$B\pi$ excited-state contamination in B-meson observables

Oliver Bär

in collaboration with

Alexander Broll, Antoine Gerardin, Simon Kuberski, Rainer Sommer

Lattice meets continuum Siegen University October 1st 2024

Outline

- Motivation: Nucleon-pion-state contamination in nucleon form factors
- ...
- •
- ...
- •

MINERvA: Axial form factor of the nucleon

MINERvA experiment 2022: First measurements of neutrino-proton scattering Cai et al, Nature Vol 614 (2023)

 $\overline{\nu}_{\mu} p \quad \rightarrow \quad \mu^+ n$

direct handle on the proton's axial form factor !

Previous measurements used nucleon bound states (e.g. Deuterium) involves "nuclear physics corrections"

Form factor (ff)
decomposition:
$$\langle N(p')|A_{\mu}|N(p)\rangle$$

 \uparrow
 $G_{\rm P}(Q^2)$ induced pseudo scalar ff
 $(p'-p)^2 = -Q^2$ momentum transfer
Nucleon axial radius $r_A^2 \equiv -\frac{6}{G_{\rm A}(0)} \frac{dG_{\rm A}}{dQ^2}\Big|_{Q^2=0}$ \Rightarrow $r_A = 0.73 \pm 0.17$ fm MINERvA

Data by the PACS collaboration

The form factors can be computed in lattice QCD

Some lattice parameters:

 $a \approx 0.085 \,\mathrm{fm}$ $M_{\pi} \approx 146 \,\mathrm{MeV}$ $L \approx 8.1 \,\mathrm{fm}$

Data by the PACS collaboration

Some lattice parameters:

 $a \approx 0.085 \,\mathrm{fm}$ $M_{\pi} \approx 146 \,\mathrm{MeV}$ $L \approx 8.1 \,\mathrm{fm}$

Year 2018

 $a \approx 0.085 \,\mathrm{fm}\,,~0.063 \,\mathrm{fm}$ $M_\pi \approx 135 \,\mathrm{MeV}$ Year 2024 $L \approx 10.8 \,\mathrm{fm}$

Data by the PACS collaboration

The lattice data underestimate the ff, in particular for small Q^2

 $a \approx 0.085 \,\mathrm{fm}\,,~0.063 \,\mathrm{fm}$ $M_\pi \approx 135 \,\mathrm{MeV}$ Year 2024 $L \approx 10.8 \,\mathrm{fm}$

Some lattice parameters:

 $a \approx 0.085 \,\mathrm{fm}$ $M_{\pi} \approx 146 \,\mathrm{MeV}$ $L \approx 8.1 \,\mathrm{fm}$

Year 2018

Origin of the underestimation:

(wide agreement in the lattice community, after many years of discussion ...)

(Large) excited-state contamination due to a two-particle nucleon-pion (N π) state

Based on many studies

- employing lattice simulations
 Jang et al, PRD 109 (2024)
 Barca, Bali and Collins, PRD 107 (2023)
 Bali et al, JHEP 05 (2020)
 Jang et al, PRL 124 (2020)
- using Chiral Perturbation Theory (ChPT) OB, PRD 99 (2019)
 - ChPT \rightarrow predicts a large N π -state contamination
 - predicts an underestimation
 - Provides a correction formula to "remove" the $N\pi$ -state contamination from the lattice data

Data by the PACS collaboration

The "ChPT corrected" data agree much better with the experimental data / ppd model

Outline

- Motivation: Nucleon-pion-state contamination in nucleon form factors
- Lattice basics: Excited-state contamination in B-meson 2pt function
- ChPT basics: Heavy meson Chiral Perturbation Theory (HM ChPT)
- Application: HM ChPT and the $B\pi$ excited-state contamination in
 - B-meson decay constant
 - Vector current form factor for $B \to \pi l \overline{\nu}_l$
- Outlook

Introduction: B-meson 2-pt function

Consider the B-meson 2-pt function

$$C_2(t) = \sum_{\vec{x}} \langle B(\vec{x}, t) B^{\dagger}(\vec{0}, 0) \rangle$$

