Semileptonic $B ightarrow D^*$ decays: The long path to 1%

Martin Jung

Lattice meets continuum 2024 Siegen, 2nd of October 2024

INN

UNIVERSITÀ DI TORINO

Istituto Nazionale di Fisica Nucleare Sezione di Toruno Tensions as a motivation for semileptonic decays? Present tensions in $B \rightarrow D^* I \nu$ decays:

- These are not the main motivations to study this mode
- Whatever your interpretation: necessary to understand!
 - potentially triggering progress
- Potential explanations: Exp. vs. QCD vs. BSM?
- Partly discussed in the following

What could go wrong?

Standard workflow:

- 1. Experimental measurement of (partial) rates [Raynette's talk]
- 2. Theoretical expressions for measured observables: SM plus potentially BSM
- 3. Theoretical/Phenomenological parametrization: Form factors
 - **•** Extract FF parameters, $|V_{cb}|$ (and Wilson bilinears)

- Some tensions within points 1+3, no issues (afaik) in point 2
- In the following: scrutinize/detail all three points, essentially no BSM discussion [\rightarrow Uli's talk]
- One elephant in the room not discussed: e/m effects
 What I'm discussing *should* be larger effects

Substructure of a measurement from a pheno perspective

Experiment makes contact with phenomenology via background-subtracted, unfolded spectra. Structure:

- Counting rate: Main experimental result
- Experiment-dependent *B* production: # initial B mesons
- Universal ext. inputs: connecting to specific final state
- Channel- + experiment-dependent efficiency: Monte Carlo
- Observable: (Partial) rate of interest for phenomenology
- All of these problematic when aiming at 1%!

Going into even more detail

Universal external inputs:

- Measured by the the same and/or other experiments (LHC, Belle(-II),BaBar, BES-III, Tevatron, CLEO, LEP, ...)
- No issue in principle, but for instance $\sigma_{\rm rel}(BR(D^+ \to K^- \pi^+ \pi^+)) \approx 2\%$, PDG-scaling 1.6

Measured number of events, efficiency:

 Background subtraction + efficiency typically include (outdated?) models + depend on SM vs BSM
 Can reweighting correct correct for this?

B production:

- LHCb: f_u/f_d relative production fractions, absolute normalization unfeasible. $f_u/f_d = 1??$
- *B* factories: $N_{\Upsilon(4S)}$ measured, requires sub-threshold runs Theoretical assumptions entering? $f_{0,\pm}$: $\Upsilon(4S)$ BRs, $\sigma_{\rm rel}(f_{0,\pm}) \approx 1.5\%$, depends on assumptions
- This is something I want to discuss in more detail

Production fractions at the B factories

To get an absolute BR, number of decaying *B*'s has to be known From $N_{\Upsilon(4S)}$ typically, double-tagging possible

 $\Upsilon(4S)
ightarrow Bar{B}$ decays:

- Naively: $R^{\pm 0} \equiv \frac{BR(\Upsilon(4S) \rightarrow B^+B^-)}{BR(\Upsilon(4S) \rightarrow B^0\bar{B}^0)} \stackrel{\text{Isospin}}{=} 1 \stackrel{f_{\mathcal{B}}=0}{=} \frac{1/2}{1/2}$
- However: close to threshold \rightarrow sizable isospin breaking! Phase space: $R_{\rm PS}^{\pm 0} = 1.048$ Naive Coulomb enhancement: $R_{\rm CE}^{\pm 0} = 1.20$!?

[Atwood/Marciano,Lepage'90]

More detailed calculations: still (too) large

[Byers+'90,Kaiser+'03,Voloshin+'03'04,Dubynski+'07,Milstein'21]

- ↑ decays in to non-BB states: observed (f_B > 0.264%)
 ▶ Uncertainty? CLEO: f_B = (-0.11 ± 1.43 ± 1.07)%
 With f_B ≠ 0, R^{±0} not sufficient for f_{00,±}!
- R^{±0}_{HFLAV} = 1.058 ± 0.024: sizable, not huge Note: PDG averages ignore this largely!

Stops you from knowing any *B* BR to better than 1 - 2%!

How is this measured? [MJ'12,Bernlochner/MJ+'23,HFLAV]

$R^{\pm 0}$	Method	Comment	Reference
1.047(44)(36)	Single vs. double-tag	Uses $f_{\mathcal{B}}$, see text	[10, 16, 17]
1.039(31)(50)	$B \to X_c \ell \nu$	Assumes negligible isospin violation	[18, 19]
1.068(32)(20)(21)	$B \rightarrow X_s \gamma$	Third uncertainty due to resolved photon contributions	[20]
1.055(30)		Average categories I and II	
1.065(12)(19)(32)	$B \rightarrow J/\psi K$	Third uncertainty due to isospin violation in $B \to J/\psi K$	[21, 22]
1.013(36)(27)(30)	$B \rightarrow J/\psi K$	Third uncertainty due to isospin violation in $B\to J/\psi K$	[23]
1.100(35)(35)(33)	$B \rightarrow J/\psi(ee)K$	Third uncertainty due to isospin violation in $B \to J/\psi K$	[24]
1.066(32)(34)(32)	$B \rightarrow J/\psi(\mu\mu)K$	Systematic uncertainties $\sim 100\%$ correlated with $ee~{\rm mode}$	[24]
1.060(18)(32)		Average for $B \to J/\psi K$	
1.057(23)		Average of all categories I–III	

