

Fernando Romero-López Uni Bern *fernando.romero-lopez@unibe.ch*

 $1/42$

Siegen, October 2nd

Many features of the Standard Model can be investigated through multi-hadron decays

Multi-hadron resonances and exotic hadrons
 D_0^* [See talks by C. Hahnhart and D. Mohler]
 \triangleright Roper, $\Lambda(1405)$
 \triangleright Roper, $\Lambda(1405)$ **Roper,** Λ(1405) D_{α}^* ⁰ **[See talks by C. Hahnhart and D. Mohler]**

Many features of the Standard Model can be investigated through multi-hadron decays

 $\text{CP violation in } D^0 \rightarrow K^+ K^- / \pi^+ \pi^- \text{ decays}$ $\Delta a_{CP}^{\rm dir}=(-15.7\pm 2.9)\times 10^{-4} \ .$ **[LHCb, 2019] [NA48 & KTeV, 2002 & 2009]**

 Roper, Λ(1405) D_{α}^* ⁰ **[See talks by C. Hahnhart and D. Mohler]**

Electromagnetic transitions

 \triangleright $\gamma^* \rightarrow 2\pi/3\pi$

CP violation in $K \to \pi\pi$ weak decays $\bigl(\varepsilon'/\varepsilon\bigr)_\mathrm{exp} = (16.6 \pm 2.3) \times 10^{-4} \ .$

Weak decays \bullet **[See talks by F. Erben and F. Herren]**

"Multi-hadron decays" is a general term that involves many different process

Initial hadron is not a state in QCD Fock space **Final state contains QCD stable hadrons These are decays of hadronic resonances**

 $\rho(770) \rightarrow \pi\pi$ $\Delta(1232) \rightarrow N\pi$ $N(1440) \to N\pi\pi$ $T_{cc}(3875) \to DD\pi$

Strong decays of unstable hadrons

"Multi-hadron decays" is a general term that involves many different process

Initial hadron is not a state in QCD Fock space **Final state contains QCD stable hadrons These are decays of hadronic resonances**

 $\rho(770) \rightarrow \pi\pi$ $\Delta(1232) \rightarrow N\pi$ $N(1440) \to N\pi\pi$ $T_{cc}(3875) \to DD\pi$

Strong decays of unstable hadrons

Electroweak transitions of QCD-stable hadrons

External 18 Indial states include stable hadrons

 Also includes initial vacuum states

Example Transition can be induced perturbatively

$$
\gamma^* \to \pi \pi \qquad K \to \pi \pi
$$

$$
K \to \pi \pi \pi \qquad D \to K\overline{K}
$$

"Multi-hadron decays" is a general term that involves many different process

Hadronic resonances typically manifest themselves as enhancements in cross-sections

Hadronic resonances typically manifest themselves as enhancements in cross-sections

Fernando Romero-López, Uni Bern 4 /42

 $\langle K|{\cal H}_w^{\Delta S=1}| \pi \pi \rangle$

Electroweak operators are treated perturbatively

Lattice QCD is a first-principles numerical approach to the strong interaction \bigcirc

$\langle O(t)O(0)\rangle =$ 1 \int *D* ψ *D* $\bar{\psi}$ *DA* $\mathcal{O}(t)$ $\mathcal{O}(0)$ $e^{-S_E(\psi, \bar{\psi}, A_{\mu})}$

Fernando Romero-López, Uni Bern 6 (42)

Lattice QCD is a first-principles numerical approach to the strong interaction

$$
\langle O(t)O(0)\rangle = \frac{1}{\mathcal{L}} \int D\psi D\bar{\psi} DA O(t)
$$

Can we compute multi-hadron decays from Euclidean correlation functions?

Lattice QCD is a first-principles numerical approach to the strong interaction

$$
\langle O(t)O(0)\rangle = \frac{1}{\mathcal{L}} \int D\psi D\bar{\psi} DA O(t)
$$

Can we compute multi-hadron decays from Euclidean correlation functions?

Fernando Romero-López, Uni Bern 6 (42)

Yes, but not that simple!

The computation of multi-hadron decays faces two main complications in Lattice QCD \bullet

-
-

• Euclidean spacetime

-
-

 Scattering and decay is a real-time process How can we define "incoming" and "outgoing" states?