- Σ_x: projection to zero momentum
- B: interpolating field, quantum numbers of the B-meson

excited-state contribution

• Spectral decomposition
finite spatial volume
$$\Rightarrow$$
 discrete spectrum
$$\rightarrow C_2(t) = b_0 e^{-M_B t} + b_1 e^{-E_1 t} + b_2 e^{-E_2 t} + \dots$$

$$\propto |\langle 0|B(\vec{0},0)|B(\vec{p}=0)\rangle|^2$$

$$M_{\rm eff}(t) = -\partial_t \ln C_2(t) \qquad \rightarrow \qquad M_{\rm eff}(t) = M_B + \frac{b_1}{b_0} e^{-\Delta E_1 t} + \frac{b_2}{b_0} e^{-\Delta E_2 t} + \dots$$
 effective mass

 $\Delta E_k = E_k - M_B$

⇒ time separation needs to be sufficiently large for small excited-state corrections

Note: same statement for 3-pt functions with more than one time separation

The number of low-lying $B^*\pi$ states increases rapidly with decreasing pion mass

Infinite volume: continuous 2-particle spectrum, threshold = $M_B + M_\pi$

$$M_{\text{eff}}(t) \approx M_B + \frac{b_1}{b_0} e^{-E_{\pi}(\vec{p}_1)} + \frac{b_2}{b_0} e^{-E_{\pi}(\vec{p}_2)} + \dots$$

- Expectation: Many $B\pi$ states contribute to the correlator and the effective mass
- However: Their impact depends also on the prefactors b_k/b_0 Known: $b_k \propto 1/L^3$

Again: not a finite volume (FV) effect, number of states increases for larger volumes

- Two questions
 - 1. How big is their impact (= how big is b_k/b_0)?

2. If non-negligible: How to deal with them ?

• Concerning 1. → Use Chiral Perturbation theory to get estimates

Chiral perturbation theory (ChPT)

• Well-established and widely used:

ChPT: low-energy effective theory of QCD

Weinberg 1979 Gasser, Leutwyler 1984

- Based on spontaneous (and small explicit) chiral symmetry breaking
 - Energy gap (the pions are fairly light)
 - Pion coupling is proportional to pion momenta (small at low energies) and pion mass
- Many applications in lattice QCD
 - Pion mass dependence of observables
 - FV effects due to pions
 - Taste-breaking effects with staggered fermions
 - N π -state contamination in nucleon observables (charges, form factors,...)

<u>...</u>

In the following: $B\pi$ -state contamination in B-meson observables

QCD with a static b-quark

• Our starting point: QCD with a <u>heavy static b-quark</u> $\mathcal{L} = \sum_{r} \overline{q}_{r} (\gamma_{\mu} D_{\mu} + m_{l}) q_{r} + \overline{Q} (D_{4} + m_{b}) Q + \mathcal{L}_{gauge}$ E. Eichten and B. Hill (1990), ...

Note: LO in the heavy quark expansion, $1/m_b$ corrections (not here)

- High degree of symmetry

 - Local flavor number (LFN) symmetry: $Q(x) \rightarrow \exp[i\eta(\vec{x})] Q(x)$
 - Chiral symmetry (in the light quark sector)
 - ▶ Isospin symmetry (if we assume $m_l = m_u = m_d$) → 3 mass degenerate pions
- Corresponding chiral effective theory → Heavy Meson (HM) ChPT
 M.Wise (1992)
 Burdman, Donoghue (1992)

. . .

• Note: We work in continuum QCD (and ignore Lorentz symmetry breaking at finite lattice spacing)

Basics of Heavy Meson (HM) ChPT

Heavy quark spin symmetry \rightarrow multiplet $H = P_+ \left(i B_k^* \gamma_k + i B \gamma^5 \right)$ $P_+ = (1 + \gamma_4)/2$ $\bar{H} = \gamma_4 H^{\dagger} \gamma_4$

Relevant interaction given by

Interpolating B-meson fields in HMChPT

• We are interested in correlation functions of interpolating fields for the B-mesons

Quark level: $\overline{q}_r(x)\Gamma Q(x)$ Γ : Clifford algebra element e.g. γ_5 or γ_k

light u,d quark heavy (static) b-quark

• Are mapped to HMChPT as usual: most general term compatible with the symmetries

$B\pi$ contribution in HMChPT - 2pt function

• Calculation of the correlation functions is a standard task in PT (euclidean space time, finite spatial volume V=L³, L $\rightarrow \infty$ in the end)

$B\pi$ contribution in HMChPT - 2pt function

Comments

expected 1/L³ dependence (2-particle state!)

