

Experimental overview: Vcb & Vub at Belle/Belle II

Raynette van Tonder

Walter **Benjamin-**Programm

Lattice meets Continuum 2024

Semileptonic decays

2

- SL *B* decays ideal to extract CKM Matrix elements $|V_{cb}| \& |V_{ub}|$
- $|V_{ab}|$ limiting the constraining power of global fits.
- Important inputs to predictions of SM rates for ultra-rare decays.
- Significant tension between inclusive & exclusive determinations poses a longstanding puzzle.

Meet the people!

Collaboration map

• The Belle II Collaboration comprises 1188 researchers from 125 institutes in 29 countries!

Goal: Achieve instantaneous luminosity of $\mathscr{L}_{Belle II} = 6 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ \checkmark x^{30!}

with record $4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ already achieved!

Belle & Belle II Detectors

- Operated from 1999 to 2010.
- Asymmetric e⁺ (3.5 GeV) e⁻ (8 GeV) collider.
- Collected total of 1 ab^{-1} of data.
- Collected 711 fb⁻¹ at $\Upsilon(4S)$ resonance.

- Asymmetric e⁺ (4 GeV) e⁻ (7 GeV) collider.
- Recorded 531 fb⁻¹ of data: equivalent to BaBar and 1/2 of Belle dataset.
- Run I data at $\Upsilon(4S)$ resonance: 365 fb⁻¹
- Run II started February 2024.
- Aims to collect many-ab⁻¹ of data!

• An ideal laboratory to study rare decays or decays with missing energy

7

0

• An ideal laboratory to study rare decays or decays with missing energy

Collide electrons and positrons at a **centre of mass energy** of about twice the B meson mass:

 $\sqrt{s} = 10.58 \text{ GeV}$

• An ideal laboratory to study rare decays or decays with missing energy

• An ideal laboratory to study rare decays or decays with missing energy

• An ideal laboratory to study rare decays or decays with missing energy

11

Tagging strategies at B-Factories

Untagged

Only reconstruct the signal B meson (B_{sig}) .

Image credit: K. Kojima

Tagged

Reconstruct B_{tag} with hadronic decay modes.

Efficiency, backgrounds

Purity, available observables

Exclusive determinations

0

Å

Semileptonic decays have the advantage of being **theoretically clean**, since leptonic and hadronic currents factorize:

 $d\Gamma \propto |\mathcal{A}|^2 = G_F^2 |V_{qb}|^2 \cdot |H^{\mu}L_{\mu}|^2$

Å

Semileptonic decays have the advantage of being **theoretically clean**, since leptonic and hadronic currents factorize:

$$d\Gamma \propto |\mathcal{A}|^2 = G_F^2 |V_{qb}|^2 \cdot |H^{\mu} L_{\mu}|^2$$

Leptonic matrix element

$$L_{\mu} = \langle P_{\ell} P_{\nu} | \bar{\ell} \gamma_{\mu} (1 - \gamma^5) \nu_{\ell} | 0 \rangle$$

$$V_{qb}$$

Å

Semileptonic decays have the advantage of being **theoretically clean**, since leptonic and hadronic currents factorize:

$$d\Gamma \propto |\mathcal{A}|^2 = G_F^2 |V_{qb}|^2 \cdot |H^{\mu}L_{\mu}|^2$$

- Hadronic matrix elements cannot be calculated analytically!
- Non-perturbative physics parametrized with hadron transition form factors as functions of $q^2 = (p_B p_X)^2$.
- For *ℓ* = *e*, *μ* the contribution from *f*₋(*q*²) is negligible, thus the decay rate only depends on the *f*₊(*q*²) form factor.
- Fit to available data to determine values.
- We need **input** from lattice QCD for at least the **normalization**. See talks by Tobias, Takashi, Alejandro, Martin and many more!

 $|V_{\mu b}|$ from $B \to \pi/\rho \ell \nu$

- Untagged reconstruction of $B^0 \to \pi^- \ell^+ \nu_\ell$ and $B^+ \to \rho^0 \ell^+ \nu_\ell$ using full Belle II Run I dataset.
- New idea: simultaneously extract signal yields via binned 3D fits using beam-constrained mass M_{bc} and energy difference ΔE in bins of $q^2 = (p_B p_\pi)^2 = (p_\ell + p_\nu)^2$.
- Main challenge: large backgrounds from $e^+e^- \rightarrow q\bar{q}$ processes (a.k.a. continuum) and other semileptonic $B \rightarrow X_c \ell \nu$ decays.

 $|V_{\mu b}|$ from $B \to \pi/\rho \ell \nu$

- Untagged reconstruction of $B^0 \to \pi^- \ell^+ \nu_\ell$ and $B^+ \to \rho^0 \ell^+ \nu_\ell$ using full Belle II Run I dataset.
- New idea: simultaneously extract signal yields via binned 3D fits using beam-constrained mass M_{bc} and energy difference ΔE in bins of $q^2 = (p_B p_\pi)^2 = (p_\ell + p_\nu)^2$.
- Main challenge: large backgrounds from $e^+e^- \rightarrow q\bar{q}$ processes (a.k.a. continuum) and other semileptonic $B \rightarrow X_c \ell \nu$ decays.
- Take into account cross-feed signal yields and correlations between backgrounds.

