

Factorial Growth of Perturbation Theory and Inclusive Semileptonic *B* Decays

Andreas S. Kronfeld Fermilab & IAS TU München

IIIrd Lattice meets Continuum 30 September 2024 Siegen

Inclusive Semileptonic B Decay Rate

Decay rate:

$$\Gamma(B \to X_c \ell \nu) = \frac{1}{M_B} \operatorname{Im} \int d^4 x \langle B | T \{ \mathcal{H}_{\text{eff}}(x) \mathcal{H}_{\text{eff}}(0) \} | B \rangle$$

• Momentum $p \sim m_b$ dominates, so $x \sim 1/m_b$ allows operator-product expansion, leading to $(\rho = m_c/m_b)$

$$\Gamma(B \to X_c \ell \nu) = \frac{G_F^2 |V_{cb}|^2}{192\pi^3} m_b^5 g(\rho) \left[1 + \sum_{l=0}^{\infty} c_l \alpha_s^{l+1} - \frac{\mu_\pi^2}{2m_b^2} - g_G(\rho) \frac{\mu_G^2}{2m_b^2} \cdots \right]$$

where m_b is the pole mass. Known as the heavy-quark expansion (HQE).

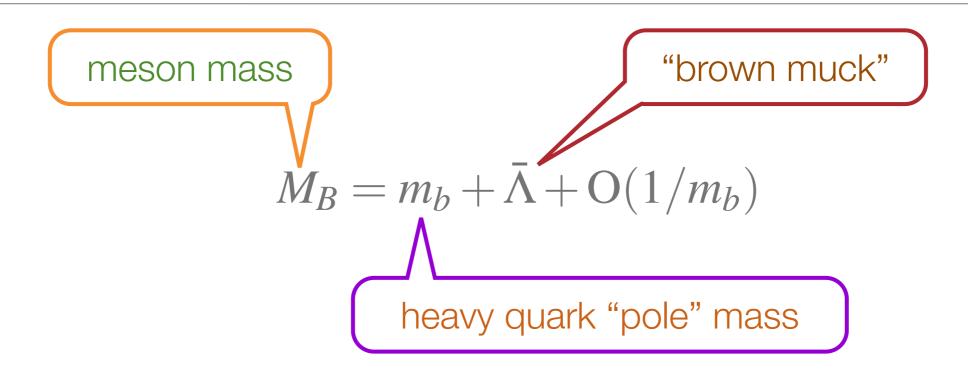
Natural HQE(T) expansion parameter is the pole mass (aka on-shell mass).

Inclusive Semileptonic B Decay Rate

Decay rate:

$$\Gamma(B \to X_c \ell \nu) = \frac{1}{M_B} \operatorname{Im} \int d^4 x \langle B | T \{ \mathcal{H}_{\text{eff}}(x) \mathcal{H}_{\text{eff}}(0) \} | B \rangle$$

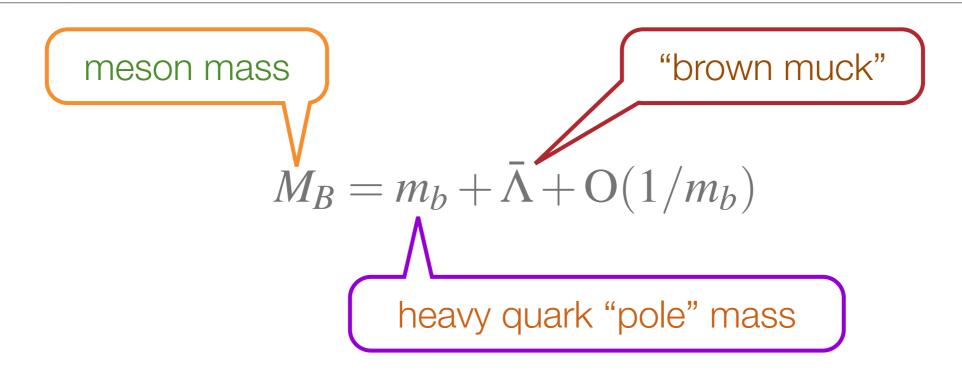
• Momentum $p \sim m_b$ dominates, so $x \sim 1/m_b$ allows operator-product expansion, leading to $(\rho = m_c/m_b)$


$$\Gamma(B \to X_c \ell \nu) = \frac{G_F^2 |V_{cb}|^2}{192\pi^3} m_b^5 g(\rho) \left[1 + \sum_{l=0}^{\infty} c_l \alpha_s^{l+1} - \frac{\mu_{\pi}^2}{2m_b^2} - g_G(\rho) \frac{\mu_G^2}{2m_b^2} \cdots \right]$$

where m_b is the pole mass. Known as the heavy-quark expansion (HQE).

· Natural HQE(T) expansion parameter is the pole mass (aka on-shell mass).

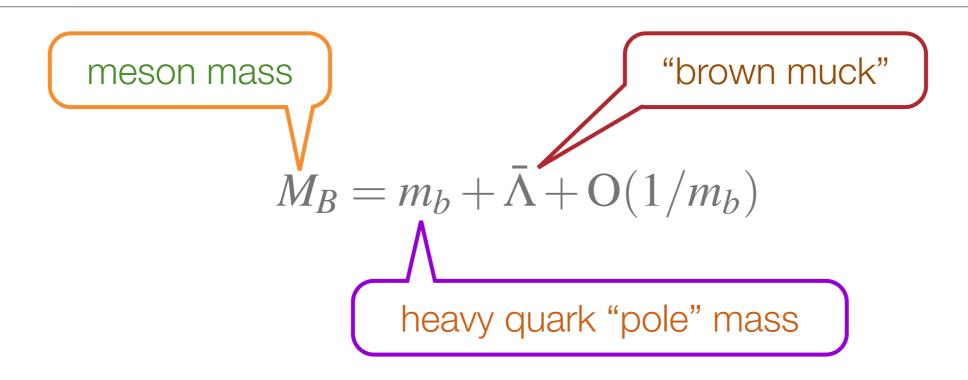
3


Relation Between Meson Mass and Quark Mass

$$ar{m}_b = m_{b,\overline{\mathrm{MS}}}(ar{m}_b)$$
 $m_b = ar{m}_b \left(1 + \sum_{l=0} r_l lpha_\mathrm{s}^{l+1}(ar{m})
ight)$

