Semileptonic $B \to D^*$ decays: The long path to 1%

Martin Jung

Lattice meets continuum 2024 Siegen, 2nd of October 2024

INFN

UNIVERSITÀ DI TORINO

Istituto Nazionale di Fisica Nucleare

Tensions as a motivation for semileptonic decays? Present tensions in $B \to D^* l \nu$ decays:

- These are not the main motivations to study this mode
- Whatever your interpretation: necessary to understand!
	- potentially triggering progress
- **►** Potential explanations: Exp. vs. QCD vs. BSM?
- **►** Partly discussed in the following

What could go wrong?

Standard workflow:

- 1. Experimental measurement of (partial) rates [Raynette's talk]
- 2. Theoretical expressions for measured observables: SM plus potentially BSM
- 3. Theoretical/Phenomenological parametrization: Form factors
	- Extract FF parameters, $|V_{cb}|$ (and Wilson bilinears)

- Some tensions within points $1+3$, no issues (afaik) in point 2
- In the following: scrutinize/detail all three points, essentially no BSM discussion $[~]$ Uli's talk]
- One elephant in the room not discussed: e/m effects What I'm discussing *should* be larger effects

Substructure of a measurement from a pheno perspective

Experiment makes contact with phenomenology via backgroundsubtracted, unfolded spectra. Structure:

- Counting rate: Main experimental result
- Experiment-dependent B production: $#$ initial B mesons
- Universal ext. inputs: connecting to specific final state
- Channel- $+$ experiment-dependent efficiency: Monte Carlo
- Observable: (Partial) rate of interest for phenomenology
- All of these problematic when aiming at 1% !

Going into even more detail

Universal external inputs:

- Measured by the the same and/or other experiments (LHC, Belle(-II),BaBar, BES-III, Tevatron, CLEO, LEP, . . .)
- No issue in principle, but for instance $\sigma_{\rm rel}(BR(D^+ \rightarrow K^-\pi^+\pi^+)) \approx 2\%$, PDG-scaling 1.6

Measured number of events, efficiency:

• Background subtraction $+$ efficiency typically include (outdated?) models $+$ depend on SM vs BSM **►** Can reweighting correct correct for this?

B production:

- LHCb: f_u/f_d relative production fractions, absolute normalization unfeasible. $f_u/f_d = 1$??
- B factories: $N_{\Upsilon(45)}$ measured, requires sub-threshold runs Theoretical assumptions entering? $f_{0,\pm}$: $\Upsilon(4S)$ BRs, $\sigma_{rel}(f_{0,\pm}) \approx 1.5\%$, depends on assumptions
- **►** This is something I want to discuss in more detail

Production fractions at the B factories

To get an absolute BR, number of decaying B's has to be known From ${\cal N}_{\Upsilon(4S)}$ typically, double-tagging possible

 $\Upsilon(4S) \rightarrow B\bar{B}$ decays:

- Naively: $R^{\pm 0} \equiv \frac{BR(\Upsilon(4S) \rightarrow B^+ B^-)}{BR(\Upsilon(4S) \rightarrow B^0 \bar{B}^0)}$ $\frac{BR(\Upsilon(4S) \to B^+ B^-)}{BR(\Upsilon(4S) \to B^0 \bar{B}^0)} \stackrel{\text{Isospin}}{=} 1 \stackrel{f_B=0}{=} \frac{1/2}{1/2}$ 1/2
- However: close to threshold \rightarrow sizable isospin breaking! Phase space: $R_{\rm PS}^{\pm 0} = 1.048$ Naive Coulomb enhancement: $R_{\text{CE}}^{\pm 0} = 1.20$!?