 $|V_{\mu b}|$ from $B \to \pi/\rho \ell \nu$

arXiv:2407.17403

Convert to partial branching fractions
$$\Delta \mathscr{B}_i$$
 using reconstruction efficiencies.

• Total branching ratios **consistent with world averages**:

 $\mathcal{B}(B^0 \to \pi^- \ell^+ \nu) = (1.516 \pm 0.042 \pm 0.059) \times 10^{-4}$ $\mathcal{B}(B^+ \to \rho^0 \ell^+ \nu) = (1.625 \pm 0.079 \pm 0.180) \times 10^{-4}$

• Determine | V_{ub} | by **fitting differential decay widths** using the relevant form factor expansions with constraints from LQCD/LCSR:

 $B^{0} \to \pi^{-} \ell^{+} \nu$ $|V_{ub}|_{LQCD+LCSR} = (3.73 \pm 0.07 \pm 0.07 \pm 0.16) \times 10^{-3}$ $B^{+} \to \rho^{0} \ell^{+} \nu$ $|V_{ub}|_{LCSR} = (3.19 \pm 0.12 \pm 0.17 \pm 0.26) \times 10^{-3}$

Largest systematic: Continuum & $B \rightarrow \pi \pi \ell \nu$ modelling

In agreement with exclusive world average

Bourrely-Caprini-Lellouch (BCL):PRD 82 (2009) 099902Bharucha-Straub-Zwicky (BSZ) :J. High Energ. Phys. 08 (2016) 96

 $|V_{\mu b}|$ from $B \to \pi/\rho \ell \nu$

arXiv:2407.17403

• Total branching ratios **consistent with world averages:**

 $\mathcal{B}(B^0 \to \pi^- \ell^+ \nu) = (1.516 \pm 0.042 \pm 0.059) \times 10^{-4}$ $\mathcal{B}(B^+ \to \rho^0 \ell^+ \nu) = (1.625 \pm 0.079 \pm 0.180) \times 10^{-4}$

• Determine | V_{ub} | by **fitting differential decay widths** using the relevant form factor expansions with constraints from LQCD/LCSR:

 $B^{0} \to \pi^{-} \ell^{+} \nu$ $|V_{ub}|_{LQCD+LCSR} = (3.73 \pm 0.07 \pm 0.07 \pm 0.16) \times 10^{-3}$ $B^{+} \to \rho^{0} \ell^{+} \nu$ $|V_{ub}|_{LCSR} = (3.19 \pm 0.12 \pm 0.17 \pm 0.26) \times 10^{-3}$

Largest systematic: Continuum & $B \rightarrow \pi \pi \ell \nu$ modelling

In agreement with exclusive world average

20

 $|V_{\mu b}|$ from $B \to \pi/\rho \ell \nu$

arXiv:2407.17403

• Total branching ratios **consistent with world averages:**

 $\mathcal{B}(B^0 \to \pi^- \ell^+ \nu) = (1.516 \pm 0.042 \pm 0.059) \times 10^{-4}$ $\mathcal{B}(B^+ \to \rho^0 \ell^+ \nu) = (1.625 \pm 0.079 \pm 0.180) \times 10^{-4}$

 Determine | V_{ub} | by fitting differential decay widths using the relevant form factor expansions with constraints from LQCD/LCSR:

Preliminary pilnu HFLAV $B^0 \rightarrow \pi^- \ell^+ \nu_\ell$ inclusive HFLAV $B^+ \rightarrow \rho^0 \ell^+ \nu_\ell$ rholnu [2104.05739v2] $B^0 \to \pi^- \ell^+ \nu$ total LQCD total LQCD + LCSR $B^+ \to \rho^0 \ell^+ \nu$ total LCSR 2.5 2.0 3.0 3.5 4.0 4.5 $|V_{\rm ub}|$ (10³)

In agreement with exclusive world average

PRD 108, 092013 (2023)

- **Reconstruct** $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+_{slow}$ and combine with appropriately **charged lepton** ($\ell = e \text{ or } \mu$).
- Main challenge: accurate background model, slow pion (p < 0.4 GeV) tracking and statistical correlations between bins.
- Reconstruct the angle between *B* and $Y = D^* \ell$:

$$\cos \theta_{BY} = \frac{2E_B^* E_Y^* - m_B^2 - m_Y^2}{2|p_B^*||p_Y^*|}$$

• Extract signal yield with 2D fit to $\cos \theta_{BY}$ and $\Delta M = M(D^{*+}) - M(D^0)$ in bins of...