Problem: separate production and decay Three main methods:

- I Single vs. double-tag [MARK-II]
 - Independent of decay mode
- II "Known" ratios
 - Suppression beyond isospin
- III (Quasi-)Isospin assumptions
 Uncertainty?
- Desirable: precision, FS-independent

Can we do better? [Bernlochner/Jung/Khan/Landsberg/Ligeti'23] Observation: $R^{\pm 0}$ compatible with phase-space enhancement, only! Additional enhancement at most few % Idea: use *B* production @ $\Upsilon(5S)$ $R_{PS}^{\pm 0} \simeq 1$, $R_{CE}^{\pm 0}(\Upsilon(5S)) \approx \frac{1}{4}R_{CE}^{\pm 0}(\Upsilon(4S)) \longrightarrow R^{\pm 0}(\Upsilon(5S)) \approx 1$

Proposal: measure double-ratios for final states f, f':

$$r(f,f') \equiv \left[\frac{N(B^+ \to f)}{N(B^0 \to f')}\right]_{\Upsilon(4S)} / \left[\frac{N(B^+ \to f)}{N(B^0 \to f')}\right]_{\Upsilon(5S)} \approx R^{\pm 0}(\Upsilon(4S))$$

- Independent of isospin violation in the final state!
- Can choose most convenient states f, f', even completely unrelated states, no isospin necessary

	Belle	Belle II partial	Belle II full
$\mathcal{L}_{\Upsilon(5S)}$ / $\mathcal{L}_{\Upsilon(4S)}$ $[ab^{-1}/ab^{-1}]$	0.12 / 0.71	0.5 / 5	5 / 50
$N_{B^{(*)}B^{(*)}}^{\Upsilon(5S)} \; / \; N_{BB}^{\Upsilon(4S)}$	2.74×10^7 / 7.72×10^8	1.13×10^8 / 5.55×10^9	1.13×10^9 / 5.55×10^{10}
f, f'	$\Delta r(f$	(f,f')/r(f,f')	
$J/\psi K^+, \ J/\psi K^0$	7.1%	3.5%	1.1%
$\bar{D}^0 \pi^+, D^- \pi^+$	2.4%	1.2%	0.4%
$\bar{D}^{*0}\ell^+\nu, \ D^{*-}\ell^+\nu$	4.5%	2.2%	0.7%
$\bar{D}^0 \pi^+, \ D^{*-} \ell^+ \nu$	1.8%	0.9%	0.3%

Theoretical expression for the differential decay rate Four-fold differential rate for $B \rightarrow D^*(\rightarrow D\pi)\ell\nu$ (P-wave) given as [Duraisamy+'14, also Ivanov+'16]

$$\frac{8\pi}{3} \frac{d^4 \Gamma^{(l)}}{dq^2 d \cos \theta_l d \cos \theta_D d\chi} = \left(J_{1s}^{(l)} + J_{2s}^{(l)} \cos 2\theta_l + J_{6s}^{(l)} \cos \theta_l\right) \sin^2 \theta_D \\ + \left(J_{1c}^{(l)} + J_{2c}^{(l)} \cos 2\theta_l + J_{6c}^{(l)} \cos \theta_l\right) \cos^2 \theta_D \\ + \left(J_3^{(l)} \cos 2\chi + J_9^{(l)} \sin 2\chi\right) \sin^2 \theta_D \sin^2 \theta_l \\ + \left(J_4^{(l)} \cos \chi + J_8^{(l)} \sin \chi\right) \sin 2\theta_D \sin 2\theta_l \\ + \left(J_5^{(l)} \cos \chi + J_7^{(l)} \sin \chi\right) \sin 2\theta_D \sin \theta_l$$

- This expression is valid including any heavy BSM physics
- $J_i^{(l)}$ are q^2 -dependent functions \rightarrow numbers after integration • $J_{7.8.9}^{(l)}$ change sign under CP

Only CP-averaged measurements available \rightarrow use $S_i^{(I)} = \frac{J_i^{(I)} + \overline{J}_i^{(I)}}{\overline{\Gamma}^{(I)} + \overline{\Gamma}^{(I)}}$ $S_{7,8,9}^{(I)} = 0$, even beyond the SM [BBGJvD'21] Only 4 observables in single-differential distributions!

Sensitivity to BSM physics [Bobeth/Bordone/Gubernari/MJ/vanDyk'21]

4 effective operators in $B \rightarrow D^* \ell \nu \xrightarrow{?} 4 \times 2 = 8$ parameters?

