Inclusive q^2 moments in the Continuum

K. Keri Vos

Maastricht University & Nikhef

= ArXiv: 2409.15007 & preliminary =

- Set up OPE and heavy quark expansion
- Well established framework
- Extract important CKM parameters $|V_{cb}|, |V_{ub}|$ (and $|V_{cs}?$)
- Extract power corrections from data (inputs to $B o X_u$, $B o X_s \ell \ell$ and lifetimes)
- Cross check of exclusive decays

Inclusive $B \rightarrow X_c$ decays

Inclusive Decays: Heavy Quark Expansion

- b quark mass is large compared to Λ_{QCD}
- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Optical Theorem \rightarrow (local) Operator Product Expansion (OPE)

$$d\Gamma = d\Gamma_0 + \frac{d\Gamma_1}{m_b} + \frac{d\Gamma_2}{m_b^2} + \dots \qquad d\Gamma_i = \sum_k C_i^{(k)} \left\langle B | O_i^{(k)} | B \right\rangle$$

- $C_i^{(k)}$ perturbative Wilson coefficients
- $\langle B | \dots | B
 angle$ non-perturbative matrix elements ightarrow string of *iD*
- operators contain chains of covariant derivatives

<u>HQE elements:</u> $\langle B | O_i^{(n)} | B \rangle = \langle B | \bar{b}_v(iD_\mu) \dots (iD_{\mu_n}) b_v | B \rangle$

Currently extracted from data

Inclusive Decays: Heavy Quark Expansion

- b quark mass is large compared to Λ_{QCD}
- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Optical Theorem \rightarrow (local) Operator Product Expansion (OPE)

$$d\Gamma = d\Gamma_0 + \frac{d\Gamma_1}{m_b} + \frac{d\Gamma_2}{m_b^2} + \dots \qquad d\Gamma_i = \sum_k C_i^{(k)} \left\langle B | O_i^{(k)} | B \right\rangle$$

- $C_i^{(k)}$ perturbative Wilson coefficients
- $\langle B | \dots | B
 angle$ non-perturbative matrix elements ightarrow string of *iD*
- operators contain chains of covariant derivatives

<u>HQE elements:</u> $\langle B | \mathcal{O}_i^{(n)} | B \rangle = \langle B | \bar{b}_v(iD_\mu) \dots (iD_{\mu_n}) b_v | B \rangle$

- Currently extracted from data
- Could be obtained from lattice? See e.g. Juetner et al. [2305.14092]

Inclusive Decays: Heavy Quark Expansion

- b quark mass is large compared to Λ_{QCD}
- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Optical Theorem \rightarrow (local) Operator Product Expansion (OPE)

$$d\Gamma = d\Gamma_0 + \frac{d\Gamma_1}{m_b} + \frac{d\Gamma_2}{m_b^2} + \dots \qquad d\Gamma_i = \sum_k C_i^{(k)} \left\langle B | O_i^{(k)} | B \right\rangle$$

- $C_i^{(k)}$ perturbative Wilson coefficients
- $\langle B | \dots | B
 angle$ non-perturbative matrix elements ightarrow string of *iD*
- operators contain chains of covariant derivatives

<u>HQE elements:</u> $\langle B | \mathcal{O}_i^{(n)} | B \rangle = \langle B | \bar{b}_v(iD_\mu) \dots (iD_{\mu_n}) b_v | B \rangle$

- Currently extracted from data
- $\Gamma_2: \mu_\pi^2$ and μ_G^2 at $1/m_b^2$
- $\Gamma_3: \rho_D^3$ and ρ_{LS}^3 at $1/m_b^3$
- Many more at $1/m_b^{4,5}$ Mannel, Turczyk, Uraltsev, JHEP 1010 (2011) 109 Mannel, Milutin, KKV [2311.12002]

Moments of the spectrum

BABAR, PRD 68 (2004) 111104; BABAR, PRD 81 (2010) 032003; Belle, PRD 75 (2007) 032005. Pic from M. Fael

Non-perturbative matrix elements obtained from moments of differential rate

$$M_X^2 = (p_B - q)^2, E_\ell = v_B \cdot p_\ell$$
 and $q^2 = (p_\nu + p_\ell)^2$
hadronic mass, lepton energy and q^2 moments

Moments of the spectrum

BABAR, PRD 68 (2004) 111104; BABAR, PRD 81 (2010) 032003; Belle, PRD 75 (2007) 032005. Pic from M. Fael

Non-perturbative matrix elements obtained from moments of differential rate

$$M_X^2 = (p_B - q)^2, E_\ell = v_B \cdot p_\ell$$
 and $q^2 = (p_
u + p_\ell)^2$
hadronic mass, lepton energy and q^2 moments

- Different phase space cuts give additional (correlated) observables
- data $ightarrow \mu_\pi^2, \mu_G^2,
 ho_D^3 + \ldots
 ightarrow$ total rate $ightarrow |V_{cb}|$

Moments of the spectrum

Moments and total rate are double expansion in α_{s} and HQE parameters

$$\begin{split} L_{i} &= \frac{1}{\Gamma_{0}} \int_{E_{l} \geq E_{cut}} dE_{l} dq_{0} dq^{2} (E_{l})^{i} \frac{d^{3}\Gamma}{dq^{2} dq_{0} dE_{l}} \\ &= (m_{b})^{i} \left[L_{i}^{(0)} + L_{i}^{(1)} \frac{\alpha_{s}(\mu_{s})}{\pi} + L_{i}^{(2)} \left(\frac{\alpha_{s}(\mu_{s})}{\pi} \right)^{2} + \frac{\mu_{\pi}^{2}}{m_{b}^{2}} \left(L_{i,\pi}^{(0)} + L_{i,\pi}^{(1)} \frac{\alpha_{s}(\mu_{s})}{\pi} \right) \right. \\ &+ \frac{\mu_{G}^{2}(\mu_{b})}{m_{b}^{2}} \left(L_{i,G}^{(0)} + L_{i,G}^{(1)} \frac{\alpha_{s}(\mu_{s})}{\pi} \right) + \frac{\rho_{D}^{3}(\mu_{b})}{m_{b}^{3}} \left(L_{i,D}^{(0)} + L_{i,D}^{(1)} \frac{\alpha_{s}(\mu_{s})}{\pi} \right) \\ &+ \frac{\rho_{LS}^{3}(\mu_{b})}{m_{b}^{3}} \left(L_{i,LS}^{(0)} + L_{i,LS}^{(1)} \frac{\alpha_{s}(\mu_{s})}{\pi} \right) + O\left(\frac{1}{m_{b}^{4}} \right) \right], \end{split}$$

Known QCD corrections

Nir, Pak, Downlin, Egner, Fael, Steinhauser, Gambino, Manohar, Block, Becher, Alberti, Mannel, Turczyk, Dassinger, Schonwald.