[Atwood/Marciano,Lepage'90]

◆ More detailed calculations: still (too) large

[Byers+'90,Kaiser+'03,Voloshin+'03'04,Dubynski+'07,Milstein'21]

- T decays in to non- $B\bar{B}$ states: observed $(f_B > 0.264\%)$ \blacktriangleright Uncertainty? CLEO: $f_B = (-0.11 \pm 1.43 \pm 1.07)\%$ With $f_{\mathcal{B}}\neq 0$, $R^{\pm 0}$ not sufficient for $f_{00,\pm}$!
- $R_{\text{HFLAV}}^{\pm0} = 1.058 \pm 0.024$: sizable, not huge Note: PDG averages ignore this largely!

Stops you from knowing any B BR to better than $1 - 2\%$!

How is this measured? [MJ'12,Bernlochner/MJ+'23,HFLAV]

Problem: separate production and decay Three main methods:

- I Single vs. double-tag [MARK-II]
	- Independent of decay mode
- II "Known" ratios
	- **►** Suppression beyond isospin
- III (Quasi-)Isospin assumptions **↓** Uncertainty?
- ♦ Desirable: precision, FS-independent

Can we do better? [Bernlochner/Jung/Khan/Landsberg/Ligeti'23] Observation: $R^{\pm0}$ compatible with phase-space enhancement, only! \rightarrow Additional enhancement at most few $\%$ Idea: use B production $\mathcal{O}\Upsilon(5S)$ $R_{\rm PS}^{\pm 0} \simeq 1, \ R_{\rm CE}^{\pm 0} (\Upsilon(5S)) \approx \frac{1}{4}$ $\frac{1}{4} R_{\mathrm{CE}}^{\pm 0}(\Upsilon(4S)) \longrightarrow R^{\pm 0}(\Upsilon(5S)) \approx 1$

Proposal: measure double-ratios for final states f, f' :

$$
r(f,f') \equiv \left[\frac{N(B^+ \to f)}{N(B^0 \to f')} \right]_{\Upsilon(4S)} / \left[\frac{N(B^+ \to f)}{N(B^0 \to f')} \right]_{\Upsilon(5S)} \approx R^{\pm 0}(\Upsilon(4S))
$$

• Independent of isospin violation in the final state!

Can choose most convenient states f, f' , even completely unrelated states, no isospin necessary

Theoretical expression for the differential decay rate Four-fold differential rate for $B\to D^*(\to D\pi)\ell\nu$ (P-wave) given as $[During, 14, also $lvarov+16]$$

$$
\frac{8\pi}{3} \frac{d^4 \Gamma^{(l)}}{dq^2 d \cos\theta_l d \cos\theta_D d\chi} = \left(J_{1s}^{(l)} + J_{2s}^{(l)} \cos 2\theta_l + J_{6s}^{(l)} \cos\theta_l \right) \sin^2\theta_D \n+ \left(J_{1c}^{(l)} + J_{2c}^{(l)} \cos 2\theta_l + J_{6c}^{(l)} \cos\theta_l \right) \cos^2\theta_D \n+ \left(J_{3}^{(l)} \cos 2\chi + J_{9}^{(l)} \sin 2\chi \right) \sin^2\theta_D \sin^2\theta_l \n+ \left(J_{4}^{(l)} \cos \chi + J_{8}^{(l)} \sin \chi \right) \sin 2\theta_D \sin 2\theta_l \n+ \left(J_{5}^{(l)} \cos \chi + J_{7}^{(l)} \sin \chi \right) \sin 2\theta_D \sin\theta_l
$$

- This expression is valid including any heavy BSM physics
- \bullet $J_i^{(I)}$ $\mu^{(1)}$ are q^2 -dependent functions \rightarrow numbers after integration
- \bullet $J_{7,8}^{(I)}$ $T_{7,8,9}^{\left(\prime\prime\right)}$ change sign under CP

Only CP-averaged measurements available \rightarrow use $S^{(I)}_i = \frac{J^{(I)}_i + J^{(I)}_i}{\Gamma^{(I)} + \overline{\Gamma^{(I)}}}$ $S_{7,8,9}^{(I)}=0$, even beyond the SM [BBGJvD'21] \bullet Only 4 observables in single-differential distributions!