 Cannot define free asymptotic states

 Only stationary finite-volume states

The computation of multi-hadron decays faces two main complications in Lattice QCD

• Euclidean spacetime

B **Scattering and decay is a real-time problem**

Cannot define free Assistant States

 Only stationary finite-volume states

1. Properties of unstable hadrons from LQCD 2. Multi-hadron electroweak transitions from LQCD

Fernando Romero-López, Uni Bern 8 /42

$$
\sqrt{s_R}=M_R-i\frac{\Gamma}{2}
$$

\bullet **The rigorous definition of a hadronic resonance is a pole in the complex plane**

mass of the resonance

width of the resonance

pole residue:

The rigorous definition of a hadronic resonance is a pole in the complex plane \bullet

 $Im(k)$ $|{\bf k}|$ bound state $Re(k)$ $x \leftarrow$ resonances : virtual state **[Matuschek et al, EPJA 2021]**

Fig. 1 Naming convention for the poles in the k -plane. The thick red line for positive real valued k marks the physical momenta in the scattering regime

mass of the resonance

$$
\sqrt{s_R} = M_R - i \frac{\Gamma}{2}
$$
 which of
the resonance

Based on the location of the poles, they receive different names

- **Bound states: stable particles, e.g. the deuteron is an NN bound state**
- **Resonances: unstable hadrons, e.g. the rho resonance**
- **Virtual states: "non-renormalizable QM states", e.g. "dineutron"**

pole residue:

Lattice QCD

• Euclidean time

• Stationary states in a box

$$
C(t) = \left\langle \mathcal{O}_{DD\pi}(t)\mathcal{O}_{DD\pi}^{\dagger}(0)\right\rangle = \sum_{n} \left| \left\langle 0 \right| \mathcal{O}_{DD\pi} \right| n \right\rangle \left| \mathcal{O}_{e^{-E_n t}}
$$

 Variational techniques (Generalized EigenValue Problem, GEVP)

$$
C_{ij}(t) = \langle \mathcal{O}_i(t)\mathcal{O}_j^{\dagger}(0) \rangle
$$

$$
C_{ij}(t) = \langle 0 | \mathcal{O}_i | n \rangle \langle n | \mathcal{O}_j | 0 \rangle^* e^{-E_n t}
$$

Compute matrix of Euclidean correlation functions using operators with the same quantum numbers

 Extract (at most) as many levels as operators

Free scalar particles in finite volume with periodic boundaries

$$
\vec{p} = \frac{2\pi}{L}(n_x, n_y, n_z)
$$

Two particles: E

$$
=2\sqrt{m^2+\frac{4\pi^2}{L^2}\vec{n}^2}
$$

Free scalar particles in finite volume with periodic boundaries

$$
\vec{p} = \frac{2\pi}{L}(n_x, n_y, n_z)
$$

Two particles: E

$$
=2\sqrt{m^2+\frac{4\pi^2}{L^2}\vec{n}^2}
$$

Interactions change the spectrum: it can be treated as a perturbation

Ground state to leading order $E_2 - 2m = \langle \phi(0) \phi(0) |$ **H**_I | $\phi(0) \phi(0)$ \rangle $\Delta E_2 =$ $\mathcal{M}_2(E=2m)$ $\frac{8m^2L^3}{m^2L^3}$ + $O(L^{-4})$

[Huang, Your **[Huang, Yang, 1958]**

Free scalar particles in finite volume with periodic boundaries

The energy shift of the two-particle ground state is related to the $2 \rightarrow 2$ scattering amplitude

でんようしんり いなつうこう くうこうごうじょう しんききょうきょう かいはつんよう というしゅつうこう くうこうじょうしょ

$$
\vec{p} = \frac{2\pi}{L}(n_x, n_y, n_z)
$$

Two particles: E

$$
=2\sqrt{m^2+\frac{4\pi^2}{L^2}\vec{n}^2}
$$

Interactions change the spectrum: it can be treated as a perturbation

Ground state to leading order $E_2 - 2m = \langle \phi(0) \phi(0) |$ **H**_I | $\phi(0) \phi(0)$ \rangle $\Delta E_2 =$ $\mathcal{M}_2(E=2m)$ $\frac{8m^2L^3}{m^2L^3}$ + $O(L^{-4})$

[Huang, Your **[Huang, Yang, 1958]**

Free scalar particles in finite volume with periodic boundaries

The energy shift of the two-particle ground state is related to the $2 \rightarrow 2$ scattering amplitude