Γ _{s1}	tree	α_s	α_s^2	α_s^3
$\begin{array}{c} \text{Partonic} \\ \mu_{\pi}^2, \mu_{G}^2 \\ \rho_{D}^3, \rho_{LS}^3 \\ 1/m_{b}^4, 1/m_{b}^5 \end{array}$	['06,'10,'18,'23]	['06, '12,'13,'15] ['21]		['21]
$q_n(q_{ m cut}^2)$	tree	α_s	α_s^2	
Partonic μ_G^2, μ_π^2 ρ_D^3, ρ_{LS} $1/m_b^4, 1/m_b^5$	['18, '23]	['12,'13] ['21]	['24]	
$\ell_n(E_{\mathrm{cut}}), h_n(E_{\mathrm{cut}})$	tree	α_s	$\alpha_s^2 \beta_0$	α_s^2
Partonic μ_G^2, μ_π^2 ρ_D^3		['07,'13]	['05]	['08] [*]
$1/m_b^4, 1/m_b^5$	['06, '10,'23]			

- Fael, Herren [2403.03976] Mannel, Moreno, Pivovarov [2112.03875]
- *only known for fixed m_c/m_b and lepton energy cuts

Summary of $|V_{cb}|$ inclusive

Fael, Prim, KKV, Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01090-w

Summary of $|V_{cb}|$ inclusive

Fael, Prim, KKV, Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01090-w

• Standard includes up to $1/m_b^3$

Summary of $|V_{cb}|$ inclusive

Fael, Prim, KKV, Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01090-w

- Standard includes up to $1/m_b^3$
- Do not (yet) include NNLO to q^2 moments In progress

Getting to the bottom of $|V_{cb}|$

$$\begin{split} \Gamma &\propto |V_{cb}|^2 m_b^5 \left[\Gamma_0 + \Gamma_0^{(1)} \frac{\alpha_s}{\pi} + \Gamma_0^{(2)} \left(\frac{\alpha_s}{\pi} \right)^2 + \Gamma_0^{(3)} \left(\frac{\alpha_s}{\pi} \right)^3 + \frac{\mu_\pi^2}{m_b^2} \left(\Gamma^{(\pi,0)} + \frac{\alpha_s}{\pi} \Gamma^{(\pi,1)} \right) \right. \\ &\left. + \frac{\mu_G^2}{m_b^2} \left(\Gamma^{(G,0)} + \frac{\alpha_s}{\pi} \Gamma^{(G,1)} \right) + \frac{\rho_D^3}{m_b^3} (\Gamma^{(D,0)} + \Gamma_0^{(1)} \left(\frac{\alpha_s}{\pi} \right)) + \mathcal{O}\left(\frac{1}{m_b^4} \right) + \cdots \right) \end{split}$$

Vices and Virtues:

- Systematic framework for power-corrections
- Higher precision: Include higher-order $1/m_b$ and α_s corrections in rate and moments!
- Proliferation of non-perturbative matrix elements
 - 4 up to $1/m_b^3$
 - 13 up to $1/m_b^4$ Dassinger, Mannel, Turczyk, JHEP 0703 (2007) 087
 - 31 up to $1/m_b^5$ Mannel, Turczyk, Uraltsev, JHEP 1011 (2010) 109Mannel, Milutin, KKV [2311.1200]

Getting to the bottom of $|V_{cb}|$

$$\begin{split} \Gamma &\propto |V_{cb}|^2 m_b^5 \left[\Gamma_0 + \Gamma_0^{(1)} \frac{\alpha_s}{\pi} + \Gamma_0^{(2)} \left(\frac{\alpha_s}{\pi} \right)^2 + \Gamma_0^{(3)} \left(\frac{\alpha_s}{\pi} \right)^3 + \frac{\mu_\pi^2}{m_b^2} \left(\Gamma^{(\pi,0)} + \frac{\alpha_s}{\pi} \Gamma^{(\pi,1)} \right) \right. \\ &\left. + \frac{\mu_G^2}{m_b^2} \left(\Gamma^{(G,0)} + \frac{\alpha_s}{\pi} \Gamma^{(G,1)} \right) + \frac{\rho_D^3}{m_b^3} (\Gamma^{(D,0)} + \Gamma_0^{(1)} \left(\frac{\alpha_s}{\pi} \right)) + \mathcal{O} \left(\frac{1}{m_b^4} \right) + \cdots \right) \end{split}$$

Vices and Virtues:

- Systematic framework for power-corrections
- To be compared with Lattice?
- Higher precision: Include higher-order $1/m_b$ and α_s corrections in rate and moments!
- Proliferation of non-perturbative matrix elements
 - 4 up to $1/m_b^3$
 - 13 up to $1/m_b^4$ Dassinger, Mannel, Turczyk, JHEP 0703 (2007) 087
 - 31 up to $1/m_b^5$ Mannel, Turczyk, Uraltsev, JHEP 1011 (2010) 109Mannel, Milutin, KKV [2311.1200]

The advantage of q^2 moments

Mannel, KKV, JHEP 1806 (2018) 115; Fael, Mannel, KKV, JHEP 02 (2019) 177, Mannel, Milutin, KKV [2311.1200]

- Standard lepton energy and hadronic mass moments are not RPI quantities
- Only RPI moments are q^2 moments
- Determinations from Belle and Belle II availabe Phys. Rev. D 104, 112011 (2022), Phys. Rev. D 107, 072002 (2023)

The advantage of q^2 moments

Mannel, KKV, JHEP 1806 (2018) 115; Fael, Mannel, KKV, JHEP 02 (2019) 177, Mannel, Milutin, KKV [2311.1200]

- Standard lepton energy and hadronic mass moments are not RPI quantities
- Only RPI moments are q^2 moments
- Determinations from Belle and Belle II availabe Phys. Rev. D 104, 112011 (2022), Phys. Rev. D 107, 072002 (2023)

Quirks:

- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Choice of v not unique: Reparametrization invariance (RPI)
- links different orders in $1/m_b
 ightarrow$ reduction of parameters
- up to $1/m_b^4$: 8 parameters (previous 13)
- Only 18 parameters at $1/m_b^5$ (versus 31) Mannel, Milutin, KKV [2311.1200]

The advantage of q^2 moments

Mannel, KKV, JHEP 1806 (2018) 115; Fael, Mannel, KKV, JHEP 02 (2019) 177, Mannel, Milutin, KKV [2311.1200]

- Standard lepton energy and hadronic mass moments are not RPI quantities
- Only RPI moments are q^2 moments
- Determinations from Belle and Belle II availabe Phys. Rev. D 104, 112011 (2022), Phys. Rev. D 107, 072002 (2023)

Quirks:

- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Choice of v not unique: Reparametrization invariance (RPI)
- links different orders in $1/m_b
 ightarrow$ reduction of parameters
- up to $1/m_b^4$: 8 parameters (previous 13)
- Only 18 parameters at $1/m_b^5$ (versus 31) Mannel, Milutin, KKV [2311.1200]
- q^2 moments could enable a full extraction up to $1/m_b^4$?

 $|V_{cb}|_{\rm incl}^{q^2} = (41.69 \pm 0.27|_{\mathcal{B}} \pm 0.31|_{\Gamma} \pm 0.18|_{\rm exp.} \pm 0.17|_{\rm theo} \pm 0.34|_{\rm const.}) \times 10^{-3}$

- First extraction using q^2 moments with $1/m_b^4$ terms
- Agreement with BCG extraction (differs due to branching ratio inputs) Bordone,Capdevila, Gambino [2021]

$$|V_{cb}|_{\rm incl}^{\rm BCG} = (42.00\pm0.51)\times10^{-3}$$

• Higher order terms reduce value by 0.25%.