- Clearly not, at least 1 phase always unobservable
- Sensitivity only to bilinears: $\operatorname{Re}(C_i C_i^*)$, $\operatorname{Im}(C_i C_i^*)$, $|C_i|^2$
- ▶ $m_{\ell} \rightarrow 0$: P-T and V-A sectors decouple

• relations among $J_i^{(I)}$ [Algueró+'20]

Observable	$ C_A ^2$	$ C_V ^2$	$ C_P ^2$	$ C_T ^2$	$\operatorname{Re}(C_A C_V^*)$	$\operatorname{Re}(C_A C_P^*)$	$\operatorname{Re}(C_A C_T^*)$	$\operatorname{Re}(C_V C_P^*)$	$\operatorname{Re}(C_V C_T^*)$	$\operatorname{Re}(C_P C_T^*)$
$J_{1c} = V_1^0$	1	-	~	1	_	(m)	(m)	-	-	_
$J_{1s} = V_1^T$	1	\checkmark	-	~	-	-	(m)	-	(m)	-
$J_{2c} = V_2^0$	1	_	-	1	-	-	-	-	-	-
$J_{2s} = V_2^T$	1	~	-	~	-	-	-	-	-	-
$J_{3} = V_{4}^{T}$	 ✓ 	~	-	~	-	-	-	-	-	-
$J_4 = V_1^{0T}$	1	_	-	~	-	-	-	-	-	-
$J_{5} = V_{2}^{0T}$	(m^2)	_	-	(m^2)	~	(m)	(m)	-	(m)	 ✓
$J_{6c} = V_3^0$	(m^2)	-	-	-	-	(m)	(m)	-	-	 ✓
$J_{6s} = V_3^T$	-	_	-	(m^2)	✓	-	(m)	-	(m)	-
$d\Gamma/dq^2$	1	~	1	~	-	(m)	(m)	-	(m)	-
$\operatorname{num}(A_{\operatorname{FB}})$	(m^2)	-	-	(m^2)	~	(m)	(m)	-	(m)	1
$\operatorname{num}(F_L)$	 ✓ 	-	1	~	-	(m)	(m)	-	-	-
$\operatorname{num}(F_L-1/3)$	1	~	~	1	-	(m)	(m)	-	(m)	-
$\operatorname{num}(\widetilde{F}_L)$	1	(m^2)	~	~	-	(m)	(m)	-	(m)	-
$\operatorname{num}(\widetilde{F}_L-1/3)$	 ✓ 	~	-	~	-	-	-	-	-	-
$\operatorname{num}(S_3)$	1	~	-	~	-	-	-	-	-	-
Observable	-	-	-	-	$\operatorname{Im}(C_A C_V^*)$	$\operatorname{Im}(C_A C_P^*)$	$\operatorname{Im}(C_A C_T^*)$	$\operatorname{Im}(C_V C_P^*)$	$\operatorname{Im}(C_V C_T^*)$	$\operatorname{Im}(C_P C_T^*)$
$J_7 = V_3^{0T}$					(m^2)	-	(m)	(m)	-	~
$J_8 = V_4^{0T}$					 ✓ 	-	-	-	-	-
$J_9 = V_5^T$					 ✓ 	-	_	-	-	-

Consistency of experimental data [Gambino/MJ/Schacht, in prep.]

This allows to compare measurements without FF input:

$$\Sigma X = rac{X^e + X^\mu}{2}, \quad \Delta X = X^\mu - X^e, \quad \delta X = X_{\mathrm{hi}} - X_{\mathrm{lo}}.$$

Measurement	Belle-II 23a [3]	Belle-II 23b $[4]$	Belle 23 a $[1]$	Belle 23b [2]	Belle 18 [5]
χ^2/dof	7.5/16	53/42	113/118	118/118	48/52
Observable					
$\Sigma A_{\mathrm{FB,tot}}$	0.171(23)	0.189(19)	0.238(11)	0.244(14)	0.212(5)
$\Sigma S_{3,\mathrm{tot}}$	-0.130(29)	-0.141(8)	-0.126(22)	-0.126(24)	-0.139(6)
$\Sigma S_{5,\mathrm{tot}}$	0.173(25)			0.177(20)	
$\Sigma F_{ m L,tot}$		0.524(8)	0.500(13)	0.530(18)	0.5302(35)
$\Sigma ilde{F}_{ m L,tot}$		0.515(20)	0.523(20)	0.514(23)	0.543(7)
$\Delta A_{\rm FB,tot}$	-0.03(5)	-0.020(22)	-0.002(22)	0.020(27)	0.035(9)
$\Delta S_{3,\mathrm{tot}}$	-0.08(6)	-0.023(17)	-0.04(4)	-0.04(5)	-0.013(11)
$\Delta S_{5,\mathrm{tot}}$	-0.03(5)			0.04(4)	
$\Delta F_{ m L,tot}$		0.007(9)	0.027(25)	0.02(4)	-0.006(6)
$\Delta ilde{F}_{ m L,tot}$		-0.015(28)	0.001(38)	-0.02(5)	-0.011(14)
$\Delta \delta A_{\rm FB}$	-0.14(6)			$0.04(6)^{\S}$	
$\Delta\delta ilde{F}_{ m L}$				$0.28(10)^{\S}$	

Consistency of experimental data [Gambino/MJ/Schacht, in prep.]