Interactions change the spectrum: it can be treated as a perturbation

d state to leading order $2m = \langle \phi(0) \phi(0) | H_{\text{I}} | \phi(0) \phi(0) \rangle$ $\Delta E_2 =$ $\mathcal{M}_2(E=2m)$ $\frac{8m^2L^3}{m^2L^3}$ + $O(L^{-4})$

[Huang, Your

Two particles: $E=2\sqrt{m^2+b^2}$ $4\pi^2$ *L*2 \vec{n}^2 **[Huang, Yang, 1958]**

$$
C_L(E, \overrightarrow{P}) = \int_L e^{iPx} \langle \mathcal{O}(x) | \mathcal{O}(0) \rangle = \sum_n
$$

Find finite-volume states by computing finite-volume correlation function

Find finite-volume states by computing finite-volume correlation function \bullet

$$
C_L(E, \overrightarrow{P}) = \int_L e^{iPx} \langle \mathcal{O}(x) | \mathcal{O}(0) \rangle = \sum_n
$$

Note: $E < E$ _{inelastic}

-
- **EXECTED SHIPS AND KEEP ONLY POWER-like FV effects**

Exampt 2 Compute the FV correlation to all orders in a generic EFT

 $\frac{Z}{\vec{k}}$ $-\int d^3k \int f(\vec{k})$ $\ddot{}$ $f(\vec{k})$ is regular: $e^{-m_{\pi}L}$ $\ddot{}$ $f(\vec{k})$ with poles: $1/L^n$ $\ddot{}$

 Find location of poles in the finite-volume correlator

In order to derive the full relation, consider the finite-volume correlator: \bullet

[à la Kim, Sachrajda, Sharpe]

$$
C_L(E, \overrightarrow{P}) = \int_L e^{iPx} \langle \mathcal{O}(x) | \mathcal{O}(0) \rangle = \left(\underbrace{\mathcal{O} \prod_{i=1}^{T} \mathcal{O}}_{\mathcal{O} \cup \mathcal{O}} \right).
$$

Skeleton expansion

Finite-volume sums

In order to derive the full relation, consider the finite-volume correlator:

$C_L(E, P) = \int_L$ $\ddot{}$ *eiPx* ⟨ (*x*)| (0)⟩ = + **B**² + **B**² **B**² + ⋯

[à la Kim, Sachrajda, Sharpe]

 $\left(B_2\right) =$

Skeleton expansion

Bethe-Salpeter Kernels

Finite-volume sums

In order to derive the full relation, consider the finite-volume correlator:

$C_L(E, P) = \int_L$ $\ddot{}$ *eiPx* ⟨ (*x*)| (0)⟩ = + **B**² + **B**² **B**² + ⋯ Skeleton expansion

[à la Kim, Sachrajda, Sharpe]

Bethe-Salpeter Kernels

Only exponentially small effects in L

Finite-volume sums

In order to derive the full relation, consider the finite-volume correlator:

$C_L(E, P) = \int_L$ $\ddot{}$ *eiPx* ⟨ (*x*)| (0)⟩ = + **B**² + **B**² **B**² + ⋯ Skeleton expansion

[à la Kim, Sachrajda, Sharpe]

Bethe-Salpeter Kernels

Only exponentially small effects in L

∑⃗*k*

 $\longrightarrow \int d^3k + \left[\sum_{\vec{k}} - \int d^3k \right]$

Finite-volume sums

$C_L(E, P) = \int_L$ $\ddot{}$ *eiPx* ⟨ (*x*)| (0)⟩ = + **B**² + **B**² **B**² + ⋯

In order to derive the full relation, consider the finite-volume correlator:

[à la Kim, Sachrajda, Sharpe]

Skeleton expansion

Bethe-Salpeter Kernels

Only exponentially small effects in L

∑⃗*k*

 $\longrightarrow \int d^3k + \left[\sum_{\vec{k}} - \int d^3k \right]$

Finite-volume sums

1. **Separation of finite-volume effects**

2. **Resumation of diagrams**

⃗ $+A^{\dagger}$ $\frac{1}{\alpha}$ ² + *F*−¹ $\begin{array}{rcl} \mathsf{some\ algebra} \ ... \ & = & C_{\infty}(E,\,\overline{P}) + A^{\dagger} \frac{1}{\widetilde{\mathcal{M}}-1}A + O(e^{-mL}) \end{array}$