 $|V_{cb}|_{\rm incl}^{q^2} = (41.69 \pm 0.27|_{\mathcal{B}} \pm 0.31|_{\Gamma} \pm 0.18|_{\rm exp.} \pm 0.17|_{\rm theo} \pm 0.34|_{\rm const.}) \times 10^{-3}$

- First extraction using q^2 moments with $1/m_b^4$ terms
- Agreement with BCG extraction (differs due to branching ratio inputs) Bordone,Capdevila, Gambino [2021]

$$|V_{cb}|_{\rm incl}^{\rm BCG} = (42.00\pm0.51)\times10^{-3}$$

- Higher order terms reduce value by 0.25%.
- NNLO corrections to moments not included

 $|V_{cb}|_{\rm incl}^{q^2} = (41.69 \pm 0.27|_{\mathcal{B}} \pm 0.31|_{\Gamma} \pm 0.18|_{\rm exp.} \pm 0.17|_{\rm theo} \pm 0.34|_{\rm const.}) \times 10^{-3}$

- First extraction using q^2 moments with $1/m_b^4$ terms
- NNLO corrections to moments not included
- Higher order coefficients important to check convergence of the HQE

$$r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1} \text{GeV}^4$$
 $r_G^4 = (-0.21 \pm 0.69) \text{GeV}^4$

 $|V_{cb}|_{\rm incl}^{q^2} = (41.69 \pm 0.27|_{\mathcal{B}} \pm 0.31|_{\Gamma} \pm 0.18|_{\rm exp.} \pm 0.17|_{\rm theo} \pm 0.34|_{\rm const.}) \times 10^{-3}$

- First extraction using q^2 moments with $1/m_b^4$ terms
- NNLO corrections to moments not included
- Higher order coefficients important to check convergence of the HQE

$$r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1} \text{GeV}^4$$
 $r_G^4 = (-0.21 \pm 0.69) \text{GeV}^4$

• Inputs for $B \to X_u \ell \nu$, B lifetimes and $B \to X_s \ell \ell$ KKV, Huber, Lenz, Rusov, et al.

 $|V_{cb}|_{\rm incl}^{q^2} = (41.69 \pm 0.27|_{\mathcal{B}} \pm 0.31|_{\Gamma} \pm 0.18|_{\rm exp.} \pm 0.17|_{\rm theo} \pm 0.34|_{\rm const.}) \times 10^{-3}$

- First extraction using q^2 moments with $1/m_b^4$ terms
- NNLO corrections to moments not included
- Higher order coefficients important to check convergence of the HQE

$$r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1} {
m GeV}^4 \quad r_G^4 = (-0.21 \pm 0.69) {
m GeV}^4$$

Gambino, Finauri [2310.20324]

- Includes terms up to $1/m_b^3$
- **NEW!** Calculation of BLM α_s^2 corrections to q^2 moments
- NEW! Includes QED corrections to the lepton moments Bigi, Bordone, Gambino, Haisch, Piccione, JHEP 11 (2023) 163

Combined E_{ℓ}, M_X, q^2 moments:

 $|V_{cb}|_{\rm incl, all}^{\rm GF} = (41.95 \pm 0.27|_{\rm exp} \pm 0.31|_{\rm th} \pm 0.25|_{\Gamma}) \times 10^{-3} = (41.95 \pm 0.48) \times 10^{-3}$

Gambino, Finauri [2310.20324]

- Includes terms up to $1/m_b^3$
- **NEW!** Calculation of BLM α_s^2 corrections to q^2 moments
- NEW! Includes QED corrections to the lepton moments Bigi, Bordone, Gambino, Haisch, Piccione, JHEP 11 (2023) 163

Combined E_{ℓ}, M_X, q^2 moments:

 $|V_{cb}|_{\rm incl, all}^{\rm GF} = (41.95 \pm 0.27|_{\rm exp} \pm 0.31|_{\rm th} \pm 0.25|_{\Gamma}) \times 10^{-3} = (41.95 \pm 0.48) \times 10^{-3}$

• Agrees with previous determinations, reduced uncertainty

Gambino, Finauri [2310.20324]

- Includes terms up to $1/m_b^3$
- **NEW!** Calculation of BLM α_s^2 corrections to q^2 moments
- NEW! Includes QED corrections to the lepton moments Bigi, Bordone, Gambino, Haisch, Piccione, JHEP 11 (2023) 163

Combined E_{ℓ}, M_X, q^2 moments:

 $|V_{cb}|_{\rm incl, all}^{\rm GF} = (41.95 \pm 0.27|_{\rm exp} \pm 0.31|_{\rm th} \pm 0.25|_{\Gamma}) \times 10^{-3} = (41.95 \pm 0.48) \times 10^{-3}$

- Agrees with previous determinations, reduced uncertainty
- Agrees with determination from three points at fixed cut

First combined Fit

- Complementary between different measurements
- Extracted $\rho_D^3=0.176\pm0.019~{\rm GeV^3}$
- Important input for lifetimes and $B o X_u, B o X_s$

NEW: NNLO corrections to q^2 moments

Herren, Fael [2403.03976]

 $\overline{m_c}(2 \text{ GeV})$ not ideal choice

 $\overline{m_c}$ (3 GeV) better

NEW: NNLO corrections to q^2 moments

Herren, Fael [2403.03976]

NNLO effects mainly re-absorbed in the fit into a shift of ρ_D^3 , r_E^4 and r_G^4 . No major shift in $|V_{cb}|$.

NEW: NNLO corrections to q^2 moments

Herren, Fael [2403.03976]

NNLO effects mainly re-absorbed in the fit into a shift of ρ_D^3 , r_E^4 and r_G^4 . No major shift in $|V_{cb}|$.

Full combined analysis and updated q^2 fits in progress!

NEW: Inclusive decays: The Kolya package

Kolya package, Fael, Milutin, KKV [2409.15007]

Open source Python package: https://gitlab.com/vcb-inclusive/kolya

- HQE predictions for several observables:
 - Centralized $\langle E_\ell \rangle$ moments
 - Centralized $\langle q^2
 angle$ moments
 - Centralized $\langle M_X^2 \rangle$ moments
 - Total rate + branching ratio with kinematic cut

NEW: Inclusive decays: The Kolya package

Kolya package, Fael, Milutin, KKV [2409.15007]

Open source Python package: https://gitlab.com/vcb-inclusive/kolya

- HQE predictions for several observables:
 - Centralized $\langle E_\ell \rangle$ moments
 - Centralized $\langle q^2
 angle$ moments
 - Centralized $\langle M_X^2 \rangle$ moments
 - Total rate + branching ratio with kinematic cut

Features:

- Includes power corrections up to $1/m_b^5$ Mannel, Milutin, KKV [2311.1200]
- Employs kinetic scheme for m_b and $\overline{\mathrm{MS}}$ for m_c
- Interface with CRunDec for automatic RGE evolution Chetyrkin, Kuhn, Steinhauser, Smidth, Herren
- Includes New Physics effects Fael, Rahimi, KKV [JHEP 02 (2023) 086]

Kolya: Installation and features

Fael, Milutin, KKV [2409.15007], https://gitlab.com/vcb-inclusive/kolya.git

- : git clone https://gitlab.com/vcb-inclusive/kolya.git
- \$: cd kolya
- \$: pip3 install

