A look into the $f_0(980)$ through the lens of rare B meson decays

Written by Jaime del Palacio Lirola

Prof. Dr. Robert Fleischer, Dr. Keri Vos and MSc. Anders Result

Universiteit van Amsterdam

Overview

- What is the $f_0(980)$
- How do we approach it in this work
- Main results
- Conclusions

 $SU(3)_f$ multiplet

- Particle zoo in the 60's
- We solved it! The 8-fold way and the quark model

q = -1 q = 0

Light Unflavored Mesons (S = C = B = 0)

pi+–	PDF pdgLive	rho(1700)	PDF pdgLiv
piO	PDF pdgLive	a(2)(1700)	PDF pdgLiv
eta	PDF pdgLive	a(0)(1710)	PDF pdgLiv
f(0)(500)	PDF pdgLive	f(0)(1710)	PDF pdgLiv
rho(770)	PDF pdgLive	X(1750)	PDF pdgLiv
omega(782)	PDF pdgLive	eta(1760)	PDF pdgLiv
eta'(958)	PDF pdgLive	f(0)(1770)	PDF pdgLiv
f(0)(980)	PDF pdgLive	pi(1800)	PDF pdgLiv
a(0)(980)	PDF pdgLive	f(2)(1810)	PDF pdgLiv
phi(1020)	PDF pdgLive	X(1835)	PDF pdgLiv
h(1)(1170)	PDF pdgLive	phi(3)(1850)	PDF pdgLiv
b(1)(1235)	PDF pdgLive	eta(1)(1855)	PDF pdgLiv
a(1)(1260)	PDF pdgLive	eta(2)(1870)	PDF pdgLiv
f(2)(1270)	PDF pdgLive	pi(2)(1880)	PDF pdgLiv
f(1)(1285)	PDF pdgLive	rho(1900)	PDF pdgLiv
eta(1295)	PDF pdgLive	f(2)(1910)	PDF pdgLiv
pi(1300)	PDF pdgLive	a(0)(1950)	PDF pdgLiv
a(2)(1320)	PDF pdgLive	f(2)(1950)	PDF pdgLiv
f(0)(1370)	PDF pdgLive	rho(3)(1990)	PDF pdgLiv
h(1)(1380)	PDF pdgLive	pi(2)(2005)	PDF pdgLiv
pi(1)(1400)	PDF pdgLive	f(2)(2010)	PDF pdgLiv
eta(1405)	PDF pdgLive	f(0)(2020)	PDF pdgLiv
f(1)(1420)	PDF pdgLive	a(4)(2040)	PDF pdgLiv
omega(1420)	PDF pdgLive	f(4)(2050)	PDF pdgLiv

f(2)(1430)	PDF pdgLive	pi(2)(2100)	PDF pdgLive
a(0)(1450)	PDF pdgLive	f(0)(2100)	PDF pdgLive
rho(1450)	PDF pdgLive	f(2)(2150)	PDF pdgLive
eta(1475)	PDF pdgLive	rho(2150)	PDF pdgLive
f(0)(1500)	PDF pdgLive	phi(2170)	PDF pdgLive
f(1)(1510)	PDF pdgLive	f(0)(2200)	PDF pdgLive
f(2)'(1525)	PDF pdgLive	f(J)(2220)	PDF pdgLive
f(2)(1565)	PDF pdgLive	omega(2220)	PDF pdgLive
rho(1570)	PDF pdgLive	eta(2225)	PDF pdgLive
h(1)(1595)	PDF pdgLive	rho(3)(2250)	PDF pdgLive
pi(1)(1600)	PDF pdgLive	f(2)(2300)	PDF pdgLive
a(1)(1640)	PDF pdgLive	f(4)(2300)	PDF pdgLive
f(2)(1640)	PDF pdgLive	f(0)(2330)	PDF pdgLive
eta(2)(1645)	PDF pdgLive	f(2)(2340)	PDF pdgLive
omega(1650)	PDF pdgLive	rho(5)(2350)	PDF pdgLive
omega(3)(1670)	PDF pdgLive	X(2370)	PDF pdgLive
pi(2)(1670)	PDF pdgLive	f(0)(2470)	PDF pdgLive
phi(1680)	PDF pdgLive	f(6)(2510)	PDF pdgLive
rho(3)(1690)			