$C_L(E, P) =$ some algebra ... $= C_{\infty}(E, P)$ $\ddot{}$

$$
^{-1}(E_n, \overrightarrow{P}, L) \Big| = 0
$$

Quantization Condition $C_I(E, \overrightarrow{P}) =$ $\ddot{}$ $=$ **some algebra** ... $=C_{\infty}(E, P)$ ⃗ $+A^{\dagger}$ ² + *F*−¹ $A + O(e^{-mL})$
A + $O(e^{-mL})$ det $\frac{1}{2}$ et $\left[\frac{\mathcal{K}}{2(E_n)} + F^{-1} \right]$ (*En*, *P*, ⃗ *L*) $\vert = 0$ Scattering Known kinematic K-Matrix function Two-particle Quantization Condition $\frac{\ell}{2}$ = $16\pi\sqrt{s}$ *q*2*ℓ*+1 cot *δℓ* **K-matrix parametrized in terms of phase shift**) ∼ 1

$$
F_{00}(q^2) \sim \left[\frac{1}{L^3} \sum_{\vec{k}} - \int \frac{d^3k}{(2\pi)^3} \right] \frac{1}{k^2 - q^2}
$$

Finite-volume information

! Note: only valid for two particles below inelastic thresholds.

Key ingredient: reliable variational extractions of the lattice QCD energy levels: GEVP + stability

Fernando Romero-López, Uni Bern ¹⁹ /42

Fernando Romero-López, Uni Bern ¹⁹ /42

O The two-body formalism is restricted to few **Exotics:** $T_{cc} \rightarrow DD^*$, $DD\pi$

 \triangleright **Roper:** $N(1440) \rightarrow \Delta \pi \rightarrow N \pi \pi$

O Many-body nuclear physics: 3N force, tritium

O CP violation: $K \to 3\pi$, $K^0 \leftrightarrow 3\pi$

Major developments in the three-particle finity M

(with ≥3π decay modes)

[Hansen, Sharpe, PRD 2014 & 2015], [Hammer, Pang, Rusetsky, JHE **[Mai, Döring, EPJA 2017]**

[…]

 [Blanton, FRL, Sharpe, JHEP 2019], [Hansen, FRL, Sharpe, JHEP 2020] [Hansen, FRL, Sharpe, JHEP 2021], [Blanton, FRL, Sharpe, JHEP 2022] [Hansen, FRL, Sharpe, JHEP 2023]

Fernando Romero-López, Uni Bern ²¹ /42

Quantization Condition

Skeleton expansion **[Hansen, Sharpe, PRD 2014 & 2015]**

Fernando Romero-López, Uni Bern ²¹ /42

Separation of finite and infinite volume terms:

Skeleton expansion [Hansen, Sharpe, PRD 2014 & 2015]

$$
= C_{\infty}(P) + A_3 \frac{1}{\mathcal{K}_{df,3} + F_3^{-1}} A'_3 + O(e^{-mL})
$$

Easier derivation: Blanton, Sharpe [2007.16188]

Fernando Romero-López, Uni Bern ²¹ /42

Separation of finite and infinite volume terms:

Skeleton expansion [Hansen, Sharpe, PRD 2014 & 2015]

 $\det \left[\mathcal{K}_3(E) + F_3^{-1}(E, \overline{P}, L) \right] = 0$ $\ddot{}$ Three-particle Quantization Condition for identical scalars with G-parity

"Formally" similar to the two-particle case but several new features

$$
= C_{\infty}(P) + A_3 \frac{1}{\mathcal{K}_{df,3} + F_3^{-1}} A'_3 + O(e^{-mL})
$$

Easier derivation: Blanton, Sharpe [2007.16188]