Kolya: Installation and features

Fael, Milutin, KKV [2409.15007], https://gitlab.com/vcb-inclusive/kolya.git

- \$: git clone https://gitlab.com/vcb-inclusive/kolya.git
- \$: cd kolya
- \$: pip3 install
 - Provide example Jupyter notebooks (see also examples in backup)
 - Several cross-checks with literature performed
 - Default up to $1/m_b^3$. Higher orders included via flagmb4= 1 and flagmb5= 1
 - Implemented both "RPI" and "historical" (perp) basis
 - LLSA predictions for the HQE elements implemented

Kolya: Installation and features

Fael, Milutin, KKV [2409.15007], https://gitlab.com/vcb-inclusive/kolya.git

- \$: git clone https://gitlab.com/vcb-inclusive/kolya.git
- \$: cd kolya
- \$: pip3 install
 - Provide example Jupyter notebooks (see also examples in backup)
 - Several cross-checks with literature performed
 - Default up to $1/m_b^3$. Higher orders included via flagmb4= 1 and flagmb5= 1
 - Implemented both "RPI" and "historical" (perp) basis
 - LLSA predictions for the HQE elements implemented
 - Only includes centralized moments

Outlook for Kolya

First version of Kolya available!

Plans to expand Kolya with:

- QED effects Bigi, Bordone, Gambino, Haisch, Piccione [2308.02849]
- Exact results for NNLO corrections to E_{ℓ} and M_X moments Herren, Fael [in progress]
- NLO corrections to HQE parameters for E_{ℓ} and M_X moments
Outlook for Kolya

First version of Kolya available!

Plans to expand Kolya with:

- QED effects Bigi, Bordone, Gambino, Haisch, Piccione [2308.02849]
- Exact results for NNLO corrections to E_ℓ and M_X moments Herren, Fael [in progress]
- NLO corrections to HQE parameters for E_{ℓ} and M_X moments

And additional observables:

- Forward-backward asymmetry
- $R_X = \Gamma_{B \to X_c \tau \bar{\nu}_\tau} / \Gamma_{B \to X_c l \bar{\nu}_l}$
- Lifetimes
- Predictions for the decay into charmless final states $B o X_u l ar
 u_l$
- Inclusive *D* decays Mannel, Fael, KKV [1910.05234] Exploratory study for measurements at BES III [2408.10063]

Any other suggestions?

Constraining higher power corrections?

with Markus Prim, Florian Bernlochner, Ilija Milutin and Matteo Fael [in progress]

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274], Bordone, Capdevila, Gambino [2107.00604],

Gambino, Schwanda [2014], Finauri, Gambino [2023] Prim, Milutin, Fael, Bernlochner, KKV [in progress]

<u>New:</u> Use Kolya + Experimental measurements $\rightarrow |V_{cb}|$ and HQE parameters

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274], Bordone, Capdevila, Gambino [2107.00604],

Gambino, Schwanda [2014], Finauri, Gambino [2023] Prim, Milutin, Fael, Bernlochner, KKV [in progress]

New:

Use Kolya + Experimental measurements $\rightarrow |V_{cb}|$ and HQE parameters <u>This talk:</u> Preliminary results using q^2 moments (with NNLO)

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274], Bordone, Capdevila, Gambino [2107.00604],

Gambino, Schwanda [2014], Finauri, Gambino [2023] Prim, Milutin, Fael, Bernlochner, KKV [in progress]

New:

Use Kolya + Experimental measurements $\rightarrow |V_{cb}|$ and HQE parameters This talk:

Preliminary results using q^2 moments (with NNLO)

Challenge: How to deal with theoretical uncertainties?

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274], Bordone, Capdevila, Gambino [2107.00604],

Gambino, Schwanda [2014], Finauri, Gambino [2023] Prim, Milutin, Fael, Bernlochner, KKV [in progress]

New:

Use Kolya + Experimental measurements $\rightarrow |V_{cb}|$ and HQE parameters <u>This talk:</u> Preliminary results using q^2 moments (with NNLO)

Challenge: How to deal with theoretical uncertainties?

Use the $1/m_b^{4,5}$ corrections to better access the theory uncertainty

Preliminary! Prim, Milutin, Fael, Bernlochner, KKV [in progress]

q^2 moments only, including NNLO

	Central	Fit Unc.	Theory Unc.	Tot Unc.	Precision [%]
μ_{π}^2	0.490	0.060	0.000	0.060	8.2
μ_G^2	0.360	0.008	0.050	0.050	7.2
ρ_D^3	0.089	0.000	0.018	0.018	5.0

- μ_{π}^2 does not enter at this order
- No fit uncertainty on ρ_D^3
- External constraint: $\mu_G^2 = 0.36 \pm 0.07$
- Very bad $\chi^2/d.o.f = 800/51$

Effect of higher-order corrections

Kolya

Using LLSA inputs for the HQE parameters and NNLO corrections

Theory guidance to include power corrections

Lowest State Saturation Approximation (LSSA)

$$\langle B|O_1O_2|B\rangle = \sum_n \langle B|O_1|n\rangle \langle n|O_2|B\rangle$$

$$ho_D^3 = arepsilon \mu_\pi^2, \qquad
ho_{LS}^3 = -arepsilon \mu_G^2, \qquad arepsilon \sim 0.4 \,\, {\rm GeV}$$

Mannel, Turczyk, Uraltsev JHEP 1011 (2010) 109; Heinonen, Mannel, NPB 889 (2014) 46

· Gives central values but uncertainty challenging to estimate

Theory guidance to include power corrections

Lowest State Saturation Approximation (LSSA)

$$\langle B|O_1O_2|B\rangle = \sum_n \langle B|O_1|n\rangle \langle n|O_2|B\rangle$$

$$ho_D^3 = arepsilon \mu_\pi^2, \qquad
ho_{LS}^3 = -arepsilon \mu_G^2, \qquad arepsilon \sim 0.4 \,\, {
m GeV}$$

Mannel, Turczyk, Uraltsev JHEP 1011 (2010) 109; Heinonen, Mannel, NPB 889 (2014) 46

- Gives central values but uncertainty challenging to estimate
- $\mathcal{O}(1/m_b^4,1/m_b^5)$ can then be included in fit Healey, Turczyk, Gambino, PLB 763 (2016) 60
 - LSSA estimated as priors (60% gaussian uncertainty)
 - -0.25% shift on $|V_{cb}|$ due to power corrections

Preliminary fit results at O5

Preliminary! Prim, Milutin, Fael, Bernlochner, KKV [in progress]

	Central	Fit Unc.	Theory Unc. Tot Unc.		Precision [%]
μ_{π}^2	0.463	0.058	0.004	0.059	7.9
μ_G^2	0.547	0.003	0.141	0.141	3.9
ρ_D^3	0.040	0.000	0.059	0.059	0.68
$r_F^{\overline{4}}$	0.015	0.000	0.018	0.018	0.84
r_G^4	0.284	0.002	0.151	0.151	1.9
s _F	-0.03	0.005	0.045	0.045	0.7
s_B^{4}	-0.088	0.007	0.255	0.255	0.4
s_{qB}^{4}	-1.326	0.022	0.895	0.895	1.5