$$r_l = \{1, 2.44, 8.83, 41.53\}r_0$$

Relation Between Meson Mass and Quark Mass



$$ar{m}_b = m_{b,\overline{\mathrm{MS}}}(ar{m}_b)$$
 $m_b = ar{m}_b \left(1 + \sum_{l=0} r_l lpha_{\mathrm{s}}^{l+1}(ar{m})
ight)$

$$r_l = \{1, 2.44, 8.83, 41.53\}r_0$$

Relation Between Meson Mass and Quark Mass

$$ar{m}_b = m_{b,\overline{\mathrm{MS}}}(ar{m}_b)$$

$$m_b = ar{m}_b \left(1 + \sum_{l=0} r_l lpha_\mathrm{s}^{l+1}(ar{m}) \right) \longrightarrow m_{b,\mathrm{MRS}}$$

$$r_l = \{1, 2.44, 8.83, 41.53\}r_0$$

Prototypical α_s Determination

Consider an "effective charge" with a single hard scale:

power correction

$$\mathcal{R}(Q) = R(Q) + C_p \frac{\Lambda^p}{Q^p}$$

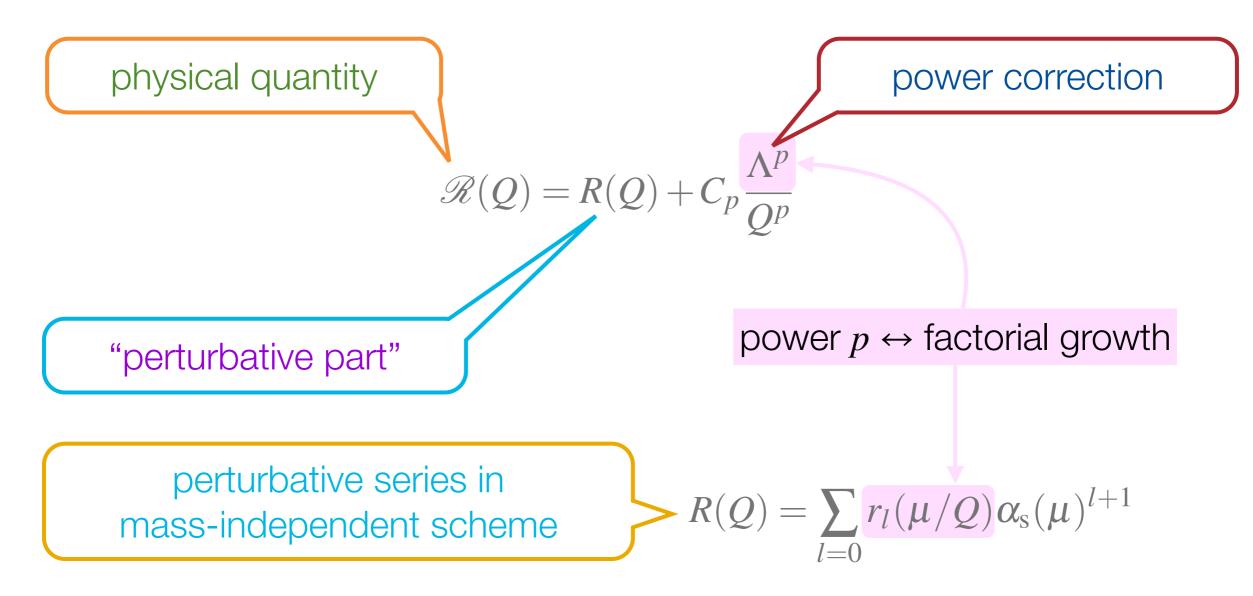
"perturbative part"

Prototypical α_s Determination

· Consider an "effective charge" with a single hard scale:

power correction

$$\mathcal{R}(Q) = R(Q) + C_p \frac{\Lambda^p}{Q^p}$$


"perturbative part"

perturbative series in mass-independent scheme

$$R(Q) = \sum_{l=0} r_l(\mu/Q) \alpha_{\rm s}(\mu)^{l+1}$$

Prototypical α_s Determination

Consider an "effective charge" with a single hard scale:

Perturbative part and power correction inseparable.

Factorial Growth

- Even in quantum mechanics, high orders of perturbation theory grow factorially [e.g., Bender & Wu 1971, 1973].
- Also in QFT [e.g., Gross & Neveu 1974, Lautrup 1977].
- In pQCD, r_l grow factorially (known for a long time):

$$r_l \sim R_0^{(p)} \left(\frac{2\beta_0}{p}\right)^l \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \equiv R_l^{(p)}$$

for
$$l \gg 1$$
. Here $b = \beta_1/2\beta_0^2 \stackrel{n_f=3}{=} 32/81 \approx 0.4$.

• Does $r_l = \{1, 1.38, 5.46, 26.7\}$ start growing by l = 3?

Factorial Growth

- Even in quantum mechanics, high orders of perturbation theory grow factorially [e.g., Bender & Wu 1971, 1973].
- Also in QFT [e.g., Gross & Neveu 1974, Lautrup 1977].
- In pQCD, r_l grow factorially (known for a long time):

$$r_l \sim R_0^{(p)} \left(\frac{2\beta_0}{p}\right)^l \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \equiv R_l^{(p)}$$

for
$$l \gg 1$$
. Here $b = \beta_1/2\beta_0^2 \stackrel{n_f=3}{=} 32/81 \approx 0.4$.

• Does $r_l = \{1, 1.38, 5.46, 26.7\}$ start growing by l = 3?