Fernando Romero-López, Uni Bern ²² /42

 E_0 E_1 E_2 *E*3 Three-meson spectrum

Fernando Romero-López, Uni Bern ²² /42

[Blanton, FRL, Sharpe, JHEP 2019]

$$
= c_0 + c_1 k^2 + \ldots
$$

iso,0
iso,0
iso,1
iso,1
iso,1
iso,1
iso,1
iso,1
iso,1
iso,2
iso,1
iso,2
iso,1
iso,2
iso,1
iso,2
iso,3
iso,4
iso,4
iso,4
iso,5
iso,1
iso,2
iso,4
iso,4
iso,5
iso,1
iso,2
iso,4
iso,5
iso,5
iso,5
iso,6
iso,1
iso,2
iso,4
iso,5
iso,5
iso,6
iso,5
iso,6
iso,5
iso,6
iso,5
iso,6
iso,6
iso,5
iso,6
iso,6
iso,6
iso,7
iso,8
iso,9
iso,1
iso,1
iso,2
iso,5
iso,5
iso,5
iso,6
iso,5
iso,6
iso,5
iso,6
iso,5
iso,6
iso,6
iso,6
iso,5
iso,6
iso,6
iso,6
iso,5
iso,6
iso,6
iso,6
iso,5
iso,6
iso,7
iso,9
is

Fernando Romero-López, Uni Bern ²² /42

[Blanton, FRL, Sharpe, JHEP 2019]

Scattering amplitudes

 \mathcal{A}_{Ω}

L3

Integral equations

Unitarity relations

 [Briceño et al., PRD 2018] [Hansen et al., PRL 2021] [Jackura et al., PRD 2021] [Dawid et al., 2303.04394]

[See talk by S. Dawid @ LAT24]

$$
= c_0 + c_1 k^2 + \ldots \\ _{\mathrm{so},0} \\ \mathrm{so},0 + \mathcal{K}_{\mathrm{df},3}^{\mathrm{iso},1} \bigg(\frac{s - 9m^2}{9m^2} \bigg) + \ldots
$$

$$
\mathcal{K}_{\text{df},3}=\mathcal{K}_0+\mathcal{K}_1\bigg(\frac{s-9M_\pi^2}{9M_\pi^2}\bigg)+\cdots
$$

NLO ChPT: [Baeza-Ballesteros, Bijnens, Husek, FRL, Sharpe, Sjö, JHEP 2023 **[Talk by M. Sjö @ LAT24] ETMC: [Fischer, Kostrzewa, Liu, FRL, Ueding, Urbach, EPJC 2021] This work: [Dawid, Draper, Hanlon, Hörz, Morningstar, FRL, Sharpe, Skinner, JHEP 2023 + on-going work]**

Compare to chiral perturbation theory

Physical amplitudes that are consistent with unitary are obtained after solving integral equations:

$\mathcal{M}_3 = \mathcal{D} + \mathcal{M}_{\text{df},3}$

"divergence-free amplitude"

At least one three-body interaction

Scattering amplitudes

 For physical quark masses is a three-body resonance

need three-body formalism!

 Stable D* at slightly heavier-than-physical quark mases

suitable for the two-body finite-volume formalism?

Fernando Romero-López, Uni Bern ²⁷ /42

Several works study the T_{cc} channel in this setup \bullet

[Chen et al., 2206.06185] [Lyu et al. (HALQCD), 2302.04505] [Padmanath & Prelovsek, 2202.10110] [Whyte, Thomas, Wilson, 2405.15741]

 Signature of virtual bound state?

Fernando Romero-López, Uni Bern ²⁷ /42

Several works study the T_{cc} channel in this setup \bullet

 Signature of virtual bound state?

[Chen et al., 2206.06185] [Lyu et al. (HALQCD), 2302.04505] [Padmanath & Prelovsek, 2202.10110] [Whyte, Thomas, Wilson, 2405.15741]

! one-pion exchange creates non-analytic behavior:

 But two-particle formalism breaks down i.e. complex phase shift

Fernando Romero-López, Uni Bern ²⁷ /42

Several works study the T_{cc} channel in this setup \bullet

But two-particle formalism breaks down i.e. complex phase shift

 Signature of virtual bound state?

[Chen et al., 2206.06185] [Lyu et al. (HALQCD), 2302.04505] [Padmanath & Prelovsek, 2202.10110] [Whyte, Thomas, Wilson, 2405.15741]

! one-pion exchange creates non-analytic behavior:

Several solution have been proposed [See talk by V. Baru]

[Du et al (2408.09375), Abolnikov et al. (2407.04649), Bubna et al. (2402.12985), Meng et al. (2312.01930), Raposo, Hansen (2311.18793)]

Fernando Romero-López, Uni Bern ²⁸ /42

In the presence of a two-body bound state:

Below the three-particle threshold, effective "particle-dimer"

[FRL, Sharpe, Blanton, Briceño, Hansen 1908.02411]