- $(\mu_G^2)\rho_D^3$ and $(\mu_\pi^2)\rho_D^3$ enter!
- Use LLSA ansatz for $1/m_b^{4,5}$ with 50% additional uncertainty and 0.05 ${\rm GeV^4}$
- $\chi^2/d.o.f = 248/51$

Preliminary fit results at O5

Preliminary! Prim, Milutin, Fael, Bernlochner, KKV [in progress]

	Central	Fit Unc.	Theory Unc. Tot Unc.		Precision [%]
μ_{π}^2	0.463	0.058	0.004	0.059	7.9
μ_G^2	0.547	0.003	0.141	0.141	3.9
ρ_D^3	0.040	0.000	0.059	0.059	0.68
$r_F^{\overline{4}}$	0.015	0.000	0.018	0.018	0.84
r_G^4	0.284	0.002	0.151	0.151	1.9
s _F	-0.03	0.005	0.045	0.045	0.7
s_B^{4}	-0.088	0.007	0.255	0.255	0.4
$s_{qB}^{\overline{4}}$	-1.326	0.022	0.895	0.895	1.5

- $(\mu_G^2)\rho_D^3$ and $(\mu_\pi^2)\rho_D^3$ enter!
- Use LLSA ansatz for $1/m_b^{4,5}$ with 50% additional uncertainty and 0.05 ${\rm GeV^4}$
- $\chi^2/d.o.f = 248/51$

Seems to converge less fast as hoped?

Preliminary fit results at O5

Preliminary! Prim, Milutin, Fael, Bernlochner, KKV [in progress]

	Central	Fit Unc.	Theory Unc. Tot Unc.		Precision [%]
μ_{π}^2	0.463	0.058	0.004	0.059	7.9
μ_G^2	0.547	0.003	0.141	0.141	3.9
ρ_D^3	0.040	0.000	0.059	0.059	0.68
$r_F^{\overline{4}}$	0.015	0.000	0.018	0.018	0.84
r_G^4	0.284	0.002	0.151	0.151	1.9
s _F	-0.03	0.005	0.045	0.045	0.7
s_B^{4}	-0.088	0.007	0.255	0.255	0.4
$s_{qB}^{\overline{4}}$	-1.326	0.022	0.895	0.895	1.5

- $(\mu_G^2)\rho_D^3$ and $(\mu_\pi^2)\rho_D^3$ enter!
- Use LLSA ansatz for $1/m_b^{4,5}$ with 50% additional uncertainty and 0.05 ${\rm GeV^4}$
- $\chi^2/d.o.f = 248/51$

$|V_{cb}|$ does not care! (shifts up by 0.8%)

Outlook: fits in inclusive decays

- First analysis of q² moments with NNLO corrections [preliminary!]
- Relax LLSA Ansatz for higher terms
- Full analysis of all moments ongoing
- Include uncertainty for missing higher orders
- Switch to sensitive observables or un-expanded versions!

Outlook: power-correction sensitive observables

Mannel, Milutin, Verkade, KKV [2407.01473]; Belle collaboration [2109.01685]

$$ar{q}_i = C_i^{(0)} + rac{\mu_G^2}{m_b^2} C_i^{(2)} + rac{ ilde{
ho}_D^3}{m_b^3} C_i^{(3)} + R_i \; ,$$

- R_i contains higher order terms
- We can then construct an observable only sensitive to higher k+1 powers $O_{\rm DV}^{(k)}\sim\Lambda^{k+1}/m_n^{k+1}$
- First study using $O_{\rm DV}^{(3)} = \xi_1 \frac{\bar{q}_1}{m_b^2} + \xi_2 \frac{\bar{q}_2}{m_b^4} + \xi_3 \frac{\bar{q}_3}{m_b^6} + \xi_4 \frac{\bar{q}_4}{m_b^8}$

Keri Vos (Maastricht)

Alternative treatment of the heavy quark mass

with Anastacia and Thomas [in progress]

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_Q not observable \rightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$${\sf R}(s) = rac{\sigma(e^+e^- o {\sf hadrons})}{\sigma(e^+e^- o \mu^+\mu^-)}$$

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_Q not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$${\sf R}(s)=rac{\sigma(e^+e^-
ightarrow{
m hadrons})}{\sigma(e^+e^-
ightarrow\mu^+\mu^-)}$$

• Start from vacuum correlator

$$\int d^4 x \, e^{-iqx} \langle 0 | T[j_{\mu}(x)j_{\nu}(0)] | 0 \rangle = (g_{\mu\nu}q^2 - q_{\mu}q_{\nu}) \Pi(q^2)$$

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_Q not observable \rightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$${\sf R}(s)=rac{\sigma(e^+e^-
ightarrow{
m hadrons})}{\sigma(e^+e^-
ightarrow\mu^+\mu^-)}$$

• Expand around $q^2 = 0$: $(\bar{C}_n = \bar{C}_n^{(0)} + \frac{\alpha_s(\mu)}{\pi} \bar{C}_n^{(1)} + ...)$

$$\Pi(q^2) = \Pi(0) + rac{4}{9} rac{3}{16\pi^2} \sum_{n=1}^{\infty} ar{C}_n\left(rac{q^2}{4m_Q^2}
ight)$$

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_Q not observable \rightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$${\sf R}(s)=rac{\sigma(e^+e^-
ightarrow{
m hadrons})}{\sigma(e^+e^-
ightarrow\mu^+\mu^-)}$$

• Expand around $q^2 = 0$: $(\bar{C}_n = \bar{C}_n^{(0)} + \frac{\alpha_s(\mu)}{\pi} \bar{C}_n^{(1)} + \ldots)$

$$\Pi(q^2) = \Pi(0) + \frac{4}{9} \frac{3}{16\pi^2} \sum_{n=1}^{\infty} \bar{C}_n \left(\frac{q^2}{4m_Q^2}\right) = \Pi(0) + \frac{q^2}{12\pi^2} \int \frac{ds}{s} \frac{R(s)}{s-q^2}$$

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_Q not observable \rightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$${\it R}(s) = rac{\sigma(e^+e^-
ightarrow {
m hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

• Expand around $q^2 = 0$: $(\bar{C}_n = \bar{C}_n^{(0)} + \frac{\alpha_s(\mu)}{\pi} \bar{C}_n^{(1)} + \ldots)$

$$\Pi(q^2) = \Pi(0) + \frac{4}{9} \frac{3}{16\pi^2} \sum_{n=1}^{\infty} \bar{C}_n \left(\frac{q^2}{4m_Q^2}\right) = \Pi(0) + \frac{q^2}{12\pi^2} \int \frac{ds}{s} \frac{R(s)}{s-q^2}$$

• \bar{C}_n known up to α_s^2 and related to moments

$$ar{\mathcal{C}}_n = (4m_Q^2)^n M_n$$
 with $M_n = \int rac{ds}{s^{n+1}} R(s)$

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_Q not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$${\sf R}(s)=rac{\sigma(e^+e^-
ightarrow{
m hadrons})}{\sigma(e^+e^-
ightarrow\mu^+\mu^-)}$$