Sensitivity to BSM physics [Bobeth/Bordone/Gubernari/MJ/vanDyk'21]

4 effective operators in $B \to D^* \ell \nu \stackrel{?}{\to} 4 \times 2 = 8$ parameters?

- Clearly not, at least 1 phase always unobservable
- Sensitivity only to bilinears: Re($C_i C_j^*$), Im($C_i C_j^*$), $|C_i|^2$
- $\rightarrow m_{\ell} \rightarrow 0$: P-T and V-A sectors decouple

relations among $J_i^{(l)}$ \int_i' [Algueró+'20]

Consistency of experimental data [Gambino/MJ/Schacht, in prep.]

This allows to compare measurements without FF input:

$$
\Sigma X = \frac{X^e + X^\mu}{2}, \quad \Delta X = X^\mu - X^e, \quad \delta X = X_{\rm hi} - X_{\rm lo}\,.
$$

Consistency of experimental data [Gambino/MJ/Schacht, in prep.]

This allows to compare measurements without FF input:

$$
\Sigma X = \frac{X^e + X^\mu}{2}, \quad \Delta X = X^\mu - X^e, \quad \delta X = X_{\rm hi} - X_{\rm lo}\,.
$$

Consistency of experimental data [Gambino/MJ/Schacht, in prep.]

This allows to compare measurements without FF input:

$$
\Sigma X = \frac{X^e + X^\mu}{2}, \quad \Delta X = X^\mu - X^e, \quad \delta X = X_{\rm hi} - X_{\rm lo}\,.
$$

q^2 dependence

- q^2 range can be large, e.g. $q^2 \in [0, 12]~{\rm GeV}^2$ in $B \to D$
- Calculations give usually one or few points
- Knowledge of functional dependence on q^2 crucial
- This is where discussions start. . .
- Most $B \to D^*$ data not usable due to model dependence!

Give as much information as possible independently of this choice!

q^2 dependence

- q^2 range can be large, e.g. $q^2 \in [0, 12]~{\rm GeV}^2$ in $B \to D$
- Calculations give usually one or few points
- Knowledge of functional dependence on q^2 crucial
- This is where discussions start...
- Most $B \to D^*$ data not usable due to model dependence!
... Situation much better, thanks to Belle(-II)!

Give as much information as possible independently of this choice!

q^2 dependence

- q^2 range can be large, e.g. $q^2 \in [0, 12]~{\rm GeV}^2$ in $B \to D$
- Calculations give usually one or few points
- Knowledge of functional dependence on q^2 crucial
- This is where discussions start...
- Most $B \to D^*$ data not usable due to model dependence!
... Situation much better, thanks to Belle(-II)!

Give as much information as possible independently of this choice!

Even with FF-model-dependent data:

Consistent HFLAV $B \to D^*$ fit in CLN **►** Experimental *w*-dependence well established!

In the following: mostly BGL and HQE (\rightarrow CLN) parametrizations

Generalized Unitairty constraints [Gambino/MJ/Schacht preliminary] Problem in BGL for $B \to M$ transition: cuts below $t_+ = (M_B + M_M)^2$ In $B\to D^*\colon (M_{B_c}+2M_\pi)^2 < t_+^{B\to D^*}$ Already discussed by BGL: model yields small effect Still true by today's standards?

GUCs model-independent approach to address this issue [Gubernari+'20] [also Blake+'22, Flynn+'23, Bordone+'24 talks by Florian and Tobias] Lower threshold \rightarrow integration only over part of the unit circle Monomials in z not orthogonal anymore!

Treatment [Flynn+'23] : non-diagonal unitarity constraints. Convergence?

Unitarity only: (blue \rightarrow red N=1...4)

- Adding higher orders in z affects low orders
- Convergence should be guaranteed, but where?