Summary of Math in arXiv:2310.151137 [in JHEP]

- Use some simple steps and the RGE (which connects μ independence of R(Q) to Q dependence of R(Q)—
 - · obtain a more slowly growing set of coefficients, $f_k^{(p)}$.
- Invert an infinite matrix (lower triangular).

 Simplify and clarify "minimal renormalon subtraction (MRS)" of arXiv:1701.00347 and arXiv:1712.04983 [Komijani].

$$r_{l} = \left(\frac{2\beta_{0}}{p}\right)^{l} \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \sum_{k=0}^{l-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_{0}}\right)^{k} f_{k}^{(p)} + f_{l}^{(p)}$$

- In some problems, the $f_k^{(p)}$ grow, but more slowly (same formula, p'>p).
 - leads to generalization to cascade of powers.

$$r_{l} = \left(\frac{2\beta_{0}}{p}\right)^{l} \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \sum_{k=0}^{l-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_{0}}\right)^{k} f_{k}^{(p)} + f_{l}^{(p)}$$
 well-known growth

- In some problems, the $f_k^{(p)}$ grow, but more slowly (same formula, p'>p).
 - leads to generalization to cascade of powers.

$$r_{l} = \left(\frac{2\beta_{0}}{p}\right)^{l} \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \sum_{k=0}^{l-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_{0}}\right)^{k} f_{k}^{(p)} + f_{l}^{(p)}$$
well-known growth Komijani R_{0} (with finite # of terms)

- In some problems, the $f_k^{(p)}$ grow, but more slowly (same formula, p'>p).
 - · leads to generalization to cascade of powers.

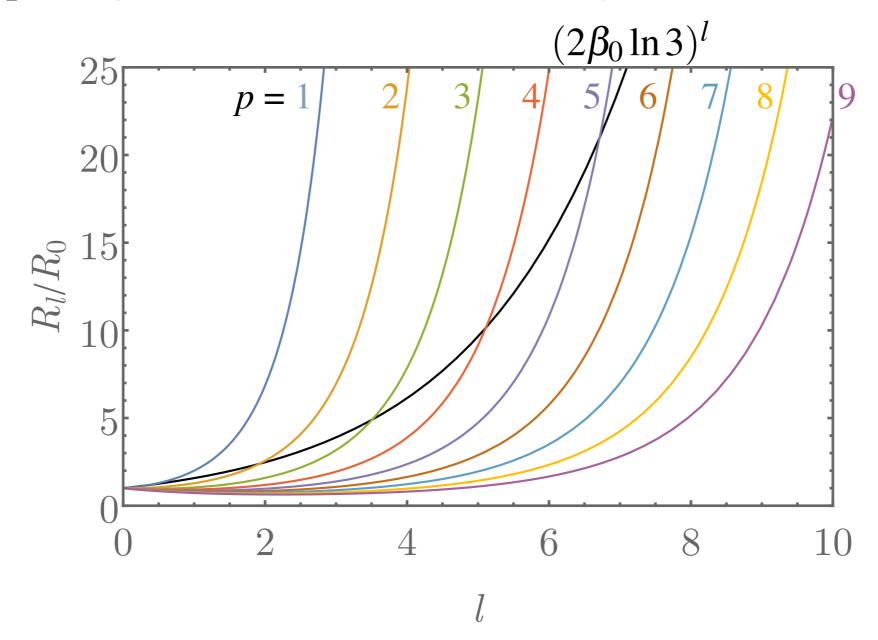
$$r_{l} = \underbrace{\left(\frac{2\beta_{0}}{p}\right)^{l} \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)}}_{\text{V}} \underbrace{\sum_{k=0}^{l-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_{0}}\right)^{k} f_{k}^{(p)}}_{\text{V}} + f_{l}^{(p)}$$
well-known growth

Komijani R_{0} (with finite # of terms)

extra

- In some problems, the $f_k^{(p)}$ grow, but more slowly (same formula, p'>p).
 - leads to generalization to cascade of powers.

Exact result ("=" not "~"):


$$r_{l} = \left(\frac{2\beta_{0}}{p}\right)^{l} \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \sum_{k=0}^{l-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_{0}}\right)^{k} f_{k}^{(p)} + f_{l}^{(p)}$$
well-known growth Komijani R_{0} (with finite # of terms) extra

This form used to re-sum.

- In some problems, the $f_k^{(p)}$ grow, but more slowly (same formula, p'>p).
 - leads to generalization to cascade of powers.

Growth ↔ Power

• Larger $p \Rightarrow$ growth takes over at larger l.

Perturbative Series

- In practice, the r_l are in the literature for l < L.
- The f_l , l < L, are obtained from them, and the formula returns these r_l (as it must).
- For $l \ge L$, the formula tells us (formally) the largest part:

$$r_{l} = \underbrace{\left(\frac{2\beta_{0}}{p}\right)^{l} \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)}}_{\text{Well-known growth}} \underbrace{\sum_{k=0}^{l-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_{0}}\right)^{k} f_{k}^{(p)}}_{\text{Komijani } R_{0} \text{ (truncated)}}^{l-1} + f_{l}^{(p)}$$

use the approximate formula for the uncalculated terms.

Perturbative Series

- In practice, the r_l are in the literature for l < L.
- The f_l , l < L, are obtained from them, and the formula returns these r_l (as it must).
- For $l \ge L$, the formula tells us (formally) the largest part:

$$r_l pprox \left(rac{2eta_0}{p}
ight)^l rac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \left(rac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(rac{p}{2eta_0}
ight)^k f_k^{(p)}$$
 well-known growth Komijani R_0 (truncated)

use the approximate formula for the uncalculated terms.

Recap & Compendium

That means

$$\sum_{l=0}^{\infty} r_l \alpha_{\mathrm{s}}^{l+1} \to \sum_{l=0}^{L-1} r_l \alpha_{\mathrm{s}}^{l+1} + \sum_{l=L}^{\infty} R_l^{(p)} \alpha_{\mathrm{s}}^{l+1}$$

with

$$R_l^{(p)} \equiv R_0^{(p)} \left(\frac{2\beta_0}{p}\right)^l \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)}$$

$$R_0^{(p)} \equiv \sum_{k=0}^{L-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_0}\right)^k f_k^{(p)}$$

 Justified because the retained terms are formally larger than the ones omitted.

