Extracting excited-state contributions to the *B***_s to** *D***_s semi-leptonic decays from inclusive lattice simulations**

HU Zhi huzhi0826@gmail.com

Theory Center, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan

In collaboration with Alessandro Barone, Ahmed Elgaziari, Shoji Hashimoto, Andreas Juettner, Takashi Kaneko, Ryan Kellermann

Lattice Meets Continuum, 2024/10/1

Lattice meets Continuum

30 September 2024 to 3 October 2024

Introductions

Semi-leptonic decays

 \bullet in the quark level it corresponds to $\mathbf{b} \to \mathbf{c} l \mathbf{v}_l$ **•** it is a CKM-favoured decay corresponding to V_{ch} , a fundamental parameter in SM we concentrate on the **exclusive processes** with X_{cs} being \boldsymbol{D}_s , \boldsymbol{D}_s^* , \boldsymbol{D}_s^* ₀, \boldsymbol{D}_{s1} , \boldsymbol{D}_{s1}^* , \boldsymbol{D}_s^* ₂ **• for** *l***, we only consider light leptons** two problems **• tension between inclusive and exclusive** V_{ch} **1/2 vs 3/2** puzzle

Inclusive and exclusive determ: inclusive ex $42 \pm 1 \times 10^{-3}$ **OPE expansion of** 38 **experimental data moments for inclusive decays** 4.6 1.8 (N_{χ}^2) (GeV⁻) E_{\vert} > (GeV) 4.4 1.6 4.2 1.4 Ω 0.5 1.5 0.5 1.5 $\overline{0}$ E_{cut} (GeV) E_{cut} (GeV) $X = X^{(0)} + \frac{\alpha_s}{\pi} X^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 X^{(2)} + \left(\frac{\mu_\pi}{m_\nu}\right)^2 X^{(\pi)}$ $+\left(\frac{\mu_G}{m_1}\right)^2 X^{(G)} + \left(\frac{\mu_D}{m_1}\right)^3 X^{(D)} + \left(\frac{\mu_{LS}}{m_1}\right)^2 X^{(LS)} + ...$ [Gambino et al.,*PRD***89**.1(2014)]

2024/10/1 50000 Excited-state from inclusive, Lattice Meets Continui

2024/10/1 60 Excited-state from inclusive, Lattice Meets Continu [Gambino et al.,*PRD*89.1(2014)]

Inclusive and exclusive determ:

2024/10/1 *Degree Excited-state from inclusive, Lattice Meets Continuum*

[Bigi et al.,*EPJC***52**.4(2007)] **1/2 and 3/2 puzzle**

 $j=L+s_{\rm light\ quark}$ $J = j + s$ _{heavy} quark

[Bigi et al.,*EPJC***52**.4(2007)]

1/2 and 3/2 puzz

[Bigi et al.,*EPJC***52**.4(2007)]

1/2 and 3/2 puzz

 $\mathbf{D} \approx 20$

 $\boldsymbol{D}^* \approx 5$

 $? \approx 15$

 $J = j + s_{\text{heavy quark}}$

what is the nature of the remaining 15%? can we understand it from lattice?

Methods

Lattice setup data from RE lattice size: 2 lattice spacin 2+1-flavour $\mathsf I$ masses are u relativistic-h $M_\pi \approx 330$ MeV $t_{snk} - t_{src} = 20, t_2 - t_{src} = 14$, fixed t_1 range from 0 to $14 \Rightarrow t = t_2 - t_1$ range from 14 to 0 we work in the rest frame of B_s , $v \equiv \frac{p_{B_s}}{M_B}$ M_{B_S} $= (1, 0, 0, 0)$ $-q = (q_k^{}, q_k^{}, q_k^{})$ almost non-perturbative renormalization for the current Simulation of 4-pt correlators more details from Alessandro's talk on Thursday

[El-Khadra et. al.,*PRD*.64(2001):014502]

$$
J_{\mu} \equiv V_{\mu} - A_{\mu}, V_{\mu} = \bar{b}\gamma^{\mu}c, A_{\mu} = \bar{b}\gamma^{\mu}\gamma^{5}c
$$