Generalized Unitairty constraints II [Gambino/MJ/Schacht preliminary]

Lattice-only fit example: Fitting JLQCD FFs at varying order N \rightarrow With "standard" BGL saturation at $N = 3$

Generalized Unitairty constraints II [Gambino/MJ/Schacht preliminary]

Lattice-only fit example: Fitting JLQCD FFs at varying order N \rightarrow With "standard" BGL saturation at $N = 3$

HQE parametrization

Heavy-Quark Expansion (HQE) employs additional information:

- $m_{b,c} \rightarrow \infty$: all $B \rightarrow D^{(*)}$ FFs given by 1 Isgur-Wise function
- Systematic expansion in $1/m_{b,c}$ and α_s
- Higher orders in $1/m_{b,c}$: FFs remain related
	- ♦ Parameter reduction, necessary for NP analyses!

HQE parametrization

Heavy-Quark Expansion (HQE) employs additional information:

- $m_{b,c} \rightarrow \infty$: all $B \rightarrow D^{(*)}$ FFs given by 1 Isgur-Wise function
- Systematic expansion in $1/m_{b,c}$ and α_s
- Higher orders in $1/m_{b,c}$: FFs remain related
	- ♦ Parameter reduction, necessary for NP analyses!

CLN parametrization [Caprini+'97] :

HQE to order $1/m_{b,c}, \alpha_s$ plus (approx.) constraints from unitarity [Bernlochner/Ligeti/Papucci/Robinson'17] : identical approach, updated and consistent treatment of correlations

Problem: Contradicts Lattice QCD (both in $B \to D$ and $B \to D^*$) Dealt with by varying calculable $(\mathbb{C}1/m_{b,c})$ parameters, e.g. $\mathit{h}_{A_1}(1)$ \blacktriangleright Not a systematic expansion in $1/m_{bc}$ anymore! Related uncertainty remains $\mathcal{O}[\Lambda^2/(2m_c)^2] \sim 5\%$, insufficient

HQE parametrization

Heavy-Quark Expansion (HQE) employs additional information:

- $m_{b,c} \rightarrow \infty$: all $B \rightarrow D^{(*)}$ FFs given by 1 Isgur-Wise function
- Systematic expansion in $1/m_{b,c}$ and α_s
- Higher orders in $1/m_{b,c}$: FFs remain related
	- ♦ Parameter reduction, necessary for NP analyses!

CLN parametrization [Caprini+'97] : HQE to order $1/m_{b,c}, \alpha_s$ plus (approx.) constraints from unitarity [Bernlochner/Ligeti/Papucci/Robinson'17] : identical approach, updated and consistent treatment of correlations

Problem: Contradicts Lattice QCD (both in $B \to D$ and $B \to D^*$) Dealt with by varying calculable $(\mathbb{C}1/m_{b,c})$ parameters, e.g. $\mathit{h}_{A_1}(1)$ \blacktriangleright Not a systematic expansion in $1/m_{b,c}$ anymore! Related uncertainty remains $\mathcal{O}[\Lambda^2/(2m_c)^2] \sim 5\%$, insufficient Solution: Include systematically $1/m_c^2$ corrections [Bordone/MJ/vDyk'19,Bordone/Gubernari/MJ/vDyk'20] , using [Falk/Neubert'92] [Bernlochner+'22] : model for $1/m_c^2$ corrections \rightarrow fewer parameters $_{15/23}$

Theory determination of $b \to c$ Form Factors

[Bordone/MJ/vanDyk'19,Bordone/Gubernari/MJ/vanDyk'20]

For general NP analysis, FF shapes needed from theory! Fit to all $B \to D^{(*)}$ FFs, using lattice, LCSR, QCDSR and unitarity [CLN,BGL,HPQCD'15'17,FNAL/MILC'14'15,Gubernari+'18,Ligeti+'92'93] $k/l/m$: order in z for leading/subleading/subsubleading IW functions \rightarrow 2/1/0 works, but only 3/2/1 captures uncertainties Consistent V_{cb} value from Belle'17+'18 **Predictions for diff. rates, perfectly confirmed by data**

Form-factor truncation

Form-factor truncation

Key question: Where do we truncate our expansions?