Rearrange and Borel Sum

We have

$$R(Q) = \sum_{l=0}^{\infty} r_{l} \alpha_{s}^{l+1} \to \sum_{l=0}^{L-1} r_{l} \alpha_{s}^{l+1} + \sum_{l=L}^{\infty} R_{l}^{(p)} \alpha_{s}^{l+1}$$

$$= \underbrace{\sum_{l=0}^{L-1} \left(r_{l} - R_{l}^{(p)} \right) \alpha_{s}^{l+1}}_{R_{RS}^{(p)}(Q)} + \underbrace{\sum_{l=0}^{\infty} R_{l}^{(p)} \alpha_{s}^{l+1}}_{R_{B}^{(p)}(Q)}$$

- · The "renormalon subtracted" part and the "Borel" part.
- The R_l from above yield divergent sum for R_B , but we're not done yet: use Borel summation to assign meaning.

• Using the integral representation of $\Gamma(l+1)$:

$$\begin{split} R_{\mathrm{B}}^{(p)}(Q) = & R_{0}^{(p)} \sum_{l=0}^{\infty} \left[\frac{\Gamma(l+1+pb)}{\Gamma(1+pb)\Gamma(l+1)} \int_{0}^{\infty} \left(\frac{2\beta_{0}t}{p} \right)^{l} \mathrm{e}^{-t/\alpha_{\mathrm{g}}(Q)} \mathrm{d}t \right] \\ \to & R_{0}^{(p)} \int_{0}^{\infty} \frac{\mathrm{e}^{-t/\alpha_{\mathrm{g}}(Q)}}{(1-2\beta_{0}t/p)^{1+pb}} \mathrm{d}t \end{split} \qquad \qquad \text{Mathematica knows the sum}$$

where 2nd line comes from (illegally) swapping Σ and J.

- Branch point in integrand at $t = p/2\beta_0$, dubbed "renormalon singularity" ['t Hooft 1979].
- (Alternatively, use integral representation of $\Gamma(l+1+pb)$.)

Split integration in two [BKKV, arXiv:1712.04983]:

$$R_{\rm B}^{(p)}(Q) = R_0^{(p)} \int_0^{p/2\beta_0} \frac{\mathrm{e}^{-t/\alpha_{\rm g}(Q)}}{(1 - 2\beta_0 t/p)^{1+pb}} \mathrm{d}t$$
$$+ R_0^{(p)} \int_{p/2\beta_0}^{\infty} \frac{\mathrm{e}^{-t/\alpha_{\rm g}(Q)}}{(1 - 2\beta_0 t/p)^{1+pb}} \mathrm{d}t$$

Mathematica knows the integrals

where ± on 2nd line comes from choice of contour.

- Without loss, absorb the second line into the power correction in $\mathscr{R}(Q)$:
 - heavy-light hadron mass, $\bar{\Lambda} \to \bar{\Lambda}_{MRS}$.

Split integration in two [BKKV, arXiv:1712.04983]:

Mathematica knows the integrals

$$R_{\rm B}^{(p)}(Q) = R_{0}^{(p)} \frac{p}{2\beta_{0}} \mathscr{I}(pb, 1/2\beta_{0}\alpha_{\rm g}(Q))^{Q}$$

$$-R_{0}^{(p)} e^{\pm ipb\pi} \frac{p^{1+pb}}{2^{1+pb}_{p/2\beta}\beta_{01} - 2\beta_{0}t/p} \frac{e^{-1/[2\beta_{0}\alpha_{\rm g}(Q)]}}{[\beta_{0}\alpha_{\rm g}(Q)]^{b}}$$

where ± on 2nd line comes from choice of contour.

- Without loss, absorb the second line into the power correction in $\mathcal{R}(Q)$:
 - heavy-light hadron mass, $\bar{\Lambda} \to \bar{\Lambda}_{MRS}$.

Split integration in two [BKKV, <u>arXiv:1712.04983</u>]:

Mathematica knows the integrals

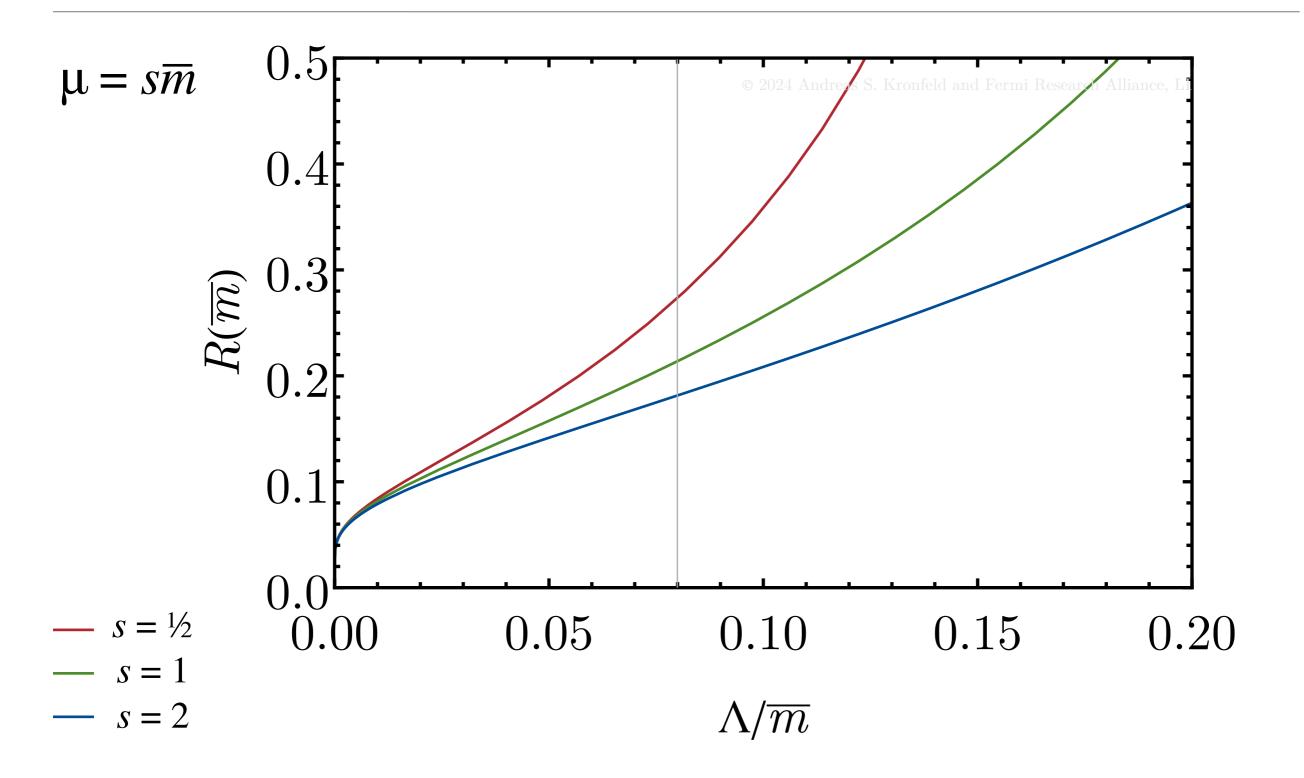
$$R_{\rm B}^{(p)}(Q) = R_{0}^{(p)} \frac{p}{2\beta_{0}} \left[\frac{(pb, 1/2\beta_{0}\alpha_{\rm g}(Q))^{Q}}{(1 - 2\beta_{0}t/p)^{1+pb}} dt - R_{0}^{(p)} e^{\pm ipb\pi} \frac{p^{1+pb}}{2^{1+pb}_{p/2\beta}\beta_{01} - 2\beta_{0}t/p} \frac{e^{-t/\alpha_{\rm g}(Q)}}{p[\beta_{0}\alpha_{\rm g}(Q)]^{b}} \right]^{p}$$

where ± on 2nd line comes from choice of contour.

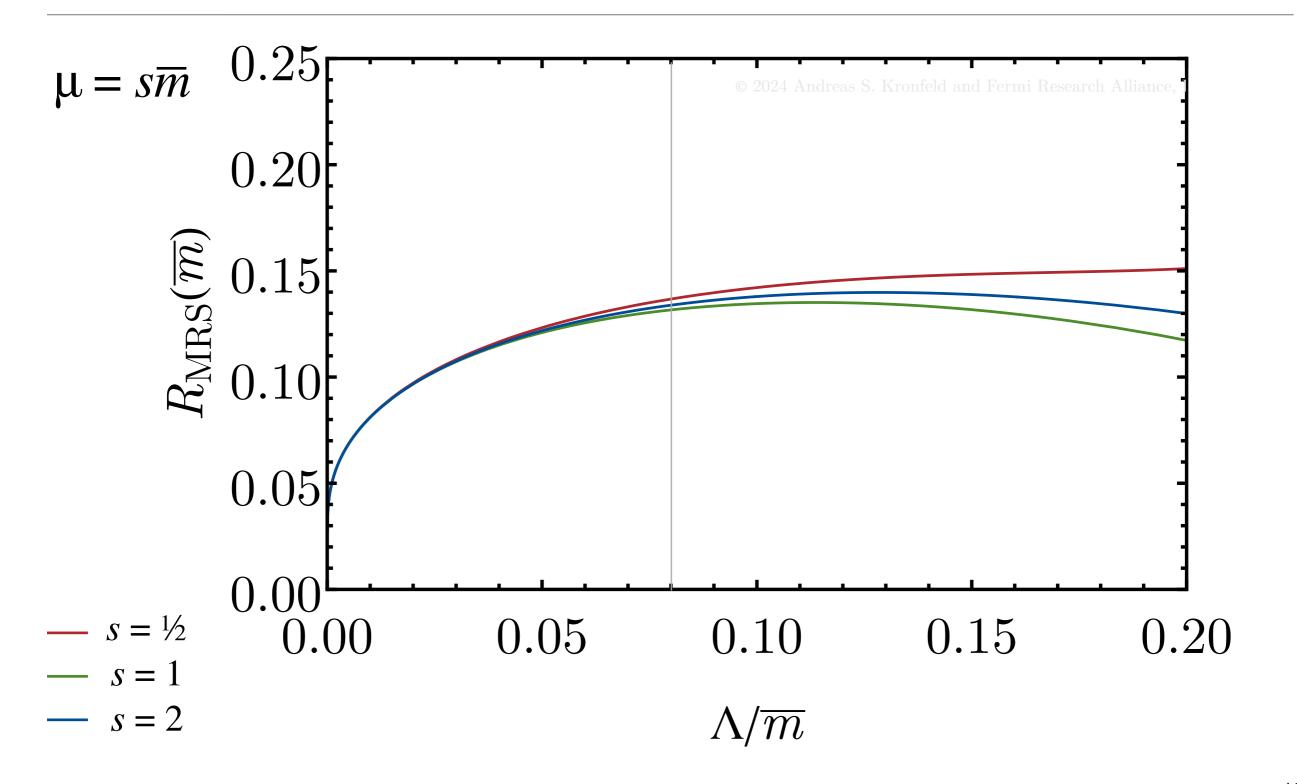
- Without loss, absorb the second line into the power correction in $\mathcal{R}(Q)$:
 - heavy-light hadron mass, $\bar{\Lambda} \to \bar{\Lambda}_{MRS}$.

