we construct a lattice regularization of U(1) gauge theory that couples to
electrically and magnetically charged matter such that the theory is self-dual?

• What are the properties of such a theory? Can self-duality be broken spontaneously?

• Challenge on the lattice: Discretization introduces artificial magnetic monopoles.

• Monopole problem is solved by using the Villain action with an additional constraint:

Z(β) =

∫
D[A]

∑
{n}

∏
x

µ<ν<ρ

δ
(

(dn)x,µνρ

)
e−

β
2

∑
x,µ<ν Fx,µνFx,µν

Fx,µν = (dA)x,µν + 2π nx,µν , nx,µν ∈ Z , Ax,µ ∈ [−π, π) , β = 1/e2

• Self-dual lattice theory of U(1) gauge fields:

Z(β) = Z(β̃) with β̃ = 1/4π2β ⇒ βselfdual = 1/2π



Coupling matter in a self-dual way

Pure gauge theory at θ = 0 with constraints generated by integrating Ãm

Z =

∫
D[A]

∫
D[Ãm]

∑
{n}

e−
β
2

∑
x

∑
µ<ν F

2
x,µν e i

∑
x̃

∑
µ Ã

m
x,µ (∂ñ)x̃,µ

A simple self-dual theory with electric and magnetic matter

Z =

∫
D[A]

∫
D[Ãm]

∑
{n}

e−
β
2

∑
x

∑
µ<ν F

2
x,µν e i

∑
x̃

∑
µ Ã

m
x,µ (∂ñ)x̃,µ ZJe [A] Z̃Jm [Ãm]

Partition sums for electric and magnetic matter fields in a background fields A and Ãm

ZJe [A] =

∫
D[ϕe] e −SJe [ϕe,A] , Z̃Jm [Ãm] =

∫
D[ϕ̃m] e −SJm [ϕ̃m,Ãm]

Duality transformation in a nutshell

x ↔ x̃ , Ax ↔ Ãmx̃ , nx,µν → p̃x̃,µν , β → β̃ = 1/4π2β , Je ↔ Jm

The system can be simulated without sign problem when Z̃Jm [Ãm] has a worldline

representation such that Ãm can be integrated out.



Setup for studying spontaneous breaking of the self-dual symmetry

We consider (here we set Je = Jm ≡ J)

Z =

∫
D[A]

∫
D[Ãm]

∑
{n}

e−
β
2

∑
x

∑
µ<ν F

2
x,µν e i

∑
x̃

∑
µ Ã

m
x,µ (∂ñ)x̃,µ ZJ [A] Z̃J [Ãm]

with

ZJ [A] =

∫
D[ϕ] e JS[ϕ,A]

S[ϕ,A] =
1

2

∑
x,µ

[
ϕ∗x e

iAx,µ ϕx+µ̂ + c.c.
]

For all J the system has self-dual symmetry at the self-dual gauge coupling

β = β̃ =
1

2π
≡ β∗

Can the self-dual symmetry be broken as a function of the matter field coupling J ?



Setup for studying spontaneous breaking of the self-dual symmetry

Order parameter for breaking of the self-dual symmetry

Mm ≡ se − sm = s[ϕe, A] − s[ϕ̃m, Am] , s = S/V

Breaking is signalled by

〈Mm〉β∗, J 6= 0

Worldline representation

Z =

∫
D[A]

∑
{n}

∫
D[ϕe] e−β Sg [A,n] + JS[ϕe, A]

∏
x̃,µ

I(∂ñ)x̃,µ(J)

No remaining constraints for the degrees of freedom Ax,µ, ϕ
e
x and nx,µν

⇒ standard local MC algorithms.



Numerical results

Order parameter and Binder cumulant
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Detailed finite size scaling analysis, cross-checked with a second order parameter:

• First order point at J1 = 0.518(2)

• Second order point at J2 = 0.700(1) with ν = 1/2, γ = 1 (4d Ising = Gaussian FP)



Conjectured phase diagram:

coulomb phase 
(gapless photon)

Higgs phase 
(electric matter 
condensing)

Confined phase 
(magnetic matter 
condensing)

Shenker-Fradkin 
continuity

Phase Diagram for

JHEP 06 2022, JHEP 04 2022, NPB 2019



Conclusions and challenges

• Many field theories have a complex action problem at non-zero chemical potential or
when a topological term is coupled.

• For some theories it is possible to exactly rewrite the lattice regularized
partition sum in terms of worldlines and worldsheets.

• Monte Carlo simulation in the new form gives access to non-perturbative physics.

• Examples discussed:

– BEC in the relativistic Bose gas

– Condensation and scattering data

– Breaking of C symmetry at θ = π

– Breaking of self dual symmetry in QED with electric and magnetic charges

• Challenges we work on:

– Fermion worldlines

– Non-abelian gauge groups