A [Bernlochner+'19] : include parameter only if χ^2 decreases significantly

► B (GJS, BGJvD): include one "unnecessary" order Comments:

- Large difference, \sim 50% difference in uncertainty
- Motivation for A: convergence, avoid overfitting
- Motivation for B: avoid underestimating uncertainties
- Different perspectives: only describing data, A is ok. However: we extrapolate to regions where we lack sensitivity Example: $g(w)$ from FNAL/MILC
	- perfect description at $\mathcal{O}(z)$
	- large impact from $\mathcal{O}(z^2)$
	- Nevertheless: $\mathcal{O}(z^2) \le 6\% \times \mathcal{O}(z)$ **►** overfitting limited

Just because you're not sensitive, doesn't mean it's not there!

Major improvement: $B_{(s)} \rightarrow D_{(s)}^*$ FFs@ $w > 1!$

Major improvement: $B_{(s)} \rightarrow D_{(s)}^*$ FFs@ $w > 1!$

Major improvement: $B_{(s)} \rightarrow D_{(s)}^*$ FFs@ $w > 1!$

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@ $1/m_c^2$
- Belle'18 (BGL)

Major improvement: $B_{(s)} \rightarrow D_{(s)}^*$ FFs@ $w > 1!$

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@ $1/m_c^2$
- Belle'18 (BGL)
- Belle-II'23 (BGL)

Major improvement: $B_{(s)} \rightarrow D_{(s)}^*$ FFs@ $w > 1!$

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@ $1/m_c^2$
- Belle'18 (BGL)
- Belle-II'23 (BGL)

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23

Major improvement: $B_{(s)} \rightarrow D_{(s)}^*$ FFs@ $w > 1!$

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@ $1/m_c^2$
- Belle'18 (BGL)
- Belle-II'23 (BGL)

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@ $1/m_c^2$

Major improvement: $B_{(s)} \rightarrow D_{(s)}^*$ FFs@ $w > 1!$

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@ $1/m_c^2$
- Belle'18 (BGL)
- Belle-II'23 (BGL)

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@ $1/m_c^2$
- Belle'18 (BGL)

Major improvement: $B_{(s)} \rightarrow D_{(s)}^*$ FFs@ $w > 1!$

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@ $1/m_c^2$
- Belle'18 (BGL)
- Belle-II'23 (BGL)
- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@ $1/m_c^2$
- Belle'18 (BGL)
- $Belle-II'23 (BGL)$ 18/23

Major improvement: $B_{(s)} \rightarrow D_{(s)}^*$ FFs@ $w > 1!$

 1.4 1.2 $R_0(w)$ 0.8 0.6 1.0 1.1 1.2 1.3 1.4 1.5

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@ $1/m_c^2$
- Belle'18 (BGL)
- Belle-II'23 (BGL)

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@ $1/m_c^2$

Binned V_{cb} from Belle'18 data: FNAL/MILC vs HPQCD

19 / 23

Binned V_{cb} from Belle'18 data: FNAL/MILC vs JLQCD

Overview over predictions for $R(D^*)$

 0.24 0.26

0.28 R_{D}

Lattice $B \to D^*$: $h_{A_1}(w = 1)$ [FNAL/MILC'14, HPQCD'17], [FNAL/MILC'21] Other lattice: $f_{+,0}^{B\to D}(q^2)$ [FNAL/MILC,HPQCD'15] QCDSR: [Ligeti/Neubert/Nir'93,'94] , LCSR: [Gubernari/Kokulu/vDyk'18]