[Dawid, Islam, Briceño, 2303.04394] [FRL et al 2302.04505] [Jackura et al 2010.09820] [Briceño, Jackura, Pefkou, FRL 2402.12167]

Fernando Romero-López, Uni Bern ²⁸ /42

This solves the left-hand cut problem: \bullet

In the presence of a two-body bound state:

 Finite-volume effects from one-pion exchange naturally incorporated

Below the three-particle threshold, effective "particle-dimer"

[FRL, Sharpe, Blanton, Briceño, Hansen 1908.02411]

[Dawid, Islam, Briceño, 2303.04394] [FRL et al 2302.04505] [Jackura et al 2010.09820] [Briceño, Jackura, Pefkou, FRL 2402.12167]

Two-meson spectra

 D^* as a **bound state or resonance**

s wave

Fernando Romero-López, Uni Bern ²⁹ /42

$$
\ker\left[1+\widehat{\mathcal{K}}_{{\rm df},3}^{[I=0]}\widehat{F}_{3}^{[I=0]}\right]=0
$$

Fernando Romero-López, Uni Bern ²⁹ /42

$$
\begin{aligned}\n\mathbf{r} \\
\mathbf{r} \\
\mathbf{r
$$

Fernando Romero-López, Uni Bern ²⁹ /42

- **Published data only provides DD* energies** \bigcirc **[Padmanath, Prelovsek, 2202.10110]**
- **Dπ and DD interactions from "educated guesses"** \bullet
	- **HChPT and lattice results**
	- **Neglect DD interactions**

Only "free" parameter in the three-body K matrix

$$
\mathcal{K}_{\mathrm{df},3}=\mathcal{K}_{E}(p_{\pi}-p'_{\pi})^{2}
$$

[S. Dawid, FRL, S. Sharpe, arXiv:2409.17059]

Only "free" parameter in the three-body K matrix \bullet

$$
\mathcal{K}_{\mathrm{df},3}=\mathcal{K}_{E}(p_{\pi}-p'_{\pi})^{2}
$$

- **Published data only provides DD* energies** \bullet **[Padmanath, Prelovsek, 2202.10110]**
- **Dπ and DD interactions from "educated guesses"** \bullet
	- **HChPT and lattice results**
	- **Neglect DD interactions**

Finite-volume energies

Only "free" parameter in the three-body K matrix \bullet

$$
\mathcal{K}_{\mathrm{df},3}=\mathcal{K}_{E}(p_{\pi}-p'_{\pi})^{2}
$$

Analyzi

- **Published data only provides DD* energies** \bullet **[Padmanath, Prelovsek, 2202.10110]**
- **Dπ and DD interactions from "educated guesses"** \bullet
	- **HChPT and lattice results**
	- **Neglect DD interactions**

Finite-volume energies

 \bullet **[S. Dawid, FRL, S. Sharpe, arXiv:2409.17059]**

Fernando Romero-López, Uni Bern ³² /42

Multi-hadron electroweak transitions from LQCD

From three-point function, it is possible to extract the finite-volume matrix elements

 $C(t) = \langle \overline{O}_k^{\dagger}$

Finite-volume effects from on-shell propagation of two-body states

1 *L*³ ∑ *k* − ∫ d^3k $(2\pi)^3$ 1

E − 2*ωq* **Final-state interactions induce finite-volume effects**

 Volume-dependent corrections are calculable!

[Lellouch, Lüscher, hep-lat/0003023]

$$
\tau\pi\rangle_L
$$

 \bullet **Need volume-dependent factors to correct for final state interactions**

$$
T(K \to \pi\pi) = F(L) \times \langle K | H_w | \pi\pi \rangle_L
$$

Lellouch-Lüscher Factor

$$
F(L)^2 = \frac{4\pi m_K E_{\pi\pi}^2}{k^3}\Bigg(k
$$

Depends on two-body scattering

 Valid when only two-hadron

final states are possible!