2024/10/1 Excited-state from inclusive, Lattice Meets Continuum 14

2024/10/1 Excited-state from inclusive, Lattice Meets Continuum 15

four-point correlators as the summations of a series of three-point correlators

 $C_{J_uJ_v}(q,t)$ $= \sum_{V} \frac{1}{2E_{X_c} 2M_B} \langle B | J^{\dagger}_{\mu}(0) | X_c \rangle \langle X_c | J_{\nu}(0) | B \rangle e^{-E_{X_c} t}$ $=\frac{1}{2E_D2M_B}\left\langle B\left|J_{\mu}^{+}(0)\right|D\right\rangle \left\langle D\left|J_{\nu}(0)\right|B\right\rangle e^{-E_D t}$ $+\frac{1}{2E_{D^*}2M_B}\sum_{\tau}\left\langle B\left|J_{\mu}^{\dagger}(0)\left|D^*,\sigma\right.\right\rangle\left\langle D^*,\sigma\left|J_{\nu}(0)\right|B\right\rangle e^{-E_{D^*}t}$ $+\frac{1}{2E_{D_{\phi}^{*}}2M_{B}}\left\langle B\left|J_{\mu}^{+}(0)\left|D_{0}^{*}\right\rangle\left\langle D_{0}^{*}\right|J_{\nu}(0)\left|B\right\rangle e^{-E_{D_{0}^{*}}t}\right\rangle$ $+\frac{1}{2E_{D'_1}2M_B}\sum_{\sigma}\left\langle B\left|J_{\mu}^{\dagger}(0)\right|D'_1,\sigma\right\rangle\left\langle D'_1,\sigma\left|J_{\nu}(0)\right|B\right\rangle e^{-E_{D'_1}t}$ $+ \frac{1}{2E_{D_1}2M_B} \sum_{\sigma} \langle B|J_{\mu}^{\dagger}(0) | D_1, \sigma \rangle \langle D_1, \sigma|J_{\nu}(0) | B \rangle e^{-E_{D_1}t}$
+ $\frac{1}{2E_{D_2^*}2M_B} \sum_{\sigma} \langle B|J_{\mu}^{\dagger}(0) | D_2^*, \sigma \rangle \langle D_2^*, \sigma|J_{\nu}(0) | B \rangle e^{-E_{D_2^*}t}$

four-point correlators as the summations of a series of three-point correlators

three-point correlators parameterized by form factors and final-state masses/energies

 S wave

 \blacksquare $D(0^-)$

$$
\langle B, v | V_{\mu} | D, v' \rangle = \left[h_{+}(v_{\mu} + v'_{\mu}) + \left[\overline{h_{-}(v_{\mu} - v'_{\mu})} \right] \right] \sqrt{M_{B}M_{D}}
$$
(3.97)

$$
\langle B, v | A_{\mu} | D, v' \rangle = 0
$$
(3.98)

 $D^*(1^-)$

$$
\langle B, v | V_{\mu} | D^*, v', \sigma \rangle = \left[\frac{h_V \varepsilon_{\mu\alpha\beta\gamma} \varepsilon^{\alpha} v'^{\beta} v^{\gamma}}{\mu_{\alpha\beta\gamma} \varepsilon^{\alpha} v'^{\beta} v^{\gamma}} \right] \sqrt{M_B M_D}.
$$
\n
$$
\langle B, v | A_{\mu} | D^*, v', \sigma \rangle = i \left[(\omega + 1) h_{A1} \varepsilon_{\mu} - \left[(\varepsilon \cdot v) \left(h_{A2} v_{\mu} + h_{A3} v'_{\mu} \right) \right] \right] \sqrt{M_B M_D}.
$$
\n(3.99)

P wave, $j = \frac{1}{2}$

 \blacksquare D_0^* (0⁺)

 $\langle B, v | V_\mu | D_0^*, v' \rangle = 0$ (3.101) $\left\langle B, v \left| A_\mu \right| D_0^\ast, v' \right\rangle = \left[g_+(v_\mu + v'_\mu) + \overline{g_-(v_\mu - v'_\mu)} \right] \sqrt{M_B M_{D_0^\ast}}$ (3.102)

 $D'_1(1^+)$

$$
\langle B, v | V_{\mu} | D'_{1}, v', \sigma \rangle = \left[g_{V1} \epsilon_{\mu} + \left[(\epsilon \cdot v) \left(g_{V2} v_{\mu} + g_{V3} v'_{\mu} \right) \right] \right] \sqrt{M_{B} M_{D'_{1}}}, \quad (3.103)
$$

$$
\langle B, v | A_{\mu} | D'_{1}, v', \sigma \rangle = -i \left[\left[g_{A} \epsilon_{\mu\alpha\beta\gamma} \epsilon^{\alpha} v'^{\beta} v^{\gamma} \right] \right] \sqrt{M_{B} M_{D'_{1}}}, \quad (3.104)
$$