• $\Sigma_p \rightarrow$ "tower of states" (recall: 1-loop diagrams)

- ► infinite volume limit can be taken (→ non-zero, involves modified Bessel and Struve functions)
- depends on LECs *f*,*g* (LO) and β_1 (NLO) in case of local interpolating fields

Estimates:
$$f \approx f_{\pi} \approx 93 \,\text{MeV}$$
 PDG
 $g \approx 0.49$ Lattice: A. Gerardin *et al.* (2022) \Rightarrow ChPT prediction for the
 $B\pi$ contamination in
effective mass and decay constant

$B\pi$ contribution in the effective decay constant

Example

$$\langle 0 | A_4^{\rm RGI}(0) | B(\vec{p} = 0) \rangle \equiv \hat{f}$$

heavy light decay constant

 $\hat{f} = f_B \sqrt{M_B} \, / \, C_{\rm PS}$

Estimator not unique

$$\hat{f}_{\text{eff}}(t) = \sqrt{2} \sqrt{C_2(t)} e^{\frac{1}{2}M_B^{\text{eff}}(t) t}$$

$$=\hat{f}\left(1+\Delta\hat{f}^{B\pi}(t)\right) \quad \xrightarrow{t \to \infty} \quad \hat{f}$$

$B\pi$ contribution in the effective decay constant

t =1.3 fm: B π -state contamination leads to an *overestimation* of $\approx 2\%$

small effect but relevant for % precision

$B\pi$ contribution in the effective decay constant

t = 1.3 fm: B π -state contamination leads to an *overestimation* of $\approx 2\%$

small effect but relevant for % precision

Analogous results for B-meson mass, BB^{*} π coupling $g_{\pi} \rightarrow B\pi$ contamination \approx a few percent

A. Broll, OB and R. Sommer Eur. Phys. J C 83 (2023) 757

Semileptonic B decay

• Extract form factors from suitably defined ratio of 3pt and 2pt functions

► effective form factors
$$h_{\perp}^{\text{eff}}(t_V, E_{\pi}) = h_{\perp}(E_{\pi}) \begin{bmatrix} 1 + \Delta h_{\perp}(t_V, E_{\pi}) \end{bmatrix}$$

current insertion time B_{π} -state contamination stemming from $\langle \pi | V^k | B^* \pi \rangle$

B π contamination Δh_{\perp}

The $B^*\pi$ contamination in the 3-pt function ...

- leads to an <u>underestimation of ~ 20%</u> of the form factor
- Why so much bigger than in the 2-pt function ?

Why is the $B\pi$ contamination in Δh_{\perp} so big?

B π contamination Δh_{\perp}

 $\Delta h_{\perp}^{B\pi}(t_V, E_{\pi, \vec{p}}) \approx \Delta h_{\perp}^{B\pi, \text{tree}}(t_V, E_{\pi, \vec{p}}) = -1 \times e^{-E_{\pi, \vec{p}} t_V} + \text{NLO}$

Note: • no factor $1/L^3 \Rightarrow$ sometimes called "volume enhanced" contribution

- no sum over pion momenta (i.e. no tower of states), <u>one fixed pion momentum only</u>
- exactly the same result as in \tilde{G}_{P} in the nucleon sector (recall *Motivation*)

Questions / Outlook

- HM ChPT predicts a non-negligible and in some cases a significant $B\pi$ contamination
 - ► How reliable are these NLO ChPT results? needs to be checked with lattice data → first promising results: A. Gerardin, Lattice 2024
- How to deal with the $B\pi$ contamination ?
 - Apply HMChPT results to subtract (some of the) excited-state contamination? What about remaining uncertainties?
 - Smeared interpolating fields? Is smearing helpful/effective in suppressing Bπ excited states ? needs to be checked with lattice data → first results: A. Gerardin, Lattice 2024
 - GEVP including two-hadron (Bπ) interpolating fields ?
 Currently under investigation …

Interpolating B-meson fields in HMChPT

• We are interested in correlation functions of interpolating fields for the B-mesons

Smeared interpolating B-meson fields in HMChPT

• We are interested in correlation functions of interpolating fields for the B-mesons

• Difference between local and smeared interpolators: different values for the LECs

Impact of smearing (?)