- What do we know:
 - Observed as a peak in $\pi\pi$, *KK* spectrums
 - Mass: 990 ± 20 *MeV*
 - Width: 10 100 MeV

- What do we know:
 - Observed as a peak in $\pi\pi$, *KK* spectrums
 - Mass: 990 ± 20 *MeV*
 - Width: 10 100 MeV
 - Decays into $\pi\pi$, KK, $\gamma\gamma$
 - $I^{G}(J^{PC}) = 0^{+}(0^{++})$, in comparison η'_{0} has $I^{G}(J^{PC}) = 0^{+}(0^{-+})$

- What do we know:
 - Observed as a peak in $\pi\pi$, *KK* spectrums
 - Mass: 990 ± 20 *MeV*
 - Width: 10 100 *MeV*
 - Decays into $\pi\pi$, *KK*, $\gamma\gamma$
 - $I^{G}(J^{PC}) = 0^{+}(0^{++})$, in comparison η'_{0} has $I^{G}(J^{PC}) = 0^{+}(0^{-+})$
 - Has a strong ss component (but there is something else)

- What if it's a $q\bar{q}$ state?
 - Put it in a scalar octet with other measured states
 - L=1, S=1, J=0
 - Pure state? Does not seem so

$$\begin{pmatrix} |f_0(980)\rangle \\ |f_0(500)\rangle \end{pmatrix} = \begin{pmatrix} \cos\varphi_M & \sin\varphi_M \\ -\sin\varphi_M & \cos\varphi_M \end{pmatrix} \cdot \begin{pmatrix} |s\bar{s}\rangle \\ |n\bar{n}\rangle \end{pmatrix}$$
(1)
$$n\bar{n} \equiv \frac{1}{\sqrt{2}} (u\bar{u} + d\bar{d})$$

but it is not very promising experimentally arXiv:2104.09922

- What if it's a $q\bar{q}q\bar{q}$ state?
 - Put in a scalar tetraquark octet
 - Does not require non-vanishing angular momentum
 - Describes the mass spectrum hierarchy
 - Can be expressed as:

$$|f_0^{[0]}(980)\rangle \equiv \frac{[su][\bar{s}\bar{u}] + [sd][\bar{s}d]}{\sqrt{2}}, \quad |f_0^{[0]}(500)\rangle \equiv [ud][\bar{u}d]$$

$$\begin{pmatrix} |f_0(980)\rangle \\ |f_0(500)\rangle \end{pmatrix} = \begin{pmatrix} \cos\omega & -\sin\omega \\ \sin\omega & \cos\omega \end{pmatrix} \cdot \begin{pmatrix} |f_0^{[0]}(980)\rangle \\ |f_0^{[0]}(500)\rangle \end{pmatrix}$$
(2)

with $|\omega| < 5$ as an upper bound with their measured masses arXiv:0801.2288

9

FIG. 5.1: Flavor structure and mass hierarchy for the spectrum of light scalar mesons $(J^P = 0^+)$. Experimental observations (left), expectation based to the conventional $q\bar{q}$ model (center), interpretation as tetraquark states, i.e. $qq\bar{q}\bar{q}$ (right).

Joshua Berlin GND urn:nbn:de:hebis:30:3-445420

- What if it's a combinations of both?
 - It is dominated by the tetraquark component
 - Describes the mass spectrum satisfactorily (has more degrees of freedom) arXiv:0801.2288
- KK molecule has also been proposed [arXiv:2001.08141]
- Could also add a scalar glueball component...

Why the $f_0(980)$

- It is one of the lighter scalar particles
- It is common
- It is a strong candidate for an exotic quark state
- Exploring the nature of these exotic bound states could enhance our understanding of QCD

Overview

- What is the $f_0(980)$
- How do we approach it in this work (and all that is needed to do so)
- Main results
- Conclusions

We are here!

How do we approach it in this work?