Overall consistent SM predictions! "Explaining" $R(D^*)$ by FM/HPQCD \rightarrow NP in $B \rightarrow D^*(e, \mu)\nu!$ Can we resolve the $R(D^*)$ puzzle with different FFs? $\mathsf{Rewriting}\,\, R(D^*)\colon\,$ [Bigi/Gambino/Schacht'17]

$$
R(D^*) = \underbrace{R_{\tau,1}}_{\text{determined by } d\Gamma/dw|_{\ell}} + \underbrace{R_{\tau,2}}_{\sim m_{\tau}^2 F_2^2, \sim R_{\tau,1}/10}
$$

 \blacktriangleright 0.25 → \sim 0.27 (FNAL/MILC, HPQCD) \Leftrightarrow 100% correction to $R_{\tau,2}!$ $R(D^*)$ prediction to 90% "measurable" More specifically: strong correlation between F_L^e and $R(D^*)$:

Can we resolve the $R(D^*)$ puzzle with different FFs? $\mathsf{Rewriting}\,\, R(D^*)\colon\,$ [Bigi/Gambino/Schacht'17]

$$
R(D^*) = \underbrace{R_{\tau,1}}_{\text{determined by } d\Gamma/dw|_{\ell}} + \underbrace{R_{\tau,2}}_{\sim m_{\tau}^2 F_2^2, \sim R_{\tau,1}/10}
$$

 \blacktriangleright 0.25 → \sim 0.27 (FNAL/MILC, HPQCD) \Leftrightarrow 100% correction to $R_{\tau,2}!$ $R(D^*)$ prediction to 90% "measurable" More specifically: strong correlation between F_L^e and $R(D^*)$:

Conclusions

We have work ahead of us!

- 1. Need to control all inputs to very good precision
	- \rightarrow Proposed new method(s) to determine B production
- 2. q^2 dependence of FFs critical
	- Need parametrization-independent data
- 3. Inclusion of higher-order (theory) uncertainties essential **►** Affects a lot of subfits
- 4. HQE: systematic expansion in $1/m, \alpha_s$, relates FFs \rightarrow $\mathcal{O}(1/m_c)$ (\rightarrow CLN) not sufficient anymore
- 5. Important LQCD analyses in $\mathit{B}_{(s)} \rightarrow \mathit{D}_{(s)}^{*}$ @ finite recoil
- \blacktriangleright Agreement for f, g tensions in ratios $(F_{1,2})$ correlations?
- 6. Despite complications: $R(D^{(*)})$ SM prediction robust!

Central lesson:

Experiment and theory (lattice $+$ pheno) need to work closely together!

Exclusive decays: Form factors

In exclusive decays, hadronic information encoded in Form Factors They parametrize fundamental mismatch:

> Theory (e.g. SM) for partons (quarks) vs. Experiment with hadrons

 $\langle D_q(p')|\bar{c}\gamma^\mu b|\bar{B}_q(p)\rangle = (p+p')^\mu f_+^q(q^2) + (p-p')^\mu f_-^q(q^2)$, $q^2 = (p-p')^2$

Most general matrix element parametrization, given symmetries: Lorentz symmetry plus P- and T-symmetry of QCD $f_{\pm}(q^2)$: real, scalar functions of one kinematic variable

How to obtain these functions?

◆ Calculable w/ non-perturbative methods (Lattice, LCSR,...) Precision?

 \rightarrow Measurable e.g. in semileptonic transitions Normalization? Suppressed FFs? NP?