This allows to compare measurements without FF input:

$$\Sigma X = rac{X^e + X^\mu}{2}, \quad \Delta X = X^\mu - X^e, \quad \delta X = X_{\mathrm{hi}} - X_{\mathrm{lo}}.$$

Measurement	Belle-II 23a [3]	Belle-II 23b [4]	Belle 23 a $[1]$	Belle 23b [2]	Belle 18 [5]
χ^2/dof	7.5/16	53/42	113/118	118/118	48/52
Observable					
$\Sigma A_{\mathrm{FB,tot}}$	0.171(23)	0.189(19)	0.238(11)	0.244(14)	0.212(5)
$\Sigma S_{3,\mathrm{tot}}$	-0.130(29)	-0.141(8)	-0.126(22)	-0.126(24)	-0.139(6)
$\Sigma S_{5,\mathrm{tot}}$	0.173(25)			0.177(20)	
$\Sigma F_{ m L,tot}$		0.524(8)	0.500(13)	0.530(18)	0.5302(35)
$\Sigma ilde{F}_{ m L,tot}$		0.515(20)	0.523(20)	0.514(23)	0.543(7)
$\Delta A_{\rm FB,tot}$	-0.03(5)	-0.020(22)	-0.002(22)	0.020(27)	0.035(9)
$\Delta S_{3,\mathrm{tot}}$	-0.08(6)	-0.023(17)	-0.04(4)	-0.04(5)	-0.013(11)
$\Delta S_{5,\mathrm{tot}}$	-0.03(5)			0.04(4)	
$\Delta F_{ m L,tot}$		0.007(9)	0.027(25)	0.02(4)	-0.006(6)
$\Delta ilde{F}_{ m L,tot}$		-0.015(28)	0.001(38)	-0.02(5)	-0.011(14)
$\Delta \delta A_{\rm FB}$	-0.14(6)			$0.04(6)^{\S}$	
$\Delta \delta ilde{F}_{ m L}$				$0.28(10)^{\S}$	

Consistency of experimental data [Gambino/MJ/Schacht, in prep.]

This allows to compare measurements without FF input:

$$\Sigma X = rac{X^e + X^\mu}{2}, \quad \Delta X = X^\mu - X^e, \quad \delta X = X_{\mathrm{hi}} - X_{\mathrm{lo}}.$$

Measurement	Belle-II 23a [3]	Belle-II 23b [4]	Belle 23 a $[1]$	Belle 23b [2]	Belle 18 [5]
χ^2/dof	7.5/16	53/42	113/118	118/118	48/52
Observable					
$\Sigma A_{\mathrm{FB,tot}}$	0.171(23)	0.189(19)	0.238(11)	0.244(14)	0.212(5)
$\Sigma S_{3,\mathrm{tot}}$	-0.130(29)	-0.141(8)	-0.126(22)	-0.126(24)	-0.139(6)
$\Sigma S_{5,\mathrm{tot}}$	0.173(25)			0.177(20)	
$\Sigma F_{ m L,tot}$		0.524(8)	0.500(13)	0.530(18)	0.5302(35)
$\Sigma ilde{F}_{ m L,tot}$		0.515(20)	0.523(20)	0.514(23)	0.543(7)
$\Delta A_{\rm FB,tot}$	-0.03(5)	-0.020(22)	-0.002(22)	0.020(27)	0.035(9)
$\Delta S_{3,\mathrm{tot}}$	-0.08(6)	-0.023(17)	-0.04(4)	-0.04(5)	-0.013(11)
$\Delta S_{5,\mathrm{tot}}$	-0.03(5)			0.04(4)	
$\Delta F_{ m L,tot}$		0.007(9)	0.027(25)	0.02(4)	-0.006(6)
$\Delta ilde{F}_{ m L,tot}$		-0.015(28)	0.001(38)	-0.02(5)	-0.011(14)
$\Delta \delta A_{\rm FB}$	-0.14(6)			$0.04(6)^{\$}$	
$\Delta \delta ilde{F}_{ m L}$				$0.28(10)^{\S}$	

q^2 dependence

- q^2 range can be large, e.g. $q^2 \in [0,12]~{
 m GeV}^2$ in B
 ightarrow D
- Calculations give usually one or few points
- **•** Knowledge of functional dependence on q^2 crucial
- This is where discussions start...
- ▶ Most $B \rightarrow D^*$ data not usable due to model dependence!

Give as much information as possible independently of this choice!

q^2 dependence

- q^2 range can be large, e.g. $q^2 \in [0,12]~{
 m GeV}^2$ in B
 ightarrow D
- Calculations give usually one or few points
- **•** Knowledge of functional dependence on q^2 crucial
- This is where discussions start...
- Most B → D* data not usable due to model dependence! Situation much better, thanks to Belle(-II)!

Give as much information as possible independently of this choice!

q^2 dependence

- q^2 range can be large, e.g. $q^2 \in [0,12]~{
 m GeV}^2$ in B
 ightarrow D
- Calculations give usually one or few points
- **•** Knowledge of functional dependence on q^2 crucial
- This is where discussions start...
- Most B → D* data not usable due to model dependence! Situation much better, thanks to Belle(-II)!

Give as much information as possible independently of this choice!

Even with FF-model-dependent data:

Consistent HFLAV $B \rightarrow D^*$ fit in CLN Experimental *w*-dependence well established!