• Expand around $q^2 = 0$: $(\bar{C}_n = \bar{C}_n^{(0)} + \frac{\alpha_s(\mu)}{\pi} \bar{C}_n^{(1)} + \ldots)$

$$\Pi(q^2) = \Pi(0) + \frac{4}{9} \frac{3}{16\pi^2} \sum_{n=1}^{\infty} \bar{C}_n \left(\frac{q^2}{4m_Q^2}\right) = \Pi(0) + \frac{q^2}{12\pi^2} \int \frac{ds}{s} \frac{R(s)}{s-q^2}$$

• \bar{C}_n known up to α_s^2 and related to moments

$$ar{C}_n = (4m_Q^2)^n M_n$$
 with $M_n = \int rac{ds}{s^{n+1}} R(s)$

• Replace m_Q : $m_Q = rac{1}{2} \left(rac{ar{C}_n}{M_p}
ight)^{1/(2n)}$

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344 Boushmelev, Mannel, KKV [2301.05607]

$$\begin{split} \Gamma(b \to u\ell\nu) &\sim \left(\left(\frac{\bar{C}_n}{M_n}\right)^{1/2} \right)^5 \left(1 + \frac{\alpha_s(\mu)}{\pi} a_1 + \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 a_2 + \cdots \right) \\ &\sim \left(\frac{\bar{C}_n^{(0)}}{M_n}\right)^{5/2} \left(1 + \frac{\alpha_s(\mu)}{\pi} \left[a_1 + \frac{5}{2n} \frac{\bar{C}_n^{(1)}}{\bar{C}_n^{(0)}} \right] \\ &+ \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 \left[a_2 + \frac{5}{2n} a_1 \frac{\bar{C}_n^{(1)}}{\bar{C}_n^{(0)}} + \frac{5}{2n} \frac{\bar{C}_n^{(2)}}{\bar{C}_n^{(0)}} + \frac{5}{4n} \left(\frac{5}{4n} - 1\right) \left(\frac{\bar{C}_n^{(1)}}{\bar{C}_n^{(0)}}\right)^2 \right] + \cdots \right) \\ &\sim \left(\frac{\bar{C}_n^{(0)}}{M_n} \right)^{5/2} \left(1 + \frac{\alpha_s(\mu)}{\pi} d_n^{(1)} + \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 \left[d_n^{(2)} + \beta_0 d_n^{(1)} \ln \left(\frac{\mu^2}{m_Q^2}\right) \right] + \cdots \right) \end{split}$$

- Conclusion: pert. series improves a bit
- In progress: Similar approach for the charm + power corrections

				n			
	1	2	3	4	5	6	7
$d_n^{(1)}$	10.24	7.29	5.85	4.94	4.29	3.80	3.41
$d_n^{(2)}$	70.41	49.45	39.69	33.70	29.52	26.40	23.93
$d_n^{(2)}/d_n^{(1)}$	6.87	6.79	6.78	6.81	6.89	6.95	7.03
μ/m_Q	0.167	0.170	0.170	0.169	0.166	0.163	0.160

Lattice and the Continuum Continued

Outlook: Lattice meets Continuum?

- HQE parameters are in kinetic scheme defined with QCD states
- Differ for *B*, *B*_s and *D* decays!
- Challenging to convert infinite mass parameters

Outlook: Lattice meets Continuum?

- HQE parameters are in kinetic scheme defined with QCD states
- Differ for *B*, *B*_s and *D* decays!
- Challenging to convert infinite mass parameters
- Calculate spectrum/moments direct on Lattice Juetner, Gambino, talks at this conference

Outlook: Lattice meets Continuum?

- HQE parameters are in kinetic scheme defined with QCD states
- Differ for *B*, *B*_s and *D* decays!
- Challenging to convert infinite mass parameters
- Calculate spectrum/moments direct on Lattice Juetner, Gambino, talks at this conference
- New observables not accessible in experiment?

Backup

Fael, Milutin, KKV [2409.15007], https://gitlab.com/vcb-inclusive/kolya.git

Total Rate

We define the total rate as

$$\Gamma_{
m sl} = rac{G_F^2 (m_b^{
m kin})^5}{192 \pi^3} |V_{cb}|^2 X$$

The coefficients X is a function of the quark masses, α_s , the HQE parameters and the Wilson coefficients. It is evaluated by the function X_Gamma_KIN_MS(par, hqe, wc)

```
[5]: hqe = kolya.parameters.HQE_parameters(
    muG = 0.306,
    rhoD = 0.185,
    rhoLS = -0.13,
    mupi = 0.477,
)
wc = kolya.parameters.WCoefficients()
    kolya.TotalRate.X_Gamma_KIN_MS(par,hqe,wc)
```

[5]: 0.539225163728085

The branching ratio is given by the function BranchingRatio_KIN_MS(Vcb,par,hqe,wc)

```
[6]: Vcb = 42.2e-2
kolya.TotalRate.BranchingRatio_KIN_MS(Vcb,par,hqe,wc)
```

[6]: 10.555834162102016

Fael, Milutin, KKV [2409.15007], https://gitlab.com/vcb-inclusive/kolya.git. Herren, Fael [2403.03976]

```
>>> kolya.Q2moments.moment_1_KIN_MS(8.0, par, hqe, wc, flag_DEBUG=1)
Q2moment n. 1 LO = 9.148659808170105
Q2moment n. 1 NLO = api * -1.319532010835962
Q2moment n. 1 NNLO = api^2 * -9.616956902561078
Q2moment n. 1 NLO pw = api * -0.7873907726673756
Q2moment n. 1 NNLO from NLO pw = api^2 * 8.39048437244325
```

- Includes new NNLO corrections
- NNLO and NLO to power corrections can be turned off

Fael, Milutin, KKV [2409.15007], https://gitlab.com/vcb-inclusive/kolya.git

[1]: import kolya
import numpy as np

Physical parameters

Physical parameters like quark masses like $m_b^{\rm kin}(\mu_{WC}), \overline{m}_c(\mu_c)$ and $\alpha_s(\mu_s)$ are declared in the class parameters, physical_parameters. Initialization set default values

```
[2]: par = kolya.parameters.physical_parameters()
```

par.show()

bottom mass:	mbkin(1.0	GeV)	=	4.563	GeV
charm mass:	mcMS(3.0	GeV)	=	0.989	GeV
coupling constant:	alpha_s(4.	563 GeV)	=	0.2182	

In order to set the quark masses at scales different from the default ones in a consistent way, we include the method FLAG2023 which internally use CRunDec. For instance, we set the quark masses at a scale $\mu_{WC} = \mu_c = 2$ GeV in the following way:

```
[3]: par = kolya.parameters.physical_parameters()
    par.FLAG2023(scale_mcMS=2.0, scale_mbkin=2.0)
    par.show()
    bottom mass: mbkin(2.0 GeV) = 4.295730717092438 GeV
    charm mass: mcMS(2.0 GeV) = 1.0940623249384022 GeV
    coupling constant: alpha_s(4.563 GeV) = 0.2181518098622618
```