The BGL parametrization [Boyd/Grinstein/Lebed, 90's] FFs are parametrized by a few coefficients the following way:

- 1. Consider analytical structure, make poles and cuts explicit
- 2. Without poles or cuts, the rest can be Taylor-expanded in z
- 3. Apply QCD symmetries (unitarity, crossing) **↓** dispersion relation
- 4. Calculate partonic part (mostly) perturbatively

The BGL parametrization [Boyd/Grinstein/Lebed, 90's] FFs are parametrized by a few coefficients the following way:

- 1. Consider analytical structure, make poles and cuts explicit
- 2. Without poles or cuts, the rest can be Taylor-expanded in z
- 3. Apply QCD symmetries (unitarity, crossing) **↓** dispersion relation
- 4. Calculate partonic part (mostly) perturbatively

Result: Model-independent parametrization

$$
F(t) = \frac{1}{P(t)\phi(t)} \sum_{n=0}^{\infty} a_n [z(t, t_0)]^n.
$$

- a_n : real coefficients, the only unknowns
- $P(t)$: Blaschke factor(s), information on poles below t_{+}
- $\phi(t)$: Outer function, chosen such that $\sum_{n=0}^{\infty} a_n^2 \leq 1$

Series in z with bounded coefficients (each $|a_n| \leq 1$)! ♦ Uncertainty related to truncation is calculable!

$B \to D\ell\nu$

- $B \to D \ell \nu$, aka "The teacher's pet":
	- Excellent agreement between experiments [BaBar'09, Belle'16]
	- Excellent agreement between two lattice determinations [FNAL/MILC'15,HPQCD'16]
	- **► Lattice data inconsistent with CLN parametrization!** (but consistent w/ HQE@1/m, discussed later)
	- BGL fit [Bigi/Gambino'16] :

$$
R(D)=0.299(3).
$$

See also [Jaiswal+,Berlochner+'17,MJ/Straub'18,Bordone/MJ/vanDyk'19]

 $f_{+,0}(z)$, inputs:

- FNAL/MILC'15
- HPQCD'16
- BaBar'09
- Belle'16

 $V_{cb} + R(D^*)$ w/ data + lattice + unitarity [Gambino/MJ/Schacht'19]

Belle'18(+'17) provide FF-independent data for 4 single-differential rates BGL analysis:

- Datasets compatible
- \bullet d'Agostini bias $+$ syst. important
- Expand FFs to z^2 **► 50% increased uncertainties**

- Belle'18: no parametrization dependence
- Belle'17 never published \rightarrow replace w/ Belle'23, not available yet
- Tension w/ inclusive reduced, but not removed

$$
R(D^*) = 0.253^{+0.007}_{-0.006}
$$
 (including LCSR point)

Comparison to Bernlochner+'22

Bernlochner et al. also perform HQE analysis $@1/m_c^2$. Differences:

- Postulate different counting within HQET **► Highly constraining model for higher-order corrections**
- Avoid use of LCSR (and mostly QCDSR) results
- \bullet Include partial α_s^2 corrections
- Include FNAL/MILC results partially
- Expansion in z: $2/1/0$ (justified in [Bernlochner+'19])

Observations:

- $1/m_c^2$ corrections necessary
- Overall small uncertainties
- $V_{cb} = (38.7 \pm 0.6) \times 10^{-3}$ \blacktriangleright smaller due to larger $\mathcal{F}(1)$
- $R(D^*)$: agreement w/ $BGJvD$
- $R(D) \sim 3\sigma$ from GJS + BGJvD In my opinion due to model

 $V_{cb} + R(D^*)$ w/ data + lattice + unitarity [Gambino/MJ/Schacht'19] Belle'17+'18 provide FF-independent data for 4 single-differential rates Analysis of these data with BGL form factors:

- Datasets roughly compatible
- \bullet d'Agostini bias $+$ syst. important
- All FFs to z^2 to include uncertainties **► 50% increased uncertainties**
- 2018: no parametrization dependence

$$
\begin{array}{rcl}\n|V_{cb}^{D^*}| & = & 39.6_{-1.0}^{+1.1} \left[39.2_{-1.2}^{+1.4}\right] \times 10^{-3} \\
R(D^*) & = & 0.254_{-0.006}^{+0.007} \left[0.253_{-0.006}^{+0.007}\right] \\
\text{In brackets: } & 2018 \text{ only } (\Delta V_{cb}^{\text{Belle}} = 0.9)\n\end{array}
$$