In the following: mostly BGL and HQE (\rightarrow CLN) parametrizations

Generalized Unitairty constraints [Gambino/MJ/Schacht preliminary] Problem in BGL for $B \to M$ transition: cuts below $t_+ = (M_B + M_M)^2$ In $B \to D^*$: $(M_{B_c} + 2M_{\pi})^2 < t_+^{B \to D^*}$ Already discussed by BGL: model yields small effect Still true by today's standards?

GUCs model-independent approach to address this issue [Gubernari+'20] [also Blake+'22,Flynn+'23, Bordone+'24 talks by Florian and Tobias] Lower threshold \rightarrow integration only over part of the unit circle Monomials in z not orthogonal anymore!

Treatment [Flynn+'23] : non-diagonal unitarity constraints. Convergence?

Unitarity only: (blue \rightarrow red N=1...4)

- Adding higher orders in z affects low orders
- Convergence should be guaranteed, but where?

Generalized Unitairty constraints II [Gambino/MJ/Schacht preliminary]

Lattice-only fit example: Fitting JLQCD FFs at varying order NWith "standard" BGL saturation at N = 3

Generalized Unitairty constraints II [Gambino/MJ/Schacht preliminary]

Lattice-only fit example: Fitting JLQCD FFs at varying order NWith "standard" BGL saturation at N = 3

HQE parametrization

Heavy-Quark Expansion (HQE) employs additional information:

- $m_{b,c} \to \infty$: all $B \to D^{(*)}$ FFs given by 1 lsgur-Wise function
- Systematic expansion in $1/m_{b,c}$ and α_s
- Higher orders in $1/m_{b,c}$: FFs remain related
 - Parameter reduction, necessary for NP analyses!

HQE parametrization

Heavy-Quark Expansion (HQE) employs additional information:

- $m_{b,c} \to \infty$: all $B \to D^{(*)}$ FFs given by 1 lsgur-Wise function
- Systematic expansion in $1/m_{b,c}$ and α_s
- Higher orders in $1/m_{b,c}$: FFs remain related
 - Parameter reduction, necessary for NP analyses!

CLN parametrization [Caprini+'97] :

HQE to order $1/m_{b,c}$, α_s plus (approx.) constraints from unitarity [Bernlochner/Ligeti/Papucci/Robinson'17] : identical approach, updated and consistent treatment of correlations

Problem: Contradicts Lattice QCD (both in $B \to D$ and $B \to D^*$) Dealt with by varying calculable $(@1/m_{b,c})$ parameters, e.g. $h_{A_1}(1)$ Not a systematic expansion in $1/m_{b,c}$ anymore! Related uncertainty remains $\mathcal{O}[\Lambda^2/(2m_c)^2] \sim 5\%$, insufficient

HQE parametrization

Heavy-Quark Expansion (HQE) employs additional information:

- $m_{b,c} \to \infty$: all $B \to D^{(*)}$ FFs given by 1 lsgur-Wise function
- Systematic expansion in $1/m_{b,c}$ and α_s
- Higher orders in $1/m_{b,c}$: FFs remain related
 - Parameter reduction, necessary for NP analyses!

CLN parametrization [Caprini+'97] : HQE to order $1/m_{b,c}$, α_s plus (approx.) constraints from unitarity [Bernlochner/Ligeti/Papucci/Robinson'17] : identical approach, updated and consistent treatment of correlations

Problem: Contradicts Lattice QCD (both in $B \to D$ and $B \to D^*$) Dealt with by varying calculable ($(@1/m_{b,c})$ parameters, e.g. $h_{A_1}(1)$ Not a systematic expansion in $1/m_{b,c}$ anymore! Related uncertainty remains $\mathcal{O}[\Lambda^2/(2m_c)^2] \sim 5\%$, insufficient Solution: Include systematically $1/m_c^2$ corrections [Bordone/MJ/vDyk'19,Bordone/Gubernari/MJ/vDyk'20], using [Falk/Neubert'92] [Bernlochner+'22] : model for $1/m_c^2$ corrections \rightarrow fewer parameters

Theory determination of $b \rightarrow c$ Form Factors

[Bordone/MJ/vanDyk'19,Bordone/Gubernari/MJ/vanDyk'20]

For general NP analysis, FF shapes needed from theory! Fit to all $B \rightarrow D^{(*)}$ FFs, using lattice, LCSR, QCDSR and unitarity [CLN,BGL,HPQCD'15'17,FNAL/MILC'14'15,Gubernari+'18,Ligeti+'92'93] k/l/m: order in z for leading/subleading/subsubleading IW functions 2/1/0 works, but only 3/2/1 captures uncertainties Consistent V_{cb} value from Belle'17+'18

Predictions for diff. rates, perfectly confirmed by data

Form-factor truncation

Form-factor truncation

Key question: Where do we truncate our expansions?