 $f_0(980) \to f$ or $I \to f_0(980)$

- Decays into the $f_0(980)$ to explore its nature
- Which decay do we choose?
- How do we explore it?

How do we approach it in this work?

- Which decay do we choose?

$$B_{(s)}^0 \to f_0(980)\mu^+\mu^-$$

<u>Rare *B* decay</u>, with no other hadrons in the final state, muons easy to reconstruct.

Flowchart of our approach

- Weak Effective Field Theory

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_i V^i_{CKM} C_i(\mu) \mathcal{O}_i \tag{4}$$

We will use the Wilson coefficients determined from the SM and from data on other decays with the same quark level transition.

- Current state of Wilson Coefficients
 - Come from data on other decays

 $C_i = C_i^{SM} + C_i^{NP} \quad (5)$ Have possible weak phases!

18

- Form factors calculations

 $\mathcal{A} = \langle f_0(980)\mu^+\mu^- | \mathcal{H}_{eff} | B_s \rangle$

 $\langle f_0(980)\mu^+\mu^- | \mathcal{O}_i | B_s \rangle = \langle f_0(980) | \Gamma^A | B_s \rangle \langle \mu^+\mu^- | \Gamma_A' | 0 \rangle$

$$\left\langle f_0(980) | \, s\gamma_\mu \gamma_5 \bar{b} \, | B_s \right\rangle = -i \left\{ F_1(q^2) \left[P_\mu - \frac{m_{B_s}^2 - m_{f_0}^2}{q^2} q_\mu \right] + F_0(q^2) \frac{m_{B_s}^2 - m_{f_0}^2}{q^2} q_\mu \right\},$$

$$\left\langle f_0(980) | \, s\sigma_{\mu\nu} \gamma_5 q^\nu \bar{b} \, | B_s \right\rangle = -\frac{F_T(q^2)}{m_{B_s} + m_{f_0}} \left[q^2 P_\mu - (m_{B_s}^2 - m_{f_0}^2) q_\mu \right],$$

19

- Form factors calculations
- All assume a pure $s\bar{s}$ state and use:
 - Light Cone Sum Rules (LCSR LO, LCSR NLO, LCSR (2015))
 - Perturbative QCD (PQCD)
 - 3-point QCD Sum Rules (3PQCDSR)
 - Covariant Quark Model (CQM)

- Form factors calculations

- Long-distance effects

$$C_9^{\text{eff}} = C_9 + Y(q^2) = |C_9|e^{\delta_9} + |Y(q^2)|e^{\delta_Y(q^2)}$$

22

Overview

- What is the $f_0(980)$
- How do we approach it in this work (and all that is needed to do so)
- Main results
- Conclusions

We are finally here!

Available experimental results

Main limitations for the comparison

- Long distance effects

-
$$R = \frac{\Gamma(f_0 \to \pi \pi)}{\Gamma(f_0 \to \pi \pi) + \Gamma(f_0 \to KK)}$$
 or $\mathcal{B}(f_0 \to \pi^+ \pi^-)$

- $f_0(980)$ decay constant
- Assumptions about the nature of the $f_0(980)(s\bar{s})$
- Experimental uncertainty is still big

Main limitations for the comparison

- Long distance effects \rightarrow Stay away from resonances

-
$$R = \frac{\Gamma(f_0 \to \pi \pi)}{\Gamma(f_0 \to \pi \pi) + \Gamma(f_0 \to KK)} \text{ or } \mathcal{B}(f_0 \to \pi^+ \pi^-) \to ?$$

- $f_0(980)$ decay constant
- Assumptions about the nature of the $f_0(980)(s\bar{s})$

 $\begin{array}{c} & \text{Extract the form} \\ & \text{factors experimentally} \\ & \text{to limit the phase space} \\ & \text{in a more agnostic way} \end{array} \end{array}$

- Experimental uncertainty is still big \rightarrow Use also LHC Run 2

- Observables vs form factors

Observables integrated in $q^2 \in [1,6]GeV^2$, and considering $F_i(q^2) = F_i$ in said range

Conclusions

- The theoretical calculation is limited by several non-perturbative quantities, but some of them can be avoided.
- Current results ~agree, but both theoretical and experimental values are very uncertain.
- Form factors (F_1) could be extracted from observables (BR) to limit the available phase space and guide theoretical determinations, hopefully giving some insight into the nature of the $f_0(980)$.