Fael, Milutin, KKV [2409.15007], https://gitlab.com/vcb-inclusive/kolya.git

HQE parameters

Non-perturbative matrix elements in the HQE are declared in the class parameters.HQE_parameters. This class is defined in the historical basis of hep-ph/1307.4551. By default they are initialized to zero. We can set their values in the following way

```
hge = kolya.parameters.HQE_parameters(
    muG = 0.306.
    rhoD = 0.185.
    rhoLS = -0.13,
    mupi = 0.477.
hge.show()
mupi
      =
         0.477
               GeV^2
        0.306 GeV^2
muG
      =
rhoD = 0.185 GeV^3
rhoLS = -0.13 GeV^3
hge.show(flagmb4=1)
                GeV^2
mupi
      =
         0.477
muG
      =
        0.306 GeV^2
rhoD
     = 0.185 GeV^3
rhoLS = -0.13 GeV^3
         GeV^4
m1
  =
      0
         GeV^4
m2
  =
        GeV^4
m3 =
      0
      0
         GeV^4
m4
  =
m5 =
      0
         GeV^4
m6
      Ø
         GeV^4
        GeV^4
m7
      0
  =
m8 =
      0
        GeV^4
m9 =
     0
        GeV^4
```

Fael, Milutin, KKV [2409.15007], https://gitlab.com/vcb-inclusive/kolya.git

- Implemented both "RPI" and "historical" (perp) basis
- LLSA predictions for the HQE elements implemented
- Gives "predictions" for moments and total rate

The classes parameters.LSSA_HQE_parameters and parameters.LSSA_HQE_parameters_RPI store the same HQE parameters as parameters.HQE_parameters and parameters.HQE_parameters_RPI in the "perp" and RPI basis respectively up to $1/m_b^5$. They are initialized to values predicted by the 'lowest-lying state saturation ansatz' (LSSA).

```
In [14]: hqe_perp = kolya.parameters.LSSA_HQE_parameters()
hqe_RPI = kolya.parameters.LSSA_HQE_parameters_RPI()
print('LSSA prediction for rhoD in the perp basis: ', hqe_perp.rhoD)
print('LSSA prediction for rhoD in the RPI basis: ', hqe_RPI.rhoD)
print('LSSA prediction for rhoD in the RPI basis: ', hqe_RPI.rhoD)
print('LSSA prediction for rhoD in the RPI basis: ', hqe_RPI.rEtilde)
Out [14]:
LSSA prediction for rhoD in the perp basis: 0.231
LSSA prediction for rhoD in the RPI basis: 0.205
LSSA prediction for rhoD in the RPI basis: 0.698
```

Theoretical correlations

Preliminary! Prim, Milutin, Fael, Bernlochner, KKV [in progress]

- Order of the analysis changes the correlations
- Large correlations between different cuts
- Correlations between different moments!

What about theory correlations?

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

• Flexible correlations between moments $\rho_{\rm mom}$ and different cuts $\rho_{\rm cut}$

$$ho_n[q_n(q_A^2) - q_n(q_B^2)] =
ho_{
m cut}^{ imes} \qquad x = rac{|q_A^2 - q_B^2|}{0.5 {
m GeV}^2}$$

- Included by adding a penalty term to the χ^2
- Scan over large range of values + add as nuisance parameters in fit
- V_{cb} stable w.r.t. theory correlations

What about theory correlations?

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

• Flexible correlations between moments $\rho_{\rm mom}$ and different cuts $\rho_{\rm cut}$

$$ho_n[q_n(q_A^2) - q_n(q_B^2)] =
ho_{
m cut}^{ imes} \qquad x = rac{|q_A^2 - q_B^2|}{0.5 {
m GeV}^2}$$

- Included by adding a penalty term to the χ^2
- Scan over large range of values + add as nuisance parameters in fit
- V_{cb} uncertainty includes large range of correlations

Fit details

Preliminary!

Preliminary fit setup

Preliminary! Prim, Milutin, Fael, Bernlochner, KKV [in progress]

- Nuisance parameters: scale α_s , μ_c and $m_b^{\rm kin}$
- Include (μ_{π}^2) , μ_G^2 and ρ_D^3 ,... in the likelihood
- Sample nuisance parameter from uniform distribution
- Refit with new sets of nuisance parameters
- Check how strongly the parameters of interest scatter

Preliminary fit setup

Preliminary! Prim, Milutin, Fael, Bernlochner, KKV [in progress]

- Nuisance parameters: scale α_s , μ_c and $m_b^{\rm kin}$
- Include (μ_{π}^2) , μ_G^2 and ρ_D^3 ,... in the likelihood
- Sample nuisance parameter from uniform distribution
- Refit with new sets of nuisance parameters
- Check how strongly the parameters of interest scatter

Do not include uncertainty on ρ_D^3 but check order by order if the fit improves

Refitting the data

Preliminary! Refitting at O3

$$q_{cut}^2 = 0 \text{ GeV}^2$$
, $m_b^{kin} = 4.573 \text{ GeV}$, $\bar{m}_c(2 \text{ GeV}) = 1.092 \text{ GeV}$.

We then find^8

$$\begin{split} q_1 &= \frac{m_b^2}{\mu_3} \Big(0.22 \mu_3 - 0.57 \frac{\mu_b^2}{m_b^2} - 1.4 \frac{(\mu_b^2)^2}{m_b^2 \mu_3} - 55 \frac{\mu_b^2}{m_b^2} + 16 \frac{\mu_b^2}{m_b^4} - 57 \frac{\mu_b^4}{m_b^4} - 1.7 \frac{\mu_b^2}{m_b^4} \\ &+ 0.097 \frac{s_h^4}{m_b^4} - 0.064 \frac{s_h^2}{m_b^4} - 24 \frac{\mu_b^2 \mu_b^2}{m_b^2 \mu_3} - 19 \frac{m_b^2}{m_b^4} + 18 \frac{m_b^2}{m_b^4} - 15 \frac{m_b^2}{m_b^4} + 2.3 \frac{M_b^2}{m_b^4} \\ &+ 6.5 \frac{M_b^2}{m_b^4} + 0.91 \frac{K_b^2}{m_b^6} - 7.0 \frac{K_b^2}{m_b^4} + 8.0 \frac{M_b^2}{m_b^4} + 2.8 \frac{M_b^2}{m_b^4} - 17 \frac{M_b^2}{m_b^4} - 2.1 \frac{\pi_b^2}{m_b^4} - 0.66 \frac{\kappa_b^2}{m_b^4} \\ &+ 0.5 \frac{M_b^2}{m_b^4} - 0.028 \frac{s_{h}^4}{m_b^4} - 0.51 \frac{(\mu_b^2)}{m_b^2 \mu_3} - 16 \frac{\mu_b^2}{m_b^4} + 7.7 \frac{\pi_b^2}{m_b^4} - 2.1 \frac{\pi_b^2}{m_b^4} - 0.66 \frac{\kappa_b}{m_b^4} \\ &+ 0.20 \frac{s_h^4}{m_b^4} - 0.028 \frac{s_{h}^4}{m_b^4} - 12 \frac{\mu_b^2 \mu_b^2}{m_b^2 \mu_3} - 20 \frac{M_b^2}{m_b^4} + 15 \frac{K_b^2}{m_b^2} - 22 \frac{M_b^2}{m_b^4} - 23 \frac{M_b^2}{m_b^4} - 0.66 \frac{\kappa_b}{m_b^4} \\ &+ 4.2 \frac{M_b^2}{m_b^4} - 0.038 \frac{s_{h}^4}{m_b^4} - 12 \frac{\mu_b^2 \mu_b^2}{m_b^2 \mu_3} - 0.31 \frac{\mu_b^2}{m_b^4} + 2.9 \frac{\mu_b}{m_b^4} - 0.03 \frac{K_b^2}{m_b^4} - 0.19 \frac{s_b^2}{m_b^4} \\ &+ 0.003 \frac{\kappa_b}{m_b^4} - 0.035 \frac{\kappa_b}{m_b^4} - 2.8 \frac{K_b^2}{m_b^4} + 2.1 \frac{K_b^2}{m_b^4} - 2.9 \frac{\pi_b}{m_b^4} - 1.7 \frac{K_b^4}{m_b^4} - 2.1 \frac{\kappa_b}{m_b^4} - 0.19 \frac{s_b^2}{m_b^4} \Big] \\ &+ 0.003 \frac{\kappa_b}{m_b^4} - 0.03 \frac{\kappa_b}{m_b^4} - 2.1 \frac{\kappa_b}{m_b^4} - 1.7 \frac{\kappa_b}{$$