Assignment

Thus, we now define


$$R_{\rm B}^{(p)}(Q) = R_0^{(p)} \frac{p}{2\beta_0} \mathcal{J}(pb, p/2\beta_0 \alpha_{\rm g}(Q))$$
$$\mathcal{J}(c, y) = e^{-y} \Gamma(-c) \gamma^*(-c, -y)$$

where $\gamma^*(a,x)$ is an analytic function of both a and x:


limiting function of the incomplete gamma function

- convergent expansion in $x = -1/2\beta_0 \alpha_g$;
- asymptotic expansion in α_g regenerates the starting point; the dropped term is $O(e^{-p/2\beta_0\alpha_g})$.
- So $m_{\text{MRS}} = \bar{m} \left(1 + R_{\text{RS}}(\bar{m}) + R_{\text{B}}(\bar{m}) \right)$ solves perturbative pole condition just as well as "the" pole mass.

Pole Mass's Horrible Series (p = 1)

Pole Mass's MRS Series

Convergence

• With s = 1, R_{RS} term is very small:

$$m_{b,MRS}/\bar{m}_b = (1.157, 1.133, 1.131, 1.132, 1.132)$$

$$m_{t,\text{MRS}}/\bar{m}_t = (1.0687, 1.0576, 1.0573, 1.0574, 1.0574)$$

with 4-loop R_0 and neglecting mass effects of lighter quarks.

- Varying $s \neq 1$, R_{RS} and R_{B} terms' scale dependence cancels so total is s independent [cf., arXiv:2401.07380].
- Convergence similar for all s.

Inclusive Proposal

- Intriguing to see what happens if m_b in the inclusive width is interpreted to be the MRS mass.
- Need to develop methodology to the higher-power terms:
 - lots of issues and complications left for future work (collaboration needed);
 - proposal, issues, and complications apply to other HQE applications.
- MRS mass is already being used if you take \bar{m}_b from FLAG, because it is key to one of the most precise inputs [arXiv:1802.04248] to the average.

Summary

- MRS mass [arXiv:1712.04983]: a pole mass with desirable properties of a short-distance mass.
- Well-known growth actually begins at low orders [arXiv:2310.151137]:
 - factorial growth can be summed up in a consistent way, *i.e.*, neglected terms are formally smaller.
- Stability of MRS series makes it attractive for applications beyond arXiv:1802.04248, e.g., as from static energy or
 - the heavy-quark expansion!
- Minimal renormalon subtraction is a bad name: extensions beyond one higher power, renormalons not needed, not a subtraction but a sum.

Thank you!

Backup

My Solution

The relation between the coefficients is a matrix equation

$$f_k^{(p)} = r_k - \frac{2}{p} \sum_{j=0}^{k-1} (j+1)\beta_{k-1-j} r_j$$

$$f^{(p)} = \left[1 - \frac{2}{p}\mathbf{D}\right] \cdot r \equiv \mathbf{Q}^{(p)} \cdot r$$

and **D** is on the lower triangle.

 Matrix is infinite, but the lower triangular form makes a row-by-row solution straightforward. • Notation to make the expressions compact: $\tau \equiv 2\beta_0/p$.

$$\mathbf{Q}_{\mathrm{g}}^{(p)} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ -\tau & 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\ -\tau^{2}pb & -2\tau & 1 & 0 & 0 & 0 & 0 & \cdots \\ -\tau(\tau pb)^{2} & -2\tau^{2}pb & -3\tau & 1 & 0 & 0 & 0 & \cdots \\ -\tau(\tau pb)^{3} & -2\tau(\tau pb)^{2} & -3\tau^{2}pb & -4\tau & 1 & 0 & 0 & \cdots \\ -\tau(\tau pb)^{4} & -2\tau(\tau pb)^{3} & -3\tau(\tau pb)^{2} & -4\tau^{2}pb & -5\tau & 1 & 0 & \cdots \\ -\tau(\tau pb)^{5} & -2\tau(\tau pb)^{4} & -3\tau(\tau pb)^{3} & -4\tau(\tau pb)^{2} & -5\tau^{2}pb & -6\tau & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \end{bmatrix}$$

- As before $b = \beta_1/2\beta_0^2 \stackrel{n_f=3}{=} 32/81 \approx 0.4$.
- Scheme for α_s is chosen to simplify algebra ("geometric"):

$$\beta(\alpha_{\mathrm{g}}) = -\frac{\beta_0 \alpha_{\mathrm{g}}^2}{1 - (\beta_1/\beta_0)\alpha_{\mathrm{g}}}$$

$$\mathbf{Q}_{\mathrm{g}}^{(p)^{-1}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ \tau & 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\ \tau^{2} \frac{\Gamma(3+pb)}{\Gamma(2+pb)} & 2\tau & 1 & 0 & 0 & 0 & 0 & \cdots \\ \tau^{3} \frac{\Gamma(4+pb)}{\Gamma(2+pb)} & 2\tau^{2} \frac{\Gamma(4+pb)}{\Gamma(3+pb)} & 3\tau & 1 & 0 & 0 & 0 & \cdots \\ \tau^{4} \frac{\Gamma(5+pb)}{\Gamma(2+pb)} & 2\tau^{3} \frac{\Gamma(5+pb)}{\Gamma(3+pb)} & 3\tau^{2} \frac{\Gamma(5+pb)}{\Gamma(4+pb)} & 4\tau & 1 & 0 & 0 & \cdots \\ \tau^{5} \frac{\Gamma(6+pb)}{\Gamma(2+pb)} & 2\tau^{4} \frac{\Gamma(6+pb)}{\Gamma(3+pb)} & 3\tau^{3} \frac{\Gamma(6+pb)}{\Gamma(4+pb)} & 4\tau^{2} \frac{\Gamma(6+pb)}{\Gamma(5+pb)} & 5\tau & 1 & 0 & \cdots \\ \tau^{6} \frac{\Gamma(7+pb)}{\Gamma(2+pb)} & 2\tau^{5} \frac{\Gamma(7+pb)}{\Gamma(3+pb)} & 3\tau^{4} \frac{\Gamma(7+pb)}{\Gamma(4+pb)} & 4\tau^{3} \frac{\Gamma(7+pb)}{\Gamma(5+pb)} & 5\tau^{2} \frac{\Gamma(7+pb)}{\Gamma(6+pb)} & 6\tau & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \end{bmatrix}$$