Interpolating B-meson field

local

smeared

 $\beta_1 \approx 0.14(4) \,\mathrm{GeV}^{-1}$

B. Colquhoun et al. [JLQCD], 2022

 $ilde{eta_1} pprox \$?

Expectation:

Smearing

increases overlap with the ground state decreases overlap with the excited states

Justified for $B\pi$ states?

Smearing has the potential to significantly reduce the B π contamination But: Is there a smearing procedure that causes $\tilde{\beta}_1 \approx -5\beta_1$?

Lattice determination of LECs β_1 and $\tilde{\beta}_1$

p^{*}: reference momentum

HM ChPT prediction to NLO:

A. Broll, R. Sommer, OB, (2023)

$$R(\mathbf{p}) \equiv \frac{\langle \pi(\mathbf{p}) | V_k | B \rangle}{\langle \pi(\mathbf{p}^*) | V_k | B \rangle} = \frac{1 - \beta_1 E_\pi(\mathbf{p})/g}{1 - \beta_1 E_\pi(\mathbf{p}^*)/g} \times \frac{E_\pi(\mathbf{p}^*)}{E_\pi(\mathbf{p})} \times \frac{\mathbf{p}_k}{(\mathbf{p}^*)_k}$$

 \rightarrow extract β_1 from the pion energy dependence

Lattice estimator: $R^{\text{eff}}(\mathbf{p}, t_V)$

suitably defined ratio of 3pt and 2pt functions

Smearing of the vector current: $V_k \to \tilde{V}_k \implies R(\mathbf{p}) \to \tilde{R}(\mathbf{p})$ $\beta_1 \to \tilde{\beta}_1$ $\Rightarrow \text{ extract } \tilde{\beta}_1$

Lattice determination of LECs β_1 and $\tilde{\beta}_1$

Lattice results (preliminary) → contribution by Antoine Gerardin, *Lattice 2024*

 $\beta_1 \approx \beta_1 \implies$ small impact of Gaussian smearing on B π excited states !

Recall: $\beta_1 \approx 0.14(4) \text{GeV}^{-1}$ by JLQCD

Questions / Outlook

- HM ChPT predicts a non-negligible and in some cases a significant $B\pi$ contamination
 - ► How reliable are these NLO ChPT results? needs to be checked with lattice data → first promising results: A. Gerardin, Lattice 2024
- How to deal with the $B\pi$ contamination ?
 - Apply HMChPT results to subtract (some of the) excited-state contamination? What about remaining uncertainties?
 - Smeared interpolating fields? Is smearing helpful/effective in suppressing Bπ excited states ? needs to be checked with lattice data → first results: A. Gerardin, Lattice 2024
 - GEVP including two-hadron (Bπ) interpolating fields ?
 Currently under investigation ...

Preliminary answer for Gaussian smearing: No

But: Distillation looks better work in progress ...

Backup slides

$B\pi$ contribution in the 2pt function

t =1.3 fm: Bπ-state contamination leads to an *overestimation* of ≈ 1% if local interpolating fields are used

$B\pi$ contribution in the 2pt function

dashed lines: $M_{\pi}L = 4$

solid lines: infinite volume limit

$B\pi$ contribution in the effective mass

t = 1.3 fm: B π -state contamination leads to an *overestimation* of $\approx 5 \text{ MeV}$ if local interpolating fields are used

Antoine Gerardin, talk at Lattice 2024

Calculation of the LECs : β_1 and β_1

► HM χ PT prediction (at NLO) for the form factor h_{\perp} [ref still missing]

$$\frac{\langle \pi(\mathbf{p})|V_k|B\rangle}{\langle \pi(\mathbf{p}^{\star})|V_k|B\rangle} = \frac{1 - \beta_1/g \, E_{\pi}(\mathbf{p})}{1 - \beta_1/g \, E_{\pi}(\mathbf{p}^{\star})} \times \frac{E_{\pi}(\mathbf{p}^{\star})}{E_{\pi}(\mathbf{p})} \times \frac{p_k}{(p^{\star})_k}$$