 A [Bernlochner+'19] : include parameter only if χ² decreases significantly
 B (GJS, BGJvD): include one "unnecessary" order Comments:

- Large difference, $\sim 50\%$ difference in uncertainty
- Motivation for A: convergence, avoid overfitting
- Motivation for B: avoid underestimating uncertainties
- Different perspectives: only describing data, A is ok. However: we extrapolate to regions where we lack sensitivity
 Example: g(w) from FNAL/MILC
 - perfect description at $\mathcal{O}(z)$
 - large impact from $\mathcal{O}(z^2)$
 - Nevertheless: $\mathcal{O}(z^2) \leq 6\% \times \mathcal{O}(z)$ • overfitting limited

Just because you're not sensitive, doesn't mean it's not there!

Major improvement: $B_{(s)} \rightarrow D^*_{(s)}$ FFs@w > 1!

Major improvement: $B_{(s)} \rightarrow D^*_{(s)}$ FFs@w > 1!

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@1/m²_c

Major improvement: $B_{(s)} \rightarrow D^*_{(s)}$ FFs@w > 1!

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@1/m_c²
- Belle'18 (BGL)

Major improvement: $B_{(s)} \rightarrow D^*_{(s)}$ FFs@w > 1!

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@1/m²_c
- Belle'18 (BGL)
- Belle-II'23 (BGL)

Major improvement: $B_{(s)} \rightarrow D^*_{(s)}$ FFs@w > 1!

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@1/m_c²
- Belle'18 (BGL)
- Belle-II'23 (BGL)

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23

Major improvement: $B_{(s)} \rightarrow D^*_{(s)}$ FFs@w > 1!

1.6 1.4 (3) (4) (5) (1.2) (1.0) (1.0) (1.0) (1.1) (1.2) (1.2) (1.0) (1.2) (1.0) (1.2) (1.0) (1.2) (1.0)

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@ $1/m_c^2$
- Belle'18 (BGL)
- Belle-II'23 (BGL)

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@1/m_c²

Major improvement: $B_{(s)} \rightarrow D^*_{(s)}$ FFs@w > 1!

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@1/m_c²
- Belle'18 (BGL)
- Belle-II'23 (BGL)

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@1/m_c²
- Belle'18 (BGL)

Major improvement: $B_{(s)} \rightarrow D^*_{(s)}$ FFs@w > 1!

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@1/m_c²
- Belle'18 (BGL)
- Belle-II'23 (BGL)
- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@ $1/m_c^2$
- Belle'18 (BGL)
- Belle-II'23 (BGL)

Major improvement: $B_{(s)} \rightarrow D^*_{(s)}$ FFs@w > 1!

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@ $1/m_c^2$
- Belle'18 (BGL)
- Belle-II'23 (BGL)

- FNAL/MILC'21
- JLQCD'24
- HPQCD'23
- HQE@ $1/m_c^2$

Binned V_{cb} from Belle'18 data: FNAL/MILC vs HPQCD

19/23

Overview over predictions for $R(D^*)$

Value	Method	Input Theo	Input Exp	Reference
i	BGL	Lattice, HQET	Belle'17'18	Gambino et al.'19
	BGL	Lattice, HQET	Belle'18	Jaiswal et al.'20
—	HQET@1/ m_c^2, α_s	Lattice, LCSR, QCDSR	Belle'17'18	Bordone et al.'20
i	"Average"			HFLAV'21
—	$\mathrm{HQET_{RC}@1/}\mathit{m^2},\!\alpha_s^{(2)}$	Belle'17'18	Lattice	Bernlochner et al.'22
н	BGL	Lattice	Belle'18, Babar'19	Vaquero et al.'21v2
H	BGL	Lattice	Belle'18	JLQCD'23 (MJ)
H	BGL	Lattice	Belle'18	Davies, Harrison'23
i	HQET@1/ m_c^2, α_s	Lattice, LCSR, QCDSR		Bordone et al.'20
·	DM	Lattice		Martinelli et al.
·	BGL	Lattice		Vaquero et al.'21v2
·	BGL	Lattice		JLQCD'23
	BGL	Lattice		Davies, Harrison'23

0.24 0.26 0.28 R_{D*}

Lattice $B \rightarrow D^*$: $h_{A_1}(w = 1)$ [FNAL/MILC'14,HPQCD'17], [FNAL/MILC'21] Other lattice: $f_{+,0}^{B \rightarrow D}(q^2)$ [FNAL/MILC,HPQCD'15] QCDSR: [Ligeti/Neubert/Nir'93,'94], LCSR: [Gubernari/Kokulu/vDyk'18]

Overall consistent SM predictions! "Explaining" $R(D^*)$ by FM/HPQCD \rightarrow NP in $B \rightarrow D^*(e, \mu)\nu$! Can we resolve the $R(D^*)$ puzzle with different FFs? Rewriting $R(D^*)$: [Bigi/Gambino/Schacht'17]

$$R(D^*) = \underbrace{R_{\tau,1}}_{\text{determined by } d\Gamma/dw|_{\ell}} + \underbrace{R_{\tau,2}}_{\sim m_{\tau}^2} F_{2}^2, \sim R_{\tau,1}/10}$$

 ▶ 0.25 →~ 0.27 (FNAL/MILC, HPQCD) ⇔ 100% correction to R_{τ,2}!
 ▶ R(D*) prediction to 90% "measurable" More specifically: strong correlation between F^e_L and R(D*):

Can we resolve the $R(D^*)$ puzzle with different FFs? Rewriting $R(D^*)$: [Bigi/Gambino/Schacht'17]

$$R(D^*) = \underbrace{R_{\tau,1}}_{\text{determined by } d\Gamma/dw|_{\ell}} + \underbrace{R_{\tau,2}}_{\sim m_{\tau}^2} F_{2}^2, \sim R_{\tau,1}/10}$$

 ▶ 0.25 →~ 0.27 (FNAL/MILC, HPQCD) ⇔ 100% correction to R_{τ,2}!
 ▶ R(D*) prediction to 90% "measurable" More specifically: strong correlation between F^e_L and R(D*):

Conclusions

We have work ahead of us!