 $r = \mathbf{Q}_{\sigma}^{(p)^{-1}} \cdot \mathbf{f}^{(p)}$

return

$$\mathbf{Q}_{\mathrm{g}}^{(p)^{-1}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ \tau & 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\ \tau^{2} \frac{\Gamma(3+pb)}{\Gamma(2+pb)} & 2\tau & 1 & 0 & 0 & 0 & \cdots \\ \tau^{3} \frac{\Gamma(4+pb)}{\Gamma(2+pb)} & 2\tau^{2} \frac{\Gamma(4+pb)}{\Gamma(3+pb)} & 3\tau & 1 & 0 & 0 & \cdots \\ \tau^{4} \frac{\Gamma(5+pb)}{\Gamma(2+pb)} & 2\tau^{3} \frac{\Gamma(5+pb)}{\Gamma(3+pb)} & 3\tau^{2} \frac{\Gamma(5+pb)}{\Gamma(4+pb)} & 4\tau & 1 & 0 & 0 & \cdots \\ \tau^{5} \frac{\Gamma(6+pb)}{\Gamma(2+pb)} & 2\tau^{4} \frac{\Gamma(6+pb)}{\Gamma(3+pb)} & 3\tau^{3} \frac{\Gamma(6+pb)}{\Gamma(4+pb)} & 4\tau^{2} \frac{\Gamma(6+pb)}{\Gamma(5+pb)} & 5\tau & 1 & 0 & \cdots \\ \tau^{6} \frac{\Gamma(7+pb)}{\Gamma(2+pb)} & 2\tau^{5} \frac{\Gamma(7+pb)}{\Gamma(3+pb)} & 3\tau^{4} \frac{\Gamma(7+pb)}{\Gamma(4+pb)} & 4\tau^{3} \frac{\Gamma(7+pb)}{\Gamma(5+pb)} & 5\tau^{2} \frac{\Gamma(7+pb)}{\Gamma(6+pb)} & 6\tau & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \end{bmatrix}$$

$$oldsymbol{r} = oldsymbol{\mathbf{Q}}_{\mathrm{g}}^{(p)^{-1}} \cdot oldsymbol{f}^{(p)}$$

return

$$r_{l} = \left(\frac{2\beta_{0}}{p}\right)^{l} \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \sum_{k=0}^{l-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_{0}}\right)^{k} f_{k}^{(p)} + f_{l}^{(p)}$$

$$\mathbf{Q}_{\mathrm{g}}^{(p)-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ \tau & 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\ \tau^{2\frac{\Gamma(3+pb)}{\Gamma(2+pb)}} & 2\tau & 1 & 0 & 0 & 0 & 0 & \cdots \\ \tau^{3\frac{\Gamma(4+pb)}{\Gamma(2+pb)}} & 2\tau^{2\frac{\Gamma(4+pb)}{\Gamma(3+pb)}} & 3\tau & 1 & 0 & 0 & 0 & \cdots \\ \tau^{4\frac{\Gamma(5+pb)}{\Gamma(2+pb)}} & 2\tau^{3\frac{\Gamma(5+pb)}{\Gamma(3+pb)}} & 3\tau^{2\frac{\Gamma(5+pb)}{\Gamma(4+pb)}} & 4\tau & 1 & 0 & 0 & \cdots \\ \tau^{5\frac{\Gamma(6+pb)}{\Gamma(2+pb)}} & 2\tau^{4\frac{\Gamma(6+pb)}{\Gamma(3+pb)}} & 3\tau^{3\frac{\Gamma(6+pb)}{\Gamma(4+pb)}} & 4\tau^{2\frac{\Gamma(6+pb)}{\Gamma(5+pb)}} & 5\tau & 1 & 0 & \cdots \\ \tau^{6\frac{\Gamma(7+pb)}{\Gamma(2+pb)}} & 2\tau^{5\frac{\Gamma(7+pb)}{\Gamma(3+pb)}} & 3\tau^{4\frac{\Gamma(7+pb)}{\Gamma(4+pb)}} & 4\tau^{3\frac{\Gamma(7+pb)}{\Gamma(5+pb)}} & 5\tau^{2\frac{\Gamma(7+pb)}{\Gamma(6+pb)}} & 6\tau & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \end{bmatrix}$$

$$r = \mathbf{Q}_{\mathrm{g}}^{(p)^{-1}} \cdot \boldsymbol{f}^{(p)}$$

<u>return</u>

$$r_l = \left(\frac{2\beta_0}{p}\right)^l \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \sum_{k=0}^{l-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_0}\right)^k f_k^{(p)} + f_l^{(p)}$$
 well-known growth

$$\mathbf{Q}_{\mathrm{g}}^{(p)^{-1}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ \tau & 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\ \tau^{2} \frac{\Gamma(3+pb)}{\Gamma(2+pb)} & 2\tau & 1 & 0 & 0 & 0 & 0 & \cdots \\ \tau^{3} \frac{\Gamma(4+pb)}{\Gamma(2+pb)} & 2\tau^{2} \frac{\Gamma(4+pb)}{\Gamma(3+pb)} & 3\tau & 1 & 0 & 0 & 0 & \cdots \\ \tau^{4} \frac{\Gamma(5+pb)}{\Gamma(2+pb)} & 2\tau^{3} \frac{\Gamma(5+pb)}{\Gamma(3+pb)} & 3\tau^{2} \frac{\Gamma(5+pb)}{\Gamma(4+pb)} & 4\tau & 1 & 0 & 0 & \cdots \\ \tau^{5} \frac{\Gamma(6+pb)}{\Gamma(2+pb)} & 2\tau^{4} \frac{\Gamma(6+pb)}{\Gamma(3+pb)} & 3\tau^{3} \frac{\Gamma(6+pb)}{\Gamma(4+pb)} & 4\tau^{2} \frac{\Gamma(6+pb)}{\Gamma(5+pb)} & 5\tau & 1 & 0 & \cdots \\ \tau^{6} \frac{\Gamma(7+pb)}{\Gamma(2+pb)} & 2\tau^{5} \frac{\Gamma(7+pb)}{\Gamma(3+pb)} & 3\tau^{4} \frac{\Gamma(7+pb)}{\Gamma(4+pb)} & 4\tau^{3} \frac{\Gamma(7+pb)}{\Gamma(5+pb)} & 5\tau^{2} \frac{\Gamma(7+pb)}{\Gamma(6+pb)} & 6\tau & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \end{bmatrix}$$