23

PRD 108, 092013 (2023)

- **Reconstruct** $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+_{slow}$ and combine with appropriately **charged lepton** ($\ell = e \text{ or } \mu$).
- Main challenge: accurate background model, slow pion (p < 0.4 GeV) tracking and statistical correlations between bins.
- Reconstruct the angle between *B* and $Y = D^* \ell$:

$$\cos \theta_{BY} = \frac{2E_B^* E_Y^* - m_B^2 - m_Y^2}{2|p_B^*||p_Y^*|}$$

• Extract signal yield with 2D fit to $\cos \theta_{BY}$ and $\Delta M = M(D^{*+}) - M(D^0)$ in bins of $\cos \theta_{\ell}$

PRD 108, 092013 (2023)

- **Reconstruct** $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+_{slow}$ and combine with appropriately **charged lepton** ($\ell = e \text{ or } \mu$).
- Main challenge: accurate background model, slow pion (p < 0.4 GeV) tracking and statistical correlations between bins.
- Reconstruct the angle between *B* and $Y = D^* \ell$:

$$\cos \theta_{BY} = \frac{2E_B^* E_Y^* - m_B^2 - m_Y^2}{2|p_B^*||p_Y^*|}$$

• Extract signal yield with 2D fit to $\cos \theta_{BY}$ and $\Delta M = M(D^{*+}) - M(D^0)$ in bins of $\cos \theta_{\ell}$, $\cos \theta_{\nu}$

25

PRD 108, 092013 (2023)

- **Reconstruct** $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+_{slow}$ and combine with appropriately **charged lepton** ($\ell = e \text{ or } \mu$).
- Main challenge: accurate background model, slow pion (p < 0.4 GeV) tracking and statistical correlations between bins.
- Reconstruct the angle between *B* and $Y = D^* \ell$:

$$\cos \theta_{BY} = \frac{2E_B^* E_Y^* - m_B^2 - m_Y^2}{2|p_B^*||p_Y^*|}$$

• Extract signal yield with 2D fit to $\cos \theta_{BY}$ and $\Delta M = M(D^{*+}) - M(D^0)$ in bins of $\cos \theta_{\ell}, \cos \theta_{\nu}, \chi$

26

- **Reconstruct** $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+_{slow}$ and combine with appropriately **charged lepton** ($\ell = e \text{ or } \mu$).
- Main challenge: accurate background model, slow pion (p < 0.4 GeV) tracking and statistical correlations between bins.
- Reconstruct the angle between *B* and $Y = D^* \ell$:

$$\cos \theta_{BY} = \frac{2E_B^* E_Y^* - m_B^2 - m_Y^2}{2|p_B^*||p_Y^*|}$$

• Extract signal yield with 2D fit to $\cos \theta_{BY}$ and $\Delta M = M(D^{*+}) - M(D^0)$ in bins of $\cos \theta_{\ell}, \cos \theta_{\nu}, \chi, \& w$

- Convert to partial branching fractions $\Delta \Gamma_i$ using **reconstruction efficiencies**.
- Fit differential shapes with different form factor expansions to obtain $|V_{cb}|$.
- Use FNAL/MILC lattice QCD data at zero recoil (w = 1) for **normalisation**. Phy. Rev. D 89 (2014) 114504

e mode:	$\mathcal{B}(\bar{B}^0 \to D^{*+} e^- \bar{\nu}_e) = (4.92 \pm 0.03 \pm 0.22)\%$
μ mode:	$\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_\mu) = (4.93 \pm 0.03 \pm 0.23)\%$
Ratio	$R(D_{e/\mu}^*) = 0.998 \pm 0.009 \pm 0.020$

$$\frac{d^4\Gamma}{dwd\cos\theta_\ell d\cos\theta_\nu d\chi} \propto |V_{cb}|^2 F^2(w,\cos\theta_\ell,\cos\theta_\nu,\chi)$$

$$V_{cb}|_{BGL} = (40.6 \pm 0.3 \pm 1.0 \pm 0.6) \times 10^{-3}$$

$$V_{cb}|_{CLN} = (40.1 \pm 0.3 \pm 1.0 \pm 0.6) \times 10^{-3}$$

$$\uparrow \qquad \uparrow$$
Slow pion eff. plays Input from LQCD at zero-recoil F(1)

Fom factor parameterizations:

Caprini-Lellouch-Neubert (CLN)	Boyd-Grinstein-Lebed (BGL)	
parameterization	parameterization	
Phy. Rev. D 56 (1997) 6895	Nucl. Phy. B 530 (1998) 152	

- Convert to partial branching fractions $\Delta \Gamma_i$ using **reconstruction efficiencies**.
- Fit differential shapes with different form factor expansions to obtain $|V_{cb}|$.
- Use FNAL/MILC lattice QCD data at zero recoil (w = 1) for **normalisation**. Phy. Rev. D 89 (2014) 114504

e mode:	$\mathcal{B}(\bar{B}^0 \to D^{*+} e^- \bar{\nu}_e) = (4.92 \pm 0.03 \pm 0.22)\%$
μ mode:	$\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_\mu) = (4.93 \pm 0.03 \pm 0.23)\%$
Ratio	$R(D_{e/\mu}^*) = 0.998 \pm 0.009 \pm 0.020$

$$\frac{d^4\Gamma}{dwd\cos\theta_\ell d\cos\theta_\nu d\chi} \propto |V_{cb}|^2 F^2(w,\cos\theta_\ell,\cos\theta_\nu,\chi)$$

$$V_{cb}|_{\rm BGL} = (40.6 \pm 0.3 \pm 1.0 \pm 0.6) \times 10^{-3}$$

$$V_{cb}|_{\rm CLN} = (40.1 \pm 0.3 \pm 1.0 \pm 0.6) \times 10^{-3}$$

$$WA \text{ values (HFLAV 21):}$$

$$|V_{cb}|_{\rm Excl.} = (39.10 \pm 0.50) \times 10^{-3}$$

$$|V_{cb}|_{\rm Incl.} = (42.19 \pm 0.78) \times 10^{-3}$$

Fom factor parameterizations:

Caprini-Lellouch-Neubert (CLN)	Boyd-Grinstein-Lebed (BGL)		
parameterization	parameterization		
Phy. Rev. D 56 (1997) 6895	Nucl. Phy. B 530 (1998) 152		

- Convert to partial branching fractions $\Delta \Gamma_i$ using **reconstruction efficiencies**.
- Fit differential shapes with different form factor expansions to obtain $|V_{cb}|$.
- Use FNAL/MILC lattice QCD data at zero recoil (w = 1) for **normalisation**. Phy. Rev. D 89 (2014) 114504

e mode:	$\mathcal{B}(\bar{B}^0 \to D^{*+} e^- \bar{\nu}_e) = (4.92 \pm 0.03 \pm 0.22)\%$
μ mode:	$\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_\mu) = (4.93 \pm 0.03 \pm 0.23)\%$
Ratio	$R(D_{e/\mu}^*) = 0.998 \pm 0.009 \pm 0.020$

$$\frac{d^4\Gamma}{dwd\cos\theta_\ell d\cos\theta_\nu d\chi} \propto |V_{cb}|^2 F^2(w,\cos\theta_\ell,\cos\theta_\nu,\chi)$$

$$V_{cb}|_{\rm BGL} = (40.6 \pm 0.3 \pm 1.0 \pm 0.6) \times 10^{-3}$$

$$V_{cb}|_{\rm CLN} = (40.1 \pm 0.3 \pm 1.0 \pm 0.6) \times 10^{-3}$$

$$WA \text{ values (HFLAV 21):}$$

$$|V_{cb}|_{\rm Excl.} = (39.10 \pm 0.50) \times 10^{-3}$$

$$|V_{cb}|_{\rm Incl.} = (42.19 \pm 0.78) \times 10^{-3}$$

Fom factor parameterizations:

Caprini-Lellouch-Neubert (CLN) parameterization	Boyd-Grinstein-Lebed (BGI parameterization			
Phy. Rev. D 56 (1997) 6895	Nucl. Phy. B 530 (1998) 152			

Shifts exclusive average closer to inclusive average

$|V_{cb}|$ from angular coefficients of $B \rightarrow D^* \ell \nu$

arXiv:2310.20286

- Angular coefficients capture full differential • **information** allowing for SM tests — some $J_i = 0$ for SM.
- Hadronic tagged analysis using complete Belle dataset of 711 fb $^{-1}$ while implementing **improved** Belle II tagging algorithm.
- Reconstruct $B^+ \to D^{*0} \ell \nu$ and $B^0 \to D^{*+} \ell \nu$ with $D^{*+} \to D^0 \pi^+ . D^+ \pi^0.$
- Determine signal yields by fitting the mass of undetected neutrinos in the event: $M_{miss}^2 = (p_{e^+e^-} - p_{B_{tag}} - p_{D^*} - p_{\ell})^2.$
- Measure 12 angular coefficients J_i in four bins of w.

 $+ J_4 \sin 2\theta_V \sin 2\theta_\ell \cos \chi + J_5 \sin 2\theta_V \sin \theta_\ell \cos \chi + (J_{6s} \sin^2 \theta_V + J_{6c} \cos^2 \theta_V) \cos \theta_\ell$

 $+J_{7}\sin 2\theta_{V}\sin \theta_{\ell}\sin \chi+J_{8}\sin 2\theta_{V}\sin 2\theta_{\ell}\sin \chi+J_{9}\sin^{2}\theta_{V}\sin^{2}\theta_{\ell}\sin 2\chi\right).$

arXiv:2310.20286

- Extract $|V_{cb}|$ with external constraint on normalisation (HFLAV 2021) & LQCD beyond zero-recoil.
- Results in agreement with fits to 1D partial rates from the same data set: Phy. Rev. D 108 (2023) 012002
- Also agrees with latest and most precise determinations of **inclusive** $|V_{cb}|$.

Inclusive determinations

0

Total decay rate **determined** from Heavy Quark Expansion (HQE)

$$\mathcal{B} = |V_{qb}|^2 \bigg[\Gamma(b \to q \,\ell \,\bar{\nu}_\ell) + 1/m_{c,b} + \alpha_s + \dots \bigg]$$

Key-technique: hadronic tagging

Key-technique: hadronic tagging

Full Reconstruction =

Belle tagging algorithm (Efficiency: 0.28% / 0.18% for $B^{\pm} \& B^0/\bar{B}^0$)

Full Event Interpretation =

Belle II tagging algorithm (Efficiency: 0.6% /0.3% for $B^{\pm} \& B^0/\bar{B}^0$)

Candidates reconstructed using a hierarchical approach & neural networks in hadronic modes

Key-technique: hadronic tagging

Full Reconstruction =

Belle tagging algorithm (Efficiency: 0.28% / 0.18% for $B^{\pm} \& B^0/\bar{B}^0$)

Full Event Interpretation = Belle II tagging algorithm (Efficiency: 0.6% /0.3% for $B^{\pm} \& B^0/\bar{B}^0$)

Candidates reconstructed using a hierarchical approach & neural networks in hadronic modes

Incl. $|V_{cb}|$ from q^2 moments

46

- Novel theoretical approach to determine incl. $|V_{cb}|$ with a reduced set of higher order HQE parameters at $O(1/m_b^4)$ in a completely data-driven approach. JHEP 02 177 (2019)
- Requires the reconstruction of q^2 for $B \to X_c \ell \nu_\ell$ decays
 - Only possible through hadronic tagging at B-factories!
- Main challenge: non-resonant $X_c \ell \nu_\ell$ 'gap' modelling. (See Florian's talk for new insights.)