- **P** wave, $j = \frac{3}{7}$
	- $D_1(1^+)$

$$
\langle B, v | V_{\mu} | D'_{1}, v', \sigma \rangle = \left[f_{V1} \epsilon_{\mu} + \left[\frac{\left(\epsilon \cdot v \right) \left(f_{V2} v_{\mu} + f_{V3} v'_{\mu} \right)}{ \left(f_{V2} v_{\mu} + f_{V3} v'_{\mu} \right)} \right] \sqrt{M_{B} M_{D_{1}}} , \qquad (3.105)
$$
\n
$$
\langle B, v | A_{\mu} | D'_{1}, v', \sigma \rangle = -i \left[\frac{f_{A} \epsilon_{\mu \alpha \beta \gamma} \epsilon^{\alpha} v'^{\beta} v^{\gamma}}{ \sqrt{M_{B} M_{D_{1}}}} \right] \sqrt{M_{B} M_{D_{1}}} . \qquad (3.106)
$$

 \blacksquare D_2^* (2⁺)

$$
\langle B, v | V_{\mu} | D_2^*, v', \sigma \rangle = -i \left[\overline{k_V \varepsilon_{\mu\alpha\beta\gamma} \varepsilon^{\alpha\rho} v_{\rho} v'^{\beta} v^{\gamma}} \right] \sqrt{M_B M_{D_2^*}} \,, \tag{3.107}
$$

 $\langle B, v | A_\mu | D_2^*, v', \sigma \rangle = \left\| k_{A1} \epsilon_{\mu \rho} v^{\rho} + (\epsilon_{\alpha \beta} v^{\alpha} v^{\beta}) \left(k_{A2} v_{\mu} + k_{A3} v'_{\mu} \right) \right\| \sqrt{M_B M_{D_2^*}}.$ (3.108)

2024/10/1 Excited-state from inclusive, Lattice Meets Continuum 17

four-point correlators as the summations of a series of three-point correlators

three-point correlators parameterized by form factors and final-state masses/energies

four-point correlators parameterized by a series of exponentials with form factors and masses/energies of different final states as prefactors

$$
C_{A_0A_0}
$$
\n
$$
= \frac{e^{-E_{D^*}t}}{4E_{D^*}M_{D^*}} 3q_k^2 \left[\left(\frac{E_{D^*} + M_{D^*}}{M_{D^*}} \right) h_{A1} - h_{A2} - \frac{E_{D^*}}{M_{D^*}} h_{A3} \right]^2
$$
\n
$$
+ \frac{e^{-E_{D_0^*}t}}{4E_{D_0^*}M_{D_0^*}} \left[g_+ \left(E_{D_0^*} + M_{D_0^*} \right) - g_- \left(E_{D_0^*} - M_{D_0^*} \right) \right]^2
$$
\n
$$
+ \frac{e^{-E_{D_2^*}t}}{4E_{D_2^*}M_{D_2^*}} \dots
$$

four-point correlators as the summations of a series of three-point correlators

three-point correlators parameterized by form factors and final-state masses/energies

four-point correlators parameterized by a series of exponentials with form factors and masses/energies of different final states as prefactors

lattice simulation of four-point correlators values of the masses/energies of the final states and the corresponding form factors

Zero-recoil results

Four-point correlators at zero recoil

at zero recoil limit, $\vec{q}^2 = 0$, $\omega = 1$,

• S – wave : $C_{V_0V_0} \approx h_+^2 e^{-M_{D_s}t}$, $C_{A_{\|}A_{\|}} \approx h_{A1}^2 e^{-M_{D_s}t}$

•
$$
P_{1/2}
$$
 - wave: $C_{A_0A_0} \approx g_+^2 e^{-M_{D_{s0}^*}t}$

•
$$
P_{3/2}
$$
 - wave: $C_{V_{\parallel}V_{\parallel}} \approx \frac{f_{V1}^2}{4} e^{-M_{D_1}t}$

the magnitudes of *contributions* are around 1/10 smaller than those of the -wave contributions, but, information can still be extracted from the lattice simulation