- 1. Need to control all inputs to very good precision
 - Proposed new method(s) to determine B production
- 2. q^2 dependence of FFs critical
 - Need parametrization-independent data
- Inclusion of higher-order (theory) uncertainties essential
 Affects a lot of subfits
- 4. HQE: systematic expansion in 1/m, α_s, relates FFs
 ▶ O(1/m_c) (→ CLN) not sufficient anymore
- 5. Important LQCD analyses in $B_{(s)} \rightarrow D^*_{(s)}$ @ finite recoil
- Agreement for f, g tensions in ratios $(F_{1,2})$ correlations?
- 6. Despite complications: $R(D^{(*)})$ SM prediction robust!

Central lesson:

Experiment and theory (lattice + pheno) need to work closely together!

Exclusive decays: Form factors

In exclusive decays, hadronic information encoded in Form Factors They parametrize fundamental mismatch:

> Theory (e.g. SM) for partons (quarks) vs. Experiment with hadrons

 $\langle D_q(p')|\bar{c}\gamma^{\mu}b|\bar{B}_q(p)\rangle = (p+p')^{\mu}f^q_+(q^2) + (p-p')^{\mu}f^q_-(q^2), q^2 = (p-p')^2$

Most general matrix element parametrization, given symmetries: Lorentz symmetry plus P- and T-symmetry of QCD $f_{\pm}(q^2)$: real, scalar functions of one kinematic variable

How to obtain these functions?

- Calculable w/ non-perturbative methods (Lattice, LCSR,...) Precision?
- Measurable e.g. in semileptonic transitions Normalization? Suppressed FFs? NP?

The BGL parametrization [Boyd/Grinstein/Lebed, 90's] FFs are parametrized by a few coefficients the following way:

- 1. Consider analytical structure, make poles and cuts explicit
- 2. Without poles or cuts, the rest can be Taylor-expanded in z
- Apply QCD symmetries (unitarity, crossing)
 dispersion relation
- 4. Calculate partonic part (mostly) perturbatively

The BGL parametrization [Boyd/Grinstein/Lebed, 90's] FFs are parametrized by a few coefficients the following way:

- 1. Consider analytical structure, make poles and cuts explicit
- 2. Without poles or cuts, the rest can be Taylor-expanded in z
- Apply QCD symmetries (unitarity, crossing)
 dispersion relation
- 4. Calculate partonic part (mostly) perturbatively

Result: Model-independent parametrization $F(t) = \frac{1}{P(t)\phi(t)} \sum_{n=0}^{\infty} a_n [z(t, t_0)]^n.$

- *a_n*: real coefficients, the only unknowns
- P(t): Blaschke factor(s), information on poles below t_+
- $\phi(t)$: Outer function, chosen such that $\sum_{n=0}^{\infty} a_n^2 \leq 1$

Series in z with bounded coefficients (each $|a_n| \le 1$)! Uncertainty related to truncation is calculable!

$B \to D\ell\nu$

- $B
 ightarrow D\ell
 u$, aka "The teacher's pet":
 - Excellent agreement between experiments [BaBar'09,Belle'16]
 - Excellent agreement between two lattice determinations [FNAL/MILC'15,HPQCD'16]
 - Lattice data inconsistent with CLN parametrization! (but consistent w/ HQE@1/m, discussed later)
 - BGL fit [Bigi/Gambino'16] :

R(D) = 0.299(3).

See also [Jaiswal+,Berlochner+'17,MJ/Straub'18,Bordone/MJ/vanDyk'19]

 $f_{+,0}(z)$, inputs:

- FNAL/MILC'15
- HPQCD'16
- BaBar'09
- Belle'16

 $V_{cb} + R(D^*)$ w/ data + lattice + unitarity [Gambino/MJ/Schacht'19]

Belle'18(+'17) provide FF-independent data for 4 single-differential rates BGL analysis:

- Datasets compatible
- d'Agostini bias + syst. important
- Expand FFs to z²
 50% increased uncertainties

- Belle'18: no parametrization dependence
- Belle'17 never published \rightarrow replace w/ Belle'23, not available yet
- Tension w/ inclusive reduced, but not removed

$$R(D^*) = 0.253^{+0.007}_{-0.006}$$
 (including LCSR point)

Comparison to Bernlochner+'22

Bernlochner et al. also perform HQE analysis $@1/m_c^2$. Differences:

- Postulate different counting within HQET
 Highly constraining model for higher-order corrections
- Avoid use of LCSR (and mostly QCDSR) results
- Include partial α_s^2 corrections
- Include FNAL/MILC results partially
- Expansion in z: 2/1/0 (justified in [Bernlochner+'19])

Observations:

- $1/m_c^2$ corrections necessary
- Overall small uncertainties
- $V_{cb} = (38.7 \pm 0.6) \times 10^{-3}$ • smaller due to larger $\mathcal{F}(1)$
- $R(D^*)$: agreement w/ BGJvD
- *R*(*D*) ~ 3σ from GJS + BGJvD
 In my opinion due to model

 $V_{cb} + R(D^*)$ w/ data + lattice + unitarity [Gambino/MJ/Schacht'19] Belle'17+'18 provide FF-independent data for 4 single-differential rates Analysis of these data with BGL form factors:

- Datasets roughly compatible
- d'Agostini bias + syst. important
- All FFs to z² to include uncertainties
 50% increased uncertainties
- 2018: no parametrization dependence

$$\begin{split} |V_{cb}^{D^*}| &= & 39.6^{+1.1}_{-1.0} \left[39.2^{+1.4}_{-1.2} \right] \times 10^{-3} \\ R(D^*) &= & 0.254^{+0.007}_{-0.006} \left[0.253^{+0.007}_{-0.006} \right] \\ \text{In brackets: 2018 only } (\Delta V_{cb}^{\text{Belle}} = 0.9) \end{split}$$

Updating the $|V_{cb}|$ puzzle:

- Tension 1.9 σ (larger $\delta V_{cb}^{B \rightarrow D^*}$)
- $B_s
 ightarrow D_s^{(*)}$ reduces tension further
- $V_{cb}^{B \rightarrow D^*}$ vs. V_{cb}^{incl} still problematic

25 ²⁰ ¹⁵ ¹⁶ ¹⁶ ¹⁶ ¹⁶ ¹⁶ ¹⁶ ¹⁶

See also [Bigi+,Bernlocher+,Grinstein+'17,Jaiswal+'17'19,MJ/Straub'18,Bordone+'29/29]

Theory determination of $b \rightarrow c$ Form Factors

SM: BGL fit to data + FF normalization $\rightarrow |V_{cb}|$

NP: can affect the q^2 -dependence, introduces additional FFs

To determine general NP, FF shapes needed from theory

[MJ/Straub'18,Bordone/MJ/vDyk'19] used all available theory input:

- Unitarity bounds (using results from [CLN, BGL])
 non-trivial 1/m vs. z expansions
- LQCD for $f_{+,0}(q^2)$ $(B \to D)$, $h_{A_1}(q^2_{\max})$ $(B \to D^*)$ [HPQCD'15,'17,Fermilab/MILC'14,'15]
- LCSR for all FFs (mod f_T) [Gubernari/Kokulu/vDyk'18]
- QCDSR results for 1/m IW functions [Ligeti+'92'93]
- HQET expansion to $\mathcal{O}(\alpha_s, 1/m_b, 1/m_c^2)$

FFs under control; $R(D^*) = 0.247(6)$ [Bordone/MJ/vDyk'19]

Robustness of the HQE expansion up to $1/m_c^2$ [Bordone/MJ/vDyk'19]

Testing FFs by comparing to data and fits in BGL parametrization:

• Fits 3/2/1 and 2/1/0 are theory-only fits(!)

- k/l/m denotes orders in z at $\mathcal{O}(1, 1/m_c, 1/m_c^2)$
- w-distribution yields information on FF shape $ightarrow V_{cb}$
- Angular distributions more strongly constrained by theory, only
- \blacktriangleright Predicted shapes perfectly confirmed by $B \to D^{(*)} \ell \nu$ data
- ► V_{cb} from Belle'17 compatible between HQE and BGL!

Robustness of the HQE expansion up to $1/m_c^2$ [Bordone/MJ/vDyk'19]

Testing FFs by comparing to data and fits in BGL parametrization:

• $B \rightarrow D^*$ BGL coefficient ratios from:

- 1. Data (Belle'17+'18) + weak unitarity (yellow)
- 2. HQE theory fit 2/1/0 (red)
- 3. HQE theory fit 3/2/1 (blue)

Again compatibility of theory with data

2/1/0 underestimates the uncertainties massively

For $b_i, c_i \ (\rightarrow f, \mathcal{F}_1)$ data and theory complementary

Application: Flavour universality in $B \rightarrow D^*(e, \mu)\nu$ [Bobeth/Bordone/Gubernari/MJ/vDyk'21]

So far: Belle'18 data used in SM fits, flavour-averaged However: Bins 40 × 40 covariances given separately for $\ell = e, \mu$ Belle'18: $R_{e/\mu}(D^*) = 1.01 \pm 0.01 \pm 0.03$

What can we learn about flavour-non-universality? \rightarrow 2 issues:

1. $e - \mu$ correlations not given, but constructible from Belle'18

2. 3 bins linearly dependent, but covariances not singular Two-step analysis:

- 2 × 4 angular observables suffice for 2 × 30 angular bins
 Model-independent description including NP!
- 2. Compare with SM predictions, using FFs@1/ m_c^2 [Bordone+'19]