Incl. $|V_{cb}|$ from q^2 moments

- Novel theoretical approach to determine incl. $|V_{cb}|$ with a reduced set of higher order HQE parameters at $\mathcal{O}(1/m_b^4)$ in a completely data-driven approach. JHEP 02 177 (2019)
- Requires the reconstruction of q^2 for $B \to X_c \ell \nu_\ell$ decays
 - Only possible through hadronic tagging at B-factories!
- Main challenge: non-resonant $X_c \ell \nu_\ell$ 'gap' modelling. (See Florian's talk for new insights.)

Incl. $|V_{cb}|$ from q^2 moments

- Novel theoretical approach to determine incl. $|V_{cb}|$ with a reduced set of higher order HQE parameters at $\mathcal{O}(1/m_b^4)$ in a completely data-driven approach. JHEP 02 177 (2019)
- Requires the reconstruction of q^2 for $B \to X_c \ell \nu_\ell$ decays
 - Only possible through hadronic tagging at B-factories!
- Main challenge: non-resonant $X_c \ell \nu_\ell$ 'gap' modelling. (See Florian's talk for new insights.)

arXiv:2311.00458

arXiv:2311.00458

- Measuring $B \to X_u \ell \nu$ is challenging due to large background component from $B \to X_c \ell \nu$.

Clear separation only possible in corners of phase space.

- Analysis with full Belle data set using the Belle II hadronic tagging algorithm.
- Split into $B \to X_u \ell \nu$ enhanced and depleted subsamples using $N(K^{\pm}, K_s)$.
- Extract $B \to X_u \ell \nu$ yield from 2D fit to lepton energy $E_{\ell} \& q^2 = (p_B p_X)^2$ with enhanced sample.

arXiv:2311.00458

- Measuring $B \to X_u \ell \nu$ is challenging due to large background component from $B \to X_c \ell \nu$.

Clear separation only possible in corners of phase space.

- Analysis with full Belle data set using the Belle II hadronic tagging algorithm.
- Split into $B \to X_u \ell \nu$ enhanced and depleted subsamples using $N(K^{\pm}, K_s)$.
- Extract $B \to X_u \ell \nu$ yield from 2D fit to lepton energy $E_{\ell} \& q^2 = (p_B p_X)^2$ with enhanced sample.
- Extract $B \to X_c \ell \nu$ yield via simple background subtraction in total $B \to X \ell \nu$ sample.

arXiv:2311.00458

- Measuring $B \to X_u \ell \nu$ is challenging due to large background component from $B \to X_c \ell \nu$.

Clear separation only possible in corners of phase space.

- Analysis with full Belle data set using the Belle II hadronic tagging algorithm.
- Split into $B \to X_u \ell \nu$ enhanced and depleted subsamples using $N(K^{\pm}, K_s)$.
- Extract $B \to X_u \ell \nu$ yield from 2D fit to lepton energy $E_{\ell} \& q^2 = (p_B p_X)^2$ with enhanced sample.
- Extract $B \to X_c \ell \nu$ yield via simple background subtraction in total $B \to X \ell \nu$ sample.

Measure partial BF for the region $E_{\ell}^B > 1$ GeV:

 $\frac{\Delta \mathcal{B}(\bar{B} \to X_u \ell \bar{\nu})}{\Delta \mathcal{B}(\bar{B} \to X_c \ell \bar{\nu})} = 1.96(1 \pm 8.4\%_{\text{stat}} \pm 7.9\%_{\text{syst}}) \times 10^{-2}$

Leading systematics: Modelling of $B \to X_u \ell \nu$ component & composition of fake leptons and secondary decays

- Unfold $B \to X_u \ell \nu \& B \to X_c \ell \nu$ yields via singular value decomposition (SVD). arXiv:hep-ph/9509307
- Take ratio and correct for efficiency to form differential ratios.

- Unfold $B \to X_u \ell \nu \& B \to X_c \ell \nu$ yields via singular value decomposition (SVD). arXiv:hep-ph/9509307
- Take ratio and correct for efficiency to form differential ratios.

Final step: Extract $|V_{ub}|/|V_{cb}|$ with partial BF

BELLE

- Unfold $B \to X_u \ell \nu \& B \to X_c \ell \nu$ yields via singular value decomposition (SVD). arXiv:hep-ph/9509307
- Take ratio and correct for efficiency to form differential ratios.