Updating the $|V_{cb}|$ puzzle:

- Tension 1.9σ (larger $\delta V_{cb}^{B\rightarrow D^*}$)
- $B_s \rightarrow D_s^{(*)}$ reduces tension further
- $V_{cb}^{B\rightarrow D^{*}}$ vs. V_{cb}^{incl} still problematic

 12 1.4

See also [Bigi+,Bernlocher+,Grinstein+'17,Jaiswal+'17'19,MJ/Straub'18,Bordone+'29/20]

Theory determination of $b \rightarrow c$ Form Factors

SM: BGL fit to data + FF normalization $\rightarrow |V_{cb}|$

NP: can affect the q^2 -dependence, introduces additional FFs

► To determine general NP, FF shapes needed from theory

[MJ/Straub'18,Bordone/MJ/vDyk'19] used all available theory input:

- Unitarity bounds (using results from [CLN, BGL]) non-trivial $1/m$ vs. z expansions
- LQCD for $f_{+,0}(q^2)$ $(B \rightarrow D),$ $h_{A_1}(q^2_{\textrm{max}})$ $(B \rightarrow D^*)$ [HPQCD'15,'17,Fermilab/MILC'14,'15]
- LCSR for all FFs (mod f_T) [Gubernari/Kokulu/vDyk'18]
- QCDSR results for $1/m$ IW functions [Ligeti+'92'93]
- HQET expansion to $\mathcal{O}(\alpha_{\sf s},1/m_{\sf b},1/m_{\sf c}^2)$

FFs under control; $R(D^*) = 0.247(6)$ [Bordone/MJ/vDyk'19]

Robustness of the HQE expansion up to $1/m_c^2$ [Bordone/MJ/vDyk'19]

Testing FFs by comparing to data and fits in BGL parametrization:

• Fits $3/2/1$ and $2/1/0$ are theory-only fits $(!)$

- $k/l/m$ denotes orders in z at $\mathcal{O}(1, 1/m_c, 1/m_c^2)$
- w-distribution yields information on FF shape $\rightarrow V_{cb}$
- Angular distributions more strongly constrained by theory, only
- Predicted shapes perfectly confirmed by $B\to D^{(*)}\ell\nu$ data
- $\blacktriangleright V_{ch}$ from Belle'17 compatible between HQE and BGL!

Robustness of the HQE expansion up to $1/m_c^2$ [Bordone/MJ/vDyk'19]

Testing FFs by comparing to data and fits in BGL parametrization:

• $B \to D^*$ BGL coefficient ratios from:

- 1. Data (Belle'17+'18) + weak unitarity (yellow)
- 2. HQE theory fit 2/1/0 (red)
- 3. HQE theory fit 3/2/1 (blue)

► Again compatibility of theory with data

 \rightarrow 2/1/0 underestimates the uncertainties massively

For $b_i, c_i \, (\rightarrow f, \mathcal{F}_1)$ data and theory complementary

Application: Flavour universality in $B \to D^*(e, \mu)\nu$ [Bobeth/Bordone/Gubernari/MJ/vDyk'21]

So far: Belle'18 data used in SM fits, flavour-averaged However: Bins 40 \times 40 covariances given separately for $\ell = e, \mu$ Belle' 18 : $R_{e/\mu}(D^*) = 1.01 \pm 0.01 \pm 0.03$ What can we learn about flavour-non-universality? \rightarrow 2 issues:

1. $e - \mu$ correlations not given, but constructible from Belle'18

2. 3 bins linearly dependent, but covariances not singular Two-step analysis:

- 1. 2×4 angular observables suffice for 2×30 angular bins **►** Model-independent description including NP!
- 2. Compare with SM predictions, using FFs@ $1/m_c^2$ [Bordone+'19]