Comparison of the effective mass and the fitted mass

Comparision of the fitted and effective form factor

• S-wave form factors at zero recoil $(\omega=1)$

$$
\langle B_s | V_\mu | D_s \rangle \propto h_+(\omega) \big(v_\mu + v'_\mu \big)
$$

$$
\langle B_s | A_\mu | D_s^*, \epsilon_\mu \rangle \propto (\omega + 1) h_{A1}(\omega) \epsilon_\mu
$$

$$
h_{+}(\omega = 1) = 0.987(14)
$$

$$
h_{A1}(\omega = 1) = 0.822(17)
$$

compatible with the zeroth order calculations from the heavy quark effective theory (HQET)

$$
h_{+}(\omega=1) \approx h_{A1}(\omega=1) \approx 1
$$

Comparision of the fitted and effective form f

Comments about $\tau_{1/}$

 $\tau_{1/2} = 0.181(50)$ $\tau_{3/2} = 0.315(42)$ $\tau_{1/2} \lesssim \tau_{3/2}$

- **o** it is valid at *infinite heavy quark mass, or zeroth* order of HQET
- we perform calculations at finite heavy quark mass, thus **consistent but not exactly the same** results
- **O** it is a conclusion valid in the **zero-recoil limit**

 what about non-zero \vec{q}^2 ?

Non-zero recoil

Multi-state
$$
(?)
$$
 $E = \cosh^{-1}(\cosh M + 3 - 3\cos q_k)$

excited-state contribution estimations
\nignoring the
$$
\omega/\vec{q}^2
$$
 dependence of form factors
\n $f(\omega) \approx f(1)$
\nuse the lowest order relation from HQET
\n $h_{A1} \approx h_{A3}, h_{A2} \approx 0$
\n $g_+ \approx -\frac{3}{2} (\epsilon_c + \epsilon_b)(\overline{\Lambda^*} - \overline{\Lambda})g_-$
\nwe only need the values of $h_{A1}(1)$ and $g_+(1)$ to
\nestimate the prefactors and thus the
\ncontributions from different states

$$
C_{A_0A_0} = \frac{e^{-E_{D^*}t}}{4E_{D^*}M_{D^*}} 3q_k^2 \zeta(1)^2 + \frac{e^{-E_{D_0^*}t}}{4E_{D_0^*}M_{D_0^*}} \left(3E_{D_0^*} - M_{D_0^*}\right)^2 g_+^2(1)
$$

\n
$$
C_{A_{\parallel}A_{\parallel}} = \frac{e^{-E_{D^*}t}}{4E_{D^*}M_{D^*}} \left(E_{D^*} + M_{D^*}\right)^2 \zeta^2(1) + \frac{e^{-E_{D_0^*}t}}{4E_{D_0^*}M_{D_0^*}} 27q_k^2 g_+^2(1)
$$

\n
$$
C_{A_0A_{\parallel}} = \frac{e^{-E_{D^*}t}}{4E_{D^*}M_{D^*}} \sqrt{3}q_k \left(E_{D^*} + M_{D^*}\right) \zeta^2(1) + \frac{e^{-E_{D_0^*}t}}{4E_{D_0^*}M_{D_0^*}} \sqrt{3}q_k (9E_{D_0^*} - 3M_{D_0^*})g_+^2(1)
$$

$$
\vec{q}^2 = 0.08, 0.16, 0.25 \text{ GeV}^2
$$

contributions from excited state $A_0A_0(\sim 50\%) > A_0A_{\parallel}(\sim 10\%) > A_{\parallel}A_{\parallel}(\sim 10\%)$

 \boldsymbol{B} **KEK**

Let the data talk

• we fit A_0A_0 , A_0A_{\parallel} and $A_{\parallel}A_{\parallel}$ separately with multiple exponentials **without assuming the functional forms of the prefactors**

$$
C_{J_{\mu}J_{\mu}} = \sum_{i=1}^{N_{\text{fit}}} A_{i \text{ in } J_{\mu}J_{\nu}}^{2} \exp\left(-E_{i \text{ in } J_{\mu}J_{\nu}} \times t\right)
$$

- \bullet $N_{\text{fit}} = 1, 2, 3, \dots$ is step-by-step fitting, with prior from the outcomes of the previous fit
- **full loop** over t_{\min} and t_{\max} , the **fitting range**
- chose the best fit to be the fit with **smallest** $\frac{x^2}{4a}$ $\frac{\lambda}{d.o.f.} - 1$ and
	- \bullet t_{max} to be **fairly** large for all fits
	- \bullet t_{min} to be **fairly** large for $N_{fit} = 1$ fits
	- \bullet t_{min} to be fairly small for $N_{fit} > 1$ fits