Correlations between parameters of interest

Preliminary! Prim, Milutin, Fael, Bernlochner, KKV [in progress]

Use central limits theorem to extract Gaussian uncertainty from flat priors

Theoretical correlations

Preliminary! Prim, Milutin, Fael, Bernlochner, KKV [in progress]

- Large correlations between different cuts
- Correlations between different moments!

NNLO contributions to lepton energy moments

Biswas, Melnikov [0911.4142], Gambino [1107.3100]. Fael, Milutin, KKV [2409.15007]

Keri Vos (Maastricht)

#beautifulpuzzles!

NNLO contributions to M_X moments

Biswas, Melnikov [0911.4142], Gambino [1107.3100]. Fael, Milutin, KKV [2409.15007]

Keri Vos (Maastricht)

#beautifulpuzzles!

State-of-the-art in inclusive $b \rightarrow c$

Jezabek, Kuhn, NPB 314 (1989) 1; Melnikov, PLB 666 (2008) 336; Pak, Czarnecki, PRD 78 (2008) 114015; Becher, Boos, Lunghi, JHEP 0712 (2007) 062; Alberti, Gambino, Nandi, JHEP 1401 (2014) 147; Mannel, Pivovarov, Rosenthal, PLB 741 (2015) 290; Fael, Schonwald, Steinhauser, Phys Rev. D 104 (2021) 016003; Fael, Schonwald, Steinhauser, Phys Rev. Lett. 125 (2020) 052003; Fael, Schonwald, Steinhauser, Phys Rev. D 103 (2021) 014005,

$$\begin{split} \Gamma &\propto |V_{cb}|^2 m_b^5 \left[\Gamma_0 + \Gamma_0^{(1)} \frac{\alpha_s}{\pi} + \Gamma_0^{(2)} \left(\frac{\alpha_s}{\pi} \right)^2 + \Gamma_0^{(3)} \left(\frac{\alpha_s}{\pi} \right)^3 + \frac{\mu_{\pi}^2}{m_b^2} \left(\Gamma^{(\pi,0)} + \frac{\alpha_s}{\pi} \Gamma^{(\pi,1)} \right) \right. \\ &\left. + \frac{\mu_G^2}{m_b^2} \left(\Gamma^{(G,0)} + \frac{\alpha_s}{\pi} \Gamma^{(G,1)} \right) + \frac{\rho_D^3}{m_b^3} (\Gamma^{(D,0)} + \Gamma_0^{(1)} \left(\frac{\alpha_s}{\pi} \right)) + \mathcal{O} \left(\frac{1}{m_b^4} \right) + \cdots \right) \end{split}$$

- Include terms up to $1/m_b^{4*}$ see also Gambino, Healey, Turczyk [2016]
- α_s^3 to total rate and kinetic mass Fael, Schonwald, Steinhauser [2020, 2021]
- $\alpha_s \rho_D^3$ for total rate Mannel, Pivovarov [2020]
- Kinetic mass scheme 1411.6560,1107.3100; hep-ph/0401063

$$\begin{array}{ccc} E_{\ell}, M_X \text{ moments:} & q^2 \text{ moments}^*: \\ |V_{cb}|_{\mathrm{incl}}^{\mathrm{BCG}} = (42.16 \pm 0.51) \times 10^{-3} & |V_{cb}|_{\mathrm{incl}}^{q^2} = (41.69 \pm 0.63) \times 10^{-3} \end{array}$$

Gambino, Schwanda, PRD 89 (2014) 014022; Alberti, Gambino et al, PRL 114 (2015) 061802; Bordone, Capdevila, Gambino, Phys.Lett.B 822 (2021) 136679; Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [225.10274]

Keri Vos (Maastricht)

New Physics?

Fael, Rahimi, KKV [2208.04282]

- NP would also influence the moments of the spectrum [Never tested!]
- Requires a simultaneous fit of hadronic parameters and NP

New Physics predictions with Kolya

Fael, Rahimi, KKV [2208.04282]

$$P_{L(R)} = 1/2 (1 \mp \gamma_5) \text{ and } \sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}]$$

$$\mathcal{H}_{\text{eff}} = \frac{4G_F V_{cb}}{\sqrt{2}} \begin{bmatrix} (1+C_{V_L}) \ O_{V_L} + \sum_{i=V_R, S_L, S_R, T} C_i \ O_i \end{bmatrix}, \qquad \begin{array}{l} O_{V_{L(R)}} = (\bar{c}\gamma_{\mu}P_{L(R)}b) \ (\bar{\ell}\gamma^{\mu}P_{L}\nu_{\ell}) \\ O_{S_{L(R)}} = (\bar{c}P_{L(R)}b) \ (\bar{\ell}P_L\nu_{\ell}) \\ O_T = (\bar{c}\sigma_{\mu\nu}P_Lb) \ (\bar{\ell}\sigma^{\mu\nu}P_L\nu_{\ell}) \ . \end{array}$$

$$\begin{split} \langle \mathcal{M} \rangle &= \xi_{\mathsf{SM}} + |C_{V_R}|^2 \, \xi_{\mathsf{NP}}^{\langle V_R, V_R \rangle} + |C_{\mathcal{S}_L}|^2 \, \xi_{\mathsf{NP}}^{\langle S_L, S_L \rangle} + |C_{\mathcal{S}_R}|^2 \, \xi_{\mathsf{NP}}^{\langle S_R, S_R \rangle} + |C_T|^2 \, \xi_{\mathsf{NP}}^{\langle T, T \rangle} \\ &+ \mathsf{Re}((C_{V_L} - 1)C_{V_R}^*) \, \xi_{\mathsf{NP}}^{\langle V_L, V_R \rangle} + \mathsf{Re}(C_{\mathcal{S}_L} C_{\mathcal{S}_R}^*) \, \xi_{\mathsf{NP}}^{\langle S_L, S_R \rangle} + \mathsf{Re}(C_{\mathcal{S}_L} C_T^*) \, \xi_{\mathsf{NP}}^{\langle S_L, T \rangle} \\ &+ \mathsf{Re}(C_{\mathcal{S}_R} C_T^*) \, \xi_{\mathsf{NP}}^{\langle S_R, T \rangle} \, , \end{split}$$

Expanded moments in terms of C_i