 \rightarrow extract β_1 from the pion energy dependence \rightarrow smearing of the vector current $(V_{\mu} \rightarrow \widetilde{V}_{\mu})$: gives access to $\widetilde{\beta}_1$ (LECs for smeared *B* operators) [O. Bär, A. Broll, R. Sommer '23]

Matrix element obtained from 3-point functions in the static limit

$$C^{(3)}_{\mu}(t_{\pi}, t_{v}; \mathbf{p}) = \frac{a^{9}}{V^{2}} \sum_{\mathbf{x}_{f}, \mathbf{y}, \mathbf{x}_{i}} \langle \overline{\mathcal{O}}_{\pi}(\mathbf{x}_{f}, t_{v} + t_{\pi}) V_{\mu}(\mathbf{y}, t_{v}) \mathcal{O}_{B}(\mathbf{x}_{i}, 0) \rangle \ e^{-i\mathbf{p}(\mathbf{x}_{f} - \mathbf{y})}$$

Replace local by smeared vector current : $\widetilde{V}_{\mu} \longrightarrow \widetilde{C}^{(3)}_{\mu}$ **\pi**

Lattice estimator :

$$R^{\text{eff}}(t,t_v;\mathbf{p}) \equiv \frac{E_{\pi}(\mathbf{p})}{E_{\pi}(\mathbf{p}^{\star})} \frac{(p^{\star})_k}{p_k} \times \frac{\widetilde{C}_k^{(3)}(t_{\pi},t_v;\mathbf{p})}{\widetilde{C}_k^{(3)}(t_{\pi},t_v;\mathbf{p}^{\star})} \frac{C_{\pi}^{(2)}(t_{\pi},\mathbf{p}^{\star})}{C_{\pi}^{(2)}(t_{\pi},\mathbf{p})}$$

 \rightarrow this estimator is itself affected by excited states : can be used to correct our data

$$1 + \delta_{B\pi}(t_v; \mathbf{p}) = \frac{1 + \Delta h_{\perp}(t_v; \mathbf{p})}{1 + \Delta h_{\perp}(t_v; \mathbf{p}^{\star})} \approx 1 + e^{-(E_{\pi}(\mathbf{p}) - E_{\pi}(\mathbf{p}^{\star}))t_v} + \frac{\beta_1 + \tilde{\beta}_1}{g} \left(E_{\pi}(\mathbf{p}) e^{-E_{\pi}(\mathbf{p})t} - E_{\pi}(\mathbf{p}^{\star}) e^{-E_{\pi}(\mathbf{p}^{\star})t} \right) + \cdots$$

Antoine Gérardin

Antoine Gerardin, talk at Lattice 2024

Preliminary results : β_1 and $\tilde{\beta_1}$

$$R^{\text{eff}}(t,t_v;\mathbf{p}) \equiv \frac{E_{\pi}(\mathbf{p})}{E_{\pi}(\mathbf{p}^{\star})} \frac{(p^{\star})_k}{p_k} \times \frac{\widetilde{C}_k^{(3)}(t,t_v;\mathbf{p})}{\widetilde{C}_k^{(3)}(t,t_v;\mathbf{p}^{\star})} \frac{C_{\pi}^{(2)}(t-t_v,\mathbf{p}^{\star})}{C_{\pi}^{(2)}(t-t_v,\mathbf{p})}$$

• Plateaus at fixed t_{π} (left) or at fixed t_{v} (right)

• Repeat the analysis for different values of E_π in the range [0.29 : 0.85] GeV

8

Antoine Gerardin, talk at Lattice 2024

Test of $HM\chi PT$: two-point heavy-light function with distillation

- $\widetilde{\beta}_1$ depends on the detail of the smearing operator
 - \rightarrow other smearings may yield better results (?)
- Preliminary results obtained with distillation [M Peardon et al. '09]

 \rightarrow preliminary results suggest smaller overlap with $B^*\pi$ states as compared to gauss smearing \rightarrow next step : compute $\tilde{\beta}_1$ in distillation (applicability of HLChPT?)

13

- Analogous results for
 - B-meson mass
 - BB* π coupling g_{π}

with $B\pi$ contamination \approx a few percent

• But: The $B\pi$ contamination can be significantly larger in some cases

Example: Vector current form factor

A. Broll, OB and R. Sommer Eur. Phys. J C 83 (2023) 757