Final step: Extract $|V_{ub}|/|V_{cb}|$ with partial BF

 $\frac{|V_{ub}|}{|V_{cb}|} = \sqrt{\frac{\Delta \mathcal{B}(\bar{B} \to X_u \ell \bar{\nu})}{\Delta \mathcal{B}(\bar{B} \to X_c \ell \bar{\nu})}} \frac{\Delta \Gamma(\bar{B} \to X_c \ell \bar{\nu})}{\Delta \Gamma(\bar{B} \to X_u \ell \bar{\nu})}}$ Theo. decay rates: J. High Energ. Phys. 10 (2007) 058 $\Delta \Gamma^{\text{GGOU}}(B \to X_u \ell \nu) = 58.5^{+2.7}_{-2.3} \text{ ps}^{-1}$ Phys. Rev. D 72, 073006 $\Delta \Gamma^{\text{BLNP}}(B \to X_u \ell \nu) = 61.5^{+6.4}_{-5.1} \text{ ps}^{-1}$ Eur. Phys. J. C 81, 226 (2021) $\Delta \Gamma^{\text{Kin}}(B \to X_c \ell \nu) = 29.7 \pm 1.2 \text{ ps}^{-1}$

$$\begin{aligned} \frac{|V_{ub}|}{|V_{cb}|}^{\text{BLNP}} &= 0.0972 (1 \pm 4.2\%_{\text{stat}} \pm 3.9\%_{\text{syst}} \\ &\pm 5.2\%_{\Delta\Gamma(\overline{B}\to X_u\ell\overline{\nu})} \pm 2.0\%_{\Delta\Gamma(\overline{B}\to X_c\ell\overline{\nu})}) \end{aligned}$$
$$\begin{aligned} \frac{|V_{ub}|}{|V_{cb}|}^{\text{GGOU}} &= 0.0996 (1 \pm 4.2\%_{\text{stat}} \pm 3.9\%_{\text{syst}} \\ &\pm 2.3\%_{\Delta\Gamma(\overline{B}\to X_u\ell\overline{\nu})} \pm 2.0\%_{\Delta\Gamma(\overline{B}\to X_c\ell\overline{\nu})}) \end{aligned}$$

- Unfold $B \to X_u \ell \nu \& B \to X_c \ell \nu$ yields via singular value decomposition (SVD). arXiv:hep-ph/9509307
- Take ratio and correct for efficiency to form differential ratios.

- Inherits similar analysis strategy from former inclusive $|V_{ub}|$ Belle analysis. Phy. Rev. D 104 (2021) 012008
- Simultaneously extract signal for $B \to \pi \ell \nu$ and $B \to X_u \ell \nu$ in q^2 and charged pion multiplicity $N_{\pi^{\pm}}$.
- Normalizations and $B \to \pi \ell \nu$ form factors (q^2 shape) determined from fit.

Exclusive $|V_{ub}|$:

- Fit BCL $B \rightarrow \pi \ell \nu$ form factors with two constraints:
 - LQCD only, Eur. Phys. J. C 82 (2022) 869
 - LQCD + experimental information.
- Combined or separate $B \to \pi^+ \ell \nu \& B \to \pi^0 \ell \nu$.

Largest systematic: tagging efficiency (±4%)

Inclusive $|V_{ub}|$:

• Use theoretical prediction of inclusive partial rate. J. High Energ. Phys. 10 (2007) 058

Largest systematic: $B \rightarrow X_{\mu} \ell \nu$ modelling (±10.9%)

 $|V_{ub}|_{\text{excl}} = (3.78 \pm 0.23 \pm 0.16 \pm 0.14) \times 10^{-3}$ $|V_{ub}|_{\text{incl}} = (3.88 \pm 0.20 \pm 0.31 \pm 0.09) \times 10^{-3}$

Exclusive $|V_{ub}|$:

- Fit BCL $B \rightarrow \pi \ell \nu$ form factors with two constraints:
 - LQCD only, Eur. Phys. J. C 82 (2022) 869
 - LQCD + experimental information.
- Combined or separate $B \to \pi^+ \ell \nu \& B \to \pi^0 \ell \nu$.

```
Largest systematic: tagging efficiency (±4%)
```


Inclusive $|V_{ub}|$:

• Use theoretical prediction of inclusive partial rate. J. High Energ. Phys. 10 (2007) 058

Largest systematic: $B \rightarrow X_{\mu} \ell \nu$ modelling (±10.9%)

 $|V_{ub}|_{\text{excl}} = (3.78 \pm 0.23 \pm 0.16 \pm 0.14) \times 10^{-3}$ $|V_{ub}|_{\text{incl}} = (3.88 \pm 0.20 \pm 0.31 \pm 0.09) \times 10^{-3}$

Exclusive $|V_{ub}|$:

- Fit BCL $B \rightarrow \pi \ell \nu$ form factors with two constraints:
 - LQCD only, Eur. Phys. J. C 82 (2022) 869
 - LQCD + experimental information.
- Combined or separate $B \to \pi^+ \ell \nu \& B \to \pi^0 \ell \nu$.

Inclusive $|V_{ub}|$:

• Use theoretical prediction of inclusive partial rate. J. High Energ. Phys. 10 (2007) 058

Weighted average of excl. & incl:

$$|V_{ub}|_{\text{avg}} = (3.84 \pm 0.26) \times 10^{-3}$$

Consistent with CKMFitter (without $|V_{ub}|$) within 0.8 σ .