• look at the fitting results to manually the physics of the fitting results are correct

Clear sign of non-existence of excited states

• The fitted parameters are occupied by error and/or the central values are extremely small

2024/10/1 Excited-state from inclusive, Lattice Meets Continuum 29

KEK

Positive sign for the existence of excited states

• the turn in the correlators at small time slice and clear portion of contributions from the excited states

2024/10/1 Excited-state from inclusive, Lattice Meets Continuum 30

KEK

Positive sign for the existence of excited states

• steps in the effective energies

2024/10/1 Excited-state from inclusive, Lattice Meets Continuum 31

Positive sign for the existence of excited states

fitted value of the ground-state

KEK

• changes of the parameters vs t_{\min} and t_{\max}

2024/10/1 Excited-state from inclusive, Lattice Meets Continuum 32

2024/10/1 Excited-state from inclusive, Lattice Meets Continuum 33

KEK

Consistency check

• Do we recover the estimation from the previous estimations of the contribution ratio?

estimations of the contributions from excited state

 $A_0A_0(\sim 50\%) > A_0A_{\parallel}(\sim 10\%) > A_{\parallel}A_{\parallel}(\lt 10\%)$

Consistency check

• Do we recover the estimation from the previous estimations of the contribution ratio?

fitted contributions from excited state $A_0A_0(\sim 50\%) > A_{\parallel}A_{\parallel}(< 10\%) > A_0A_{\parallel}(\sim 0\%)$

Consistency check

• are there the same set of states?

 $E = \cosh^{-1} (\cosh M + 3 - 3 \cos q_k)$

2024/10/1 Excited-state from inclusive, Lattice Meets Continuum 36

KEK

Resulting form factors

2024/10/1 Excited-state from inclusive, Lattice Meets Continuum 37

KEK

Summary and prospect

as a preliminary study, we show the feasibility to extract exclusive informations from inclusive correlator

Prospect

• can we do the fit just blindly using the functional form? we should investigate the continuum and infinite volumn limit

$$
\begin{aligned} &C_{A_0A_0}\\ &=\frac{e^{-E_{D^*}t}}{4E_{D^*}M_{D^*}}3q_k^2\left[\left(\frac{E_{D^*}+M_{D^*}}{M_{D^*}}\right)h_{A1}-h_{A2}-\frac{E_{D^*}}{M_{D^*}}h_{A3}\right]^2 &\qquad\qquad=\frac{e^{-E_{D^*}t}}{4E_{D^*}M_{D^*}}\left[h_{A1}\frac{(E_{D^*}+M_{D^*})E_{D^*}}{M_{D^*}}-h_{A3}\frac{3q_k^2}{M_{D^*}}\right]^2 &\qquad\qquad=\frac{e^{-E_{D^*}t}}{4E_{D^*}M_{D^*}}\sqrt{3}q_k\left[\left(h_{A1}\left(\frac{E_{D^*}+M_{D^*}}{M_{D^*}}\right)\right)^2E_{D^*}+(h_{A3})^2\frac{3q_k^2E_{D^*}}{M_{D^*}^2}+\\ &\qquad\qquad+\frac{e^{-E_{D^*}t}}{4E_{D^*_{0}}M_{D^*}}\left[s+\left(E_{D^*_{0}}+M_{D^*_{0}}\right)-s-\left(E_{D^*_{0}}-M_{D^*_{0}}\right)\right]^2 &\qquad\qquad+\frac{e^{-E_{D^*}t}}{4E_{D^*_{0}}M_{D^*}^2}3q_k^2\left[s+ - s- \right]^2 &\qquad\qquad-h_{A1}h_{A2}\left(\frac{E_{D^*}+M_{D^*}}{M_{D^*}}\right)E_{D^*}-h_{A1}h_{A3}\left(\frac{E_{D^*}+M_{D^*}}{M_{D^*}}\right)\left(\frac{2E_{D^*}^2}{M_{D^*}}-M_{D^*}\right)\\ &\qquad\qquad+\frac{e^{-E_{D^*}t}}{4E_{D^*_{2}}M_{D^*}^2}... &\qquad\qquad+\frac{e^{-E_{D^*}t}}{4E_{D^*_{2}}M_{D^*}^2}... \end{aligned}
$$

2024/8/1 P-wave from inclusive, Lattice 2024 39