$$r = \mathbf{Q}_{\mathsf{g}}^{(p)^{-1}} \cdot \boldsymbol{f}^{(p)}$$

return

$$r_{l} = \left(\frac{2\beta_{0}}{p}\right)^{l} \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)} \sum_{k=0}^{l-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_{0}}\right)^{k} f_{k}^{(p)} + f_{l}^{(p)}$$
 well-known growth Komijani's R_{0} (truncated)

$$\mathbf{Q}_{g}^{(p)^{-1}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ \tau & 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\ \tau^{2} \frac{\Gamma(3+pb)}{\Gamma(2+pb)} & 2\tau & 1 & 0 & 0 & 0 & 0 & \cdots \\ \tau^{3} \frac{\Gamma(4+pb)}{\Gamma(2+pb)} & 2\tau^{2} \frac{\Gamma(4+pb)}{\Gamma(3+pb)} & 3\tau & 1 & 0 & 0 & 0 & \cdots \\ \tau^{4} \frac{\Gamma(5+pb)}{\Gamma(2+pb)} & 2\tau^{3} \frac{\Gamma(5+pb)}{\Gamma(3+pb)} & 3\tau^{2} \frac{\Gamma(5+pb)}{\Gamma(4+pb)} & 4\tau & 1 & 0 & 0 & \cdots \\ \tau^{5} \frac{\Gamma(6+pb)}{\Gamma(2+pb)} & 2\tau^{4} \frac{\Gamma(6+pb)}{\Gamma(3+pb)} & 3\tau^{3} \frac{\Gamma(6+pb)}{\Gamma(4+pb)} & 4\tau^{2} \frac{\Gamma(6+pb)}{\Gamma(5+pb)} & 5\tau & 1 & 0 & \cdots \\ \tau^{6} \frac{\Gamma(7+pb)}{\Gamma(2+pb)} & 2\tau^{5} \frac{\Gamma(7+pb)}{\Gamma(3+pb)} & 3\tau^{4} \frac{\Gamma(7+pb)}{\Gamma(4+pb)} & 4\tau^{3} \frac{\Gamma(7+pb)}{\Gamma(5+pb)} & 5\tau^{2} \frac{\Gamma(7+pb)}{\Gamma(6+pb)} & 6\tau & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \end{bmatrix}$$

$$r = \mathbf{Q}_{\mathsf{g}}^{(p)^{-1}} \cdot \boldsymbol{f}^{(p)}$$

return

$$r_{l} = \underbrace{\left(\frac{2\beta_{0}}{p}\right)^{l} \frac{\Gamma(l+1+pb)}{\Gamma(1+pb)}}_{l} \underbrace{\sum_{k=0}^{l-1} (k+1) \frac{\Gamma(1+pb)}{\Gamma(k+2+pb)} \left(\frac{p}{2\beta_{0}}\right)^{k} f_{k}^{(p)}}_{k} + f_{l}^{(p)}$$
 well-known growth Komijani's R_{0} (truncated) extra

Comparing Truncations

Standard—truncate and hope for the best:

$$\sum_{l=0}^{\infty} r_l \alpha_{\scriptscriptstyle \mathrm{S}}^{l+1} \to \sum_{l=0}^{L-1} r_l \alpha_{\scriptscriptstyle \mathrm{S}}^{l+1}$$

arXiv:1701.00347 + arXiv:1712.04983—add&subtract, truncate:

$$\sum_{l=0}^{\infty} r_{l} \alpha_{\rm s}^{l+1} \to \sum_{l=0}^{\infty} [r_{l} - R_{l}] \alpha_{\rm s}^{l+1} + \sum_{l=0}^{\infty} R_{l} \alpha_{\rm s}^{l+1} \to \sum_{l=0}^{L-1} [r_{l} - R_{l}] \alpha_{\rm s}^{l+1} + \sum_{l=0}^{\infty} R_{l} \alpha_{\rm s}^{l+1}$$

This analysis—approximate higher orders with the dominant factorial:

$$\sum_{l=0}^{\infty} r_{l} \alpha_{s}^{l+1} \to \sum_{l=0}^{L-1} r_{l} \alpha_{s}^{l+1} + \sum_{l=L}^{\infty} R_{l} \alpha_{s}^{l+1} \to \sum_{l=0}^{L-1} [r_{l} - R_{l}] \alpha_{s}^{l+1} + \sum_{l=0}^{\infty} R_{l} \alpha_{s}^{l+1}$$

Next Approximation

- If there is another power correction with $p_2 > p_1 = p$, then f_k will grow in a similar but slower fashion.
- Apply previous procedure with p_1 ; then repeat with p_2 :

$$\mathbf{f}^{\{p_1,p_2\}} \equiv \mathbf{Q}^{(p_2)} \cdot \mathbf{Q}^{(p_1)} \cdot \mathbf{r}$$

$$\Rightarrow \mathbf{r} = \mathbf{Q}^{(p_1)^{-1}} \cdot \mathbf{Q}^{(p_2)^{-1}} \cdot \mathbf{f}^{\{p_1,p_2\}}$$

$$= \left[\frac{p_2}{p_2 - p_1} \mathbf{Q}^{(p_1)^{-1}} + \frac{p_1}{p_1 - p_2} \mathbf{Q}^{(p_2)^{-1}} \right] \cdot \mathbf{f}^{\{p_1,p_2\}}$$

Extension to any sequence of higher powers by induction.