Conclusion & Outlook

Belle (II) offers a unique and fertile environment for precision measurements of semileptonic *B* decays.

Very active field, with **innovative strategies** of measuring V_{ub} , V_{cb} and tests of lepton flavour universality.

- With the current collected data set, Belle II already produces world-leading and unique results!
- The well-understood Belle data set is still used to squeeze out interesting measurements.
- Collaboration between theory and experiment crucial to solve ongoing puzzles!

Conclusion & Outlook

Belle (II) offers a unique and fertile environment for precision measurements of semileptonic *B* decays.

Very active field, with **innovative strategies** of measuring V_{ub} , V_{cb} and tests of lepton flavour universality.

- With the current collected data set, Belle II already produces world-leading and unique results!
- The well-understood Belle data set is still used to squeeze out interesting measurements.
- Collaboration between theory and experiment crucial to solve ongoing puzzles!

Summary of today's results

Exclusive IV _{ub} I						
Belle II	$B^0 \to \pi^- \ell^+ \nu$ $B^+ \to \rho^0 \ell^+ \nu$	$ V_{ub} _{\text{LQCD}+\text{LCSR}} = (3.73 \pm 0.07 \pm 0.07 \pm 0.16) \times 10^{-3}$ $ V_{ub} _{\text{LCSR}} = (3.19 \pm 0.12 \pm 0.17 \pm 0.26) \times 10^{-3}$	arXiv:2407.17403 (Submitted to PRD)			
		Exclusive IV _{cb} I				
Belle II	$B^0 \to D^{*+} \ell^- \nu$	$ V_{cb} _{BGL} = (40.6 \pm 0.3 \pm 1.0 \pm 0.6) \times 10^{-3}$	PRD 108, 092013 (2023)			
BELLE	$\bar{B} \to D^* \ell \nu$	$ V_{cb} _{BGL} = (41.0 \pm 0.3 \pm 0.4 \pm 0.5) \times 10^{-3}$	arXiv:2310.20286 (Accepted by PRL)			
BELLE Inclusive I	V _{ub} I /IV _{cb} I	$\begin{aligned} \frac{ V_{ub} }{ V_{cb} }^{\text{BLNP}} &= 0.0972(1 \pm 4.2\%_{\text{stat}} \pm 3.9\%_{\text{syst}} \\ &\pm 5.2\%_{\Delta\Gamma(\bar{B}\to X_u\ell\bar{\nu})} \pm 2.0\%_{\Delta\Gamma(\bar{B}\to X_c\ell\bar{\nu})}) \end{aligned}$ $\begin{aligned} \frac{ V_{ub} }{ V_{cb} }^{\text{GGOU}} &= 0.0996(1 \pm 4.2\%_{\text{stat}} \pm 3.9\%_{\text{syst}} \\ &\pm 2.3\%_{\Delta\Gamma(\bar{B}\to X_u\ell\bar{\nu})} \pm 2.0\%_{\Delta\Gamma(\bar{B}\to X_c\ell\bar{\nu})}) \end{aligned}$	arXiv:2311.00458 (Submitted to PRD)			

Incl./Excl. IV_{ub} I

 $|V_{ub}|_{\rm avg} = (3.84 \pm 0.26) \times 10^{-3}$

PRL 131, 211801 (2023)

Thank you for your attention!

A leading systematic for many analyses (not just semileptonic):

		$\mathcal{B}(\mathbb{R})$	$B^+ \to X^0_{\rm c} \ell$	$(\mu^+ \nu_\ell) \approx$	10.79 %	70		
D^0 2.3	${f D}^0\ell^+ u_\ell$ 2.31 %		${ m D}^{*0}\ell^+ u_\ell$ 5.05 %		$\mathrm{D}^{**0}\ell^+ u_\ell + \mathrm{Other} \ 2.38\%$	$\begin{array}{c} \text{Gap} \\ \sim 1.05 \% \end{array}$	or is it even bigger?	
Decay		$\mathcal{B}(B^+)$		$\mathcal{B}(B^0)$				
$B \to D \ell^+ \nu_\ell \\ B \to D^* \ell^+ \nu_\ell$	(2.4 ± 0) (5.5 ± 0)	$(.1) \times 10^{-2}$ $(.1) \times 10^{-2}$	(2.2 ± 0.1) (5.1 ± 0.1)	$\times 10^{-2} \\ \times 10^{-2}$	-	Fairly well k	known.)
$B \to D_1 \ell^+ \nu_\ell$ $B \to D_2^* \ell^+ \nu_\ell$ $B \to D_0^* \ell^+ \nu_\ell$	(6.6 ± 0) (2.9 ± 0) (4.2 ± 0)	$(.1) \times 10^{-3}$ $(.3) \times 10^{-3}$ $(.8) \times 10^{-3}$	(6.2 ± 0.1) (2.7 ± 0.3) (3.9 ± 0.7) (3.9 ± 0.7)	$\times 10^{-3}$ $\times 10^{-3}$ $\times 10^{-3}$		Broad states I 3 measurer (BaBar, Belle,	based on ments. DELPHI)	
$B \to D'_1 \ell^+ \nu_\ell$ $B \to D\pi\pi \ell^+ \nu_\ell$ $B \to D^*\pi\pi \ell^+ \nu_\ell$	(4.2 ± 0) (0.6 ± 0) (2.2 ± 1)	$(.9) \times 10^{-3}$ $(.9) \times 10^{-3}$ $(.0) \times 10^{-3}$	(3.9 ± 0.8) (0.6 ± 0.9) (2.0 ± 1.0)	$\times 10^{-3}$ × 10 ⁻³ × 10 ⁻³		Some hints BaBar & rece result	from nt Belle	
	U	Š.				result		
$B \to X_c \ell \nu_\ell$	$(10.8\pm0$	$(.4) \times 10^{-2}$	(10.1 ± 0.4)	$\times 10^{-2}$				