Need volume-dependent factors to correct for final state interactions \bullet

$$
T(K \to \pi\pi) = F(L) \times \langle K | H_w | \pi\pi \rangle_L
$$

Lellouch-Lüscher Factor

$$
F(L)^2 = \frac{4\pi m_K E_{\pi\pi}^2}{k^3}\Bigg(k
$$

Depends on two-body scattering

-
-

C Related to $e^+e^- \rightarrow \pi^+\pi^-$ transitions $\langle 0|V_\mu|\pi(p_1)\pi(p_2)\rangle = (p_1-p_2)^\mu f_\pi(s)\,,$

Fernando Romero-López, Uni Bern ³⁷ /42

Decays to three-hadrons also have phenomenological interest

 $\pi\pi\pi$ **isospin-breaking Isospin 1**

CP violation

Isospin = 0,1,2

related to HPV in g-2

Isospin = 0

 \rightarrow $\pi \pi \pi$

effect

Fernando Romero-López, Uni Bern ³⁷ /42

-
-

Decays to three-hadrons also have phenomenological interest

 $\pi\pi\pi$ **isospin-breaking effect Isospin 1**

Treating finite-volume effects needs accounting for intermediate three-hadron states [Hansen, FRL, Sharpe, arXiv:2101.10246] [Pang et al, arXiv:2312.04391] [Müller, Rusetsky, arXiv:2012.13957]

Fernando Romero-López, Uni Bern ³⁸ /42

 $\delta = F_{3\pi}^2 |\langle 3\pi, L | {\cal H}_w | K \rangle|^2 \, .$

O Infinite-volume amplitude can be obtained via "generalized Lellouch-Lüscher Factor"

$$
|T_{K\to 3\pi}(E^*,m_{12}^2,m_{23}^2)|^2
$$
$\left\langle F_{3\pi}^2=2E_K(\bm{P})L^6\bigg| \mathcal{L}\big(E^*,m_{12}^2,m_{23}^2\big)\frac{1}{1+F_3^\infty(E^*)\mathcal{K}_3(E^*)}\bigg|^2\bigg(\frac{\partial F_3(E,\bm{P},L)^{-1}}{\partial E}+\frac{\partial \mathcal{K}_3(E^*)}{\partial E}\bigg)^2,$ **Two-body rescatteringFernando Romero-López, Uni Bern** ³⁸ /42

Infinite-volume amplitude can be obtained via "generalized Lellouch-Lüscher Factor" \bullet

 $\vert (T_{K\rightarrow 3\pi}(E^*,m_{12}^2,m_{23}^2) \vert^2 = F_{3\pi}^2 \vert \langle 3\pi,L \vert \mathcal{H}_w \vert K \rangle \vert^2 \, .$

Consider a three-particle system where two particles can form bound states

b + *φ*

-
-

 For instance, *ρπ* **at heavier than physical pion masses**

Formalism for three-body decays should reduce to two-body Lellouch-Lüscher

In principle, a similar analysis could could be possible for D decays

Main complication is the mixing between $2\pi \leftrightarrow 4\pi \leftrightarrow 6\pi$ **states in finite volume** \bullet **Needs knowledge of four, six and higher scattering amplitudes. Thus, Lellouch-Lüscher approach might not be feasible beyond 3 or 4 hadron.**

Fernando Romero-López, Uni Bern 40/42

Fernando Romero-López, Uni Bern 41/42

- **Finite-volume scattering formalism allows to treat two and three-body amplitudes**
	- **Connection between energy levels and scattering amplitudes**
	- **Resonances (a.k.a. strong multi-hadron decays) obtained via poles in scattering amplitudes**
- **O** Many applications:
	- \triangleright *πN* scattering, 3π scattering, T_{cc}
- **Formalism for two and three-hadron decays is known Volume-dependent corrections to finite-volume matrix elements**
	- **Electroweak hadronic decays need a dedicated calculation of final-state scattering amplitudes**
- **It is yet not know how to do scattering or decays beyond three hadrons from lattice QCD Unclear if (Lellouch-)Lüscher-like approaches will be the optimal way forward**

- **Finite-volume scattering formalism allows to treat two and three-body amplitudes**
	- **Connection between energy levels and scattering amplitudes**
	- **Resonances (a.k.a. strong multi-hadron decays) obtained via poles in scattering amplitudes**
- **O** Many applications:
	- \triangleright *πN* scattering, 3π scattering, T_{cc}
- **Formalism for two and three-hadron decays is known Volume-dependent corrections to finite-volume matrix elements**
	- **Electroweak hadronic decays need a dedicated calculation of final-state scattering amplitudes**
- **It is yet not know how to do scattering or decays beyond three hadrons from lattice QCD Unclear if (Lellouch-)Lüscher-like approaches will be the optimal way forward**