Thank you!

Extra slides

arXiv:1412.6433

PQDC approach

TABLE V: Form factors for $B \rightarrow S$ in scenario 1.	The errors arise from the uncertainties of hadronic
parameters of $B_{(s)}$ meson(f_b and ω_b), $\Lambda_{\rm QCD}$, scales(t_b)	$_{e}^{i}$) and the Gegenbauer moments of scalar mesons.

	$F_0(0) = F_1(0)$	$F_T(0)$	$a(F_0)$	$b(F_0)$	$a(F_1)$	$b(F_1)$	$a(F_T)$	$b(F_T)$
$B \rightarrow f_0(1370)$	$-0.30\substack{+0.08\\-0.09}$	$-0.39\substack{+0.10\\-0.11}$	$0.70\substack{+0.07\\-0.02}$	$-0.24^{+0.15}_{-0.05}$	$1.63\substack{+0.09\\-0.05}$	$0.53\substack{+0.14 \\ -0.08}$	$1.60\substack{+0.06\\-0.04}$	$0.50\substack{+0.08\\-0.05}$
$B \rightarrow a_0(1450)$	$-0.31\substack{+0.08\\-0.09}$	$-0.41\substack{+0.10\\-0.12}$	$0.70\substack{+0.13 \\ -0.02}$	$-0.26\substack{+0.24\\-0.00}$	$1.63\substack{+0.08 \\ -0.04}$	$0.53\substack{+0.13 \\ -0.06}$	$1.62\substack{+0.04 \\ -0.07}$	$0.54\substack{+0.03 \\ -0.13}$
$B \to K_0^*(1430)$	$-0.34\substack{+0.07\\-0.09}$	$-0.44^{+0.10}_{-0.11}$	$0.72\substack{+0.04\\-0.04}$	$-0.18\substack{+0.04\\-0.05}$	$1.65\substack{+0.04\\-0.07}$	$0.57\substack{+0.08\\-0.14}$	$1.61\substack{+0.04\\-0.05}$	$0.52\substack{+0.05\\-0.06}$
$\bar{B}_s^0 \to f_0(1500)$	$-0.26\substack{+0.09\\-0.08}$	$-0.34^{+0.10}_{-0.10}$	$0.72^{+0.14}_{-0.08}$	$-0.20^{+0.10}_{-0.10}$	$1.61\substack{+0.13\\-0.03}$	$0.48^{+0.27}_{-0.02}$	$1.60\substack{+0.06\\-0.04}$	$0.48\substack{+0.09\\-0.04}$
$\bar{B}_{s}^{0} \to K_{0}^{*}(1430)$	$-0.32\substack{+0.06\\-0.07}$	$-0.41\substack{+0.08\\-0.09}$	$0.69\substack{+0.05 \\ -0.03}$	$-0.21\substack{+0.11\\-0.03}$	$1.62\substack{+0.06\\-0.03}$	$0.52\substack{+0.14 \\ -0.04}$	$1.62\substack{+0.01 \\ -0.06}$	$0.56\substack{+0.00\\-0.16}$

TABLE VI: Form factors for $B \to S$ in scenario 2, with the same error sources as the data in Table V.

