

#### Semileptonic B decays into final states with heavy sterile neutrinos

Ulrich Nierste KIT Center of Particle and Astroparticle Physics (KCETA)



www.kit.edu



#### Talk based on work with

#### Florian Bernlochner, Marco Fedele, Tim Kretz, and Markus T. Prim



Belle (-II) group at University of Bonn



### **Sterile neutrinos**

- heavy neutrino = Heavy Neutral Lepton
- sterile = gauge singlet
- only interesting, if some other kind of interaction, usually a Yukawa interaction with SM Higgs or extra Higgs doublet or Higgs triplet
- usually studied: mixing scenario

$$\nu_{\ell} = U_{\ell j} \nu_j + U_{\ell j} N_j$$
 with  $\ell = e, \mu, \tau$ , and j=1,2,3  
mixing matrix sterile neutrino  
... but not in this talk



#### **Sterile neutrinos**

Mixing scenarios are better studied with other processes than B decays.



Sterile neutrino is produced in *B* meson decay.

We assume that *N* escapes the detector. (true if light enough)

# 

## **Effective hamiltonian**

Parametrize arbitrary new-physics interaction to dimension 6:

$$\mathcal{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{cb} \left[ (\overline{c}_L \gamma_\mu b_L) (\overline{\ell}_L \gamma^\mu \nu_{\ell, L}) + g_{V_R}^N (\overline{c}_R \gamma_\mu b_R) (\overline{\ell}_R \gamma^\mu N_R) + g_{S_L}^N (\overline{c}_R b_L) (\overline{\ell}_L N_R) + g_{S_R}^N (\overline{c}_L b_R) (\overline{\ell}_L N_R) + g_T^N (\overline{c}_L \sigma_{\mu\nu} b_R) (\overline{\ell}_L \sigma^{\mu\nu} N_R) + \text{h.c.} \right]$$
  
M term

Robinson, Shakya and Zupan, 1807.04753

S



# $B \to D^* \ell N$ at Belle

For  $M_N = \mathcal{O}(1 \text{GeV})$  do "bump hunts" in  $M_{\text{miss}}^2$ .

Belle Coll., 2301.07529

For small  $M_N$  the  $M_{\text{miss}}^2$  distribution does not discriminate between  $B \to D^* \ell N$  and  $B \to D^* \ell \nu$ . But angular distributions can reveal effects from new-physics interactions with couplings  $g_{V_R}^N$ ,  $g_{S_L}^N$ ,  $g_{S_R}^N$ ,  $g_T^N$ .



## **Angles of angular distribution**



**Ulrich Nierste** 



## **Angular coefficients**

 $d^4\Gamma$  $32\pi$  $= (J_{1s} + J_{2s}\cos 2\theta_{\ell} + J_{6s}\cos \theta_{\ell})\sin^2\theta_D +$  $dq^2 d\cos\theta_{\ell} d\cos\theta_{D} d\chi$ 9  $(J_{1c} + J_{2c}\cos 2\theta_{\ell} + J_{6c}\cos \theta_{\ell})\cos^2 \theta_D +$  $(J_3 \cos 2\chi + J_9 \sin 2\chi) \sin^2 \theta_D \sin^2 \theta_\ell +$  $(J_4 \cos \chi + J_8 \sin \chi) \sin 2\theta_D \sin 2\theta_{\ell} +$  $(J_5 \cos \chi + J_7 \sin \chi) \sin 2\theta_D \sin 2\theta_{\ell} +$ 

Extract angular coefficients  $J_{1s}$ ... $J_7$  from experiment.



We have fitted angular coefficients  $J_i$  to recent Belle data Bayesian analysis, fitted parameters:  $(g_i^N, m_N, FF)$ , one Wilson coefficient  $g_{V_P}^N, g_{S_I}^N, \dots$  at a time. Result insensitive to choice of form factors (FNAL/MILC, JLQCD,...)





11 Lattice meets continuum

Siegen, 2 October 2024



### **Other constraints**

Constraints from  $B \rightarrow D^* \mu + E_{miss}$  seach look similar, no hint of  $B \rightarrow D^* \mu N$ . Bounds on  $B(B \to K^{(*)} + E_{\text{miss}})$  constrain  $g_{S_P}^N$  and  $g_T^N$  by SU(2) symmetry, e.g.:  $g_{S_R}^N(\overline{c}_L b_R)(\overline{\ell}_L N_R) \subset g_{S_R}^N \left[ (\overline{c}_L b_R)(\overline{\ell}_L N_R) + (\overline{s}_L b_R)(\overline{\nu}_L N_R) \right]$ drives  $B^+ \rightarrow K^+ + E_{\text{miss}}$  $B(B \rightarrow K^{(*)} + E_{\text{miss}})$  dat imply  $g_{S_P}^N$ ,  $g_T^N \lesssim 0.01$ .

Felkl, Giri, Mohanta, Schmidt, 2309.02940

$$\Rightarrow \quad B \to D^* \mathscr{C} + E_{\text{miss}} \text{ not competitive for } g^N_{S_R} \text{ and } g^N_T.$$

# Summary

One can search for heavy sterile neutrinos N in  $B \rightarrow D^* \ell \nu$  data;  $B \rightarrow D^* \ell N$  can reveal itself via bumps in  $M_{\text{miss}}^2$  (good for heavy N) or changes in angular distributions (good for light N and new interactions (scalar, tensor,...)

Scenarios tested in *B* decays involve new interactions, e.g. charged-Higgs or leptoquark mediated decays, not suited for  $\nu - N$  mixing scenarios.





Siegen nightwatchman