A tale of two 'gap' models

Model 1:

quidistribution of all final state particles in phase space			ice Decay	via intermediate broa	ad D^{stst} state
Decay	$\mathcal{B}(B^+)$	$\mathcal{B}(B^0)$	Decay	$\mathcal{B}(B^+)$	$\mathcal{B}(B^0)$
			$B \to D_0^* \ell^+ \nu_\ell$	$_{\ell}$ (0.03 ± 0.03) × 10 ⁻²	$(0.03 \pm 0.03) \times 10^{-2}$
$B \to D \ell^+ \nu_\ell \\ B \to D^* \ell^+ \nu_\ell$	$(2.4 \pm 0.1) \times 10^{-2}$ $(5.5 \pm 0.1) \times 10^{-2}$	$(2.2 \pm 0.1) \times 10^{-2}$ $(5.1 \pm 0.1) \times 10^{-2}$	$\frac{(\hookrightarrow D\pi\pi)}{B \to D_1^* \ell^+ \nu_\ell}$	$_{\ell}$ (0.03 ± 0.03) × 10 ⁻²	$(0.03 \pm 0.03) \times 10^{-2}$
$B \to D_1 \ell^+ \nu_\ell$ $B \to D_2^* \ell^+ \nu_\ell$	$(6.6 \pm 0.1) imes 10^{-3}$ $(2.9 \pm 0.3) imes 10^{-3}$	$(6.2 \pm 0.1) \times 10^{-3}$ $(2.7 \pm 0.3) \times 10^{-3}$	$\frac{(\hookrightarrow D\pi\pi)}{B \to D_0^* \pi \pi \ell^4}$	$^+\nu_\ell$ (0.108 ± 0.051) × 10 ⁻²	$(0.101 \pm 0.048) \times 10^{-2}$
$B \to D_0^* \ell^+ \nu_\ell$ $B \to D_1' \ell^+ \nu_\ell$	$(4.2 \pm 0.8) \times 10^{-3}$ $(4.2 \pm 0.9) \times 10^{-3}$	$(3.9 \pm 0.7) \times 10^{-3}$ $(3.9 \pm 0.8) \times 10^{-3}$	$(\hookrightarrow D^* \pi \pi)$ $B \to D_1^* \pi \pi \ell^+$	$^+\nu_\ell$ (0.108 ± 0.051) × 10 ⁻²	$(0.101 \pm 0.048) \times 10^{-2}$
$B \to D\pi\pi \ell^+ \nu_\ell$	$(0.6 \pm 0.9) \times 10^{-3}$	$(0.6 \pm 0.9) \times 10^{-3}$	$(\hookrightarrow D^+ \pi \pi)$ $B \to D_0^* \ell^+ \nu_\ell$	$(0.396 \pm 0.396) \times 10^{-2}$	$(0.399 \pm 0.399) \times 10^{-2}$
$B \to D^{+} \pi \pi \ell^{+} \nu_{\ell}$ $B \to D \eta \ell^{+} \nu_{\ell}$	$(2.2 \pm 1.0) \times 10^{-3}$ $(4.0 \pm 4.0) \times 10^{-3}$	$(2.0 \pm 1.0) \times 10^{-3}$ $(4.0 \pm 4.0) \times 10^{-3}$	$(\hookrightarrow D\eta)$ $B \to D_1^* \ell^+ \nu_\ell$	$(0.396 \pm 0.396) \times 10^{-2}$	$(0.399 \pm 0.399) \times 10^{-2}$
$B \to D\eta \ell^+ \nu_\ell$ $B \to D^* \eta \ell^+ \nu_\ell$ $B \to X \ell \nu_\ell$	$(4.0 \pm 4.0) \times 10^{-3}$ $(4.0 \pm 4.0) \times 10^{-3}$ $(10.8 \pm 0.4) \times 10^{-2}$	$(4.0 \pm 4.0) \times 10^{-3}$ $(4.0 \pm 4.0) \times 10^{-3}$ $(10.1 \pm 0.4) \times 10^{-2}$	$B \to D_1^* \ell^+ \nu_\ell$ $(\hookrightarrow D^* \eta)$	$(0.396 \pm 0.396) \times 10^{-2}$	$(0.399 \pm 0.399) \times 10$

(Assign 100% BR uncertainty in systematics covariance matrix)

Model 2:

66