	$F_0(0) = F_1(0)$	$F_T(0)$	$a(F_0)$	$b(F_0)$	$a(F_1)$	$b(F_1)$	$a(F_T)$	$b(F_T)$
$B \rightarrow f_0(1370)$	$0.63\substack{+0.23\\-0.14}$	$0.76^{+0.37}_{-0.17}$	$0.70\substack{+0.05\\-0.11}$	$-0.14^{+0.02}_{-0.09}$	$1.60^{+0.15}_{-0.05}$	$0.53\substack{+0.18 \\ -0.09}$	$1.63\substack{+0.07\\-0.05}$	$0.57\substack{+0.07 \\ -0.07}$
$B \rightarrow a_0(1450)$	$0.68\substack{+0.19 \\ -0.15}$	$0.92\substack{+0.30 \\ -0.21}$	$0.62\substack{+0.05\\-0.08}$	$-0.21\substack{+0.06\\-0.02}$	$1.73_{-0.07}^{+0.12}$	$0.70\substack{+0.16 \\ -0.11}$	$1.68\substack{+0.06\\-0.04}$	$0.61\substack{+0.10 \\ -0.02}$
$B \to K_0^*(1430)$	$0.60\substack{+0.18 \\ -0.15}$	$0.78\substack{+0.25 \\ -0.19}$	$0.68\substack{+0.07\\-0.05}$	$-0.18\substack{+0.06 \\ -0.01}$	$1.70\substack{+0.09\\-0.07}$	$0.65\substack{+0.10 \\ -0.10}$	$1.68\substack{+0.07 \\ -0.04}$	$0.61\substack{+0.11 \\ -0.02}$
$\bar{B}^0_s \to f_0(1500)$	$0.60^{+0.20}_{-0.12}$	$0.82\substack{+0.30\\-0.16}$	$0.65\substack{+0.04\\-0.10}$	$-0.22^{+0.07}_{-0.02}$	$1.76_{-0.08}^{+0.13}$	$0.71\substack{+0.20 \\ -0.08}$	$1.71_{-0.07}^{+0.04}$	$0.66^{+0.06}_{-0.10}$
$\bar{B}^0_s \to K^*_0(1430)$	$0.56\substack{+0.16 \\ -0.13}$	$0.72\substack{+0.22\\-0.17}$	$0.67\substack{+0.06 \\ -0.07}$	$-0.17\substack{+0.01\\-0.07}$	$1.69\substack{+0.08\\-0.07}$	$0.63\substack{+0.09 \\ -0.10}$	$1.68\substack{+0.06\\-0.06}$	$0.63\substack{+0.07\\-0.08}$

arXiv:0811.2648v1

Dalitz plot analysis of the decay $B^{\pm} \rightarrow K^{\pm}K^{\pm}K^{\mp}$

- Mixing induced CP-violation

43

- In the LCSR calculations, $F_i \propto f_{f_0}$, and they use $f_{f_0} = 180 \pm 15$ MeV
- In the PQCD calculations, $F_i \propto f_{f_0}$, and they use $f_{f_0} = 370 \pm 20$ MeV
- In the QCDSM calculations, $F_i \propto f_{f_0}^{-1}$ and they use $f_{f_0} = 370 \pm 20$ MeV
- In the LCSR (2015) calculations, $F_i \propto f_{f_0}$, and they use $f_{f_0} = 370 \pm 20$ MeV

- Direct CP-violation

$$A(\bar{B} \to \bar{f}) = e^{+i\varphi_1} |A_1| e^{i\delta_1} + e^{+i\varphi_2} |A_2| e^{i\delta_2},$$

$$A(B \to f) = e^{i[\phi_{CP}(B) - \phi_{CP}(f)]} \left[e^{-i\varphi_1} |A_1| e^{i\delta_1} + e^{-i\varphi_2} |A_2| e^{i\delta_2} \right],$$

$$A_{CP}^{\text{dir}} \equiv \frac{\Gamma(B \to f) - \Gamma(\bar{B} \to \bar{f})}{\Gamma(B \to f) + \Gamma(\bar{B} \to \bar{f})} = \frac{|A(B \to f)|^2 - |A(\bar{B} \to \bar{f})|^2}{|A(B \to f)|^2 + |A(\bar{B} \to \bar{f})|^2}$$

$$= \frac{2|A_1||A_2|\sin(\delta_1 - \delta_2)\sin(\varphi_1 - \varphi_2)}{|A_1|^2 + 2|A_1||A_2|\cos(\delta_1 - \delta_2)\cos(\varphi_1 - \varphi_2) + |A_2|^2}$$
(4)

- Mixing induced CP-violation

Two different amplitudes that can produce CP-violation!