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Introduction 

We have identified 3 main topics of interest for the whole CPPS group:

1. Understanding your data and motivations
2. Fit techniques
3. Machine Learning in Physics
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For each one of the 3 points we will:

● introduce the topic and its basic concepts through some examples from our 
experience and/or our group work 

● suggest useful tools and techniques
● leave some time for discussion and for your comments



Outline 
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1. Understanding your data (6 mins)
1. Introduction (1 min) - Eleonora
2. Examples: data analyses in astroparticle physics (5 mins) - Eleonora

2. Discussion (4 mins)

3. Fitting methods (35 mins)
1. Non-leptonic amplitudes from fits to data (20 mins) - Gilberto
2. Signal+Background fits using PDFs and HistFactory (5 mins) - Diptaparna
3. Profile likelihood unfolding (5 mins) - Buddha
4. EFTfitter: Interpreting measurements in the context of EFT (5 mins) - Jan

4. Discussion (10 mins)

5. Machine learning (20 mins)
1. CNNs applied to a photon search in Auger (10 mins) - Eleonora
2. BDT and hyperparameter optimization (5 mins) - Arpan
3. Jet flavour tagging using Deep Sets and GNN (5 mins) - Diptaparna

6. Discussion (15 mins)



1. Understanding your data
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Understanding your data through data visualization

1.  Understanding your data 5

● Why is it crucial in physics?
○ Enhance the understanding of physical 

phenomena
○ Help in identifying patterns, trends and 

which variables are the most significant
○ Effectively communicate the results to 

any audience

● Data data visualization is the representation of data in graphical/visual format

● Common tools for data visualization are for 
example the Python libraries matplotlib and 
seaborn
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Data analyses in astroparticle physics

Eleonora Guido



Searching for PeV Photons from galactic PeVatrons
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● Evaluating the interactions affecting photons during their propagation (simulated with 
CRPropa)
a. Fraction of photons reaching us without interacting, depending on energy and 

source distance
b. Integral flux of secondary photons depending on initial proton energy 

● Plots generated with Pyplot and numpy.histogram Chiara Papior
1.  Understanding your data, example 3: data analyses in astroparticle physics



Testing Lorentz violation using air showers

1.  Understanding your data, example 3: data analyses in astroparticle physics 8

● Testing the impact of LV on the 
development of simulated air showers

● Comparison between simulated showers 
and measurements used to set bound on 
LV parameter κ

● Parameter space related to mass 
composition: allowed regions for different 
κ (umbrellas) compared to Auger 
measurements (black "area")

● Bounds: -6×10⁻²¹ < κ < 3×10⁻²⁰

● Plot generated with ROOT libraries

Fabian Dünkel



t-SNE for visualizing high-dimensional data

1.  Understanding your data, example 3: data analyses in astroparticle physics 9

● t-Distributed Stochastic Neighbor Embedding is a powerful dimensionality 
reduction technique that captures nonlinear relationships within complex data

● It allows to visualize data in a lower dimensional space (2D/3D), preserving the 
local structure of data (points that are close together in the original 
high-dimensional space are close together also in the lower-dimensional space)

➢ t-SNE can be used to visualize the latent 
space of a neural network model

➢ Latent space : the output of a hidden 
layer (generally the last one)

➢ t-SNE provides a visualization of the inner 
representation of a neural network, at 
different layers



t-SNE for visualizing high-dimensional data

1.  Understanding your data, example 3: data analyses in astroparticle physics 10

● t-SNE used to visualize the latent space of a Convolutional Neural Network (CNN) model

● The CNN model has been trained on a dataset with several hundreds of input variables 
(a complex and high-dimensional dataset) and aims at distinguishing between two 
classes of events .

● Visualizing the representations at 
different layers we can gain insights 
on the model behaviour 

● It allows us to interpret how features 
are learned, how they evolve across 
layers

● Python libraries: scikit-learn and 
seaborn



2. Fits
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𝜒 
2 fits      
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Gilberto Tetlalmatzi-Xolocotzi



The role of fits in High energy physics

● Fits play an important role in particle physics.

● Fits can be used to constrain the parameter spaces of theoretical models accounting 
for the relevant experimental data.

 

● The comparison of theoretical predictions with experimental data is usually complicated 
by the presence of uncertainties on the theoretical and the experimental side.
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Formulation of the problem

We want to address two questions:

1. Which choice of parameters describes best the data observed       .

2. Based on the observed data, which parts of the parameter space     can 
be ruled out and at which confidence level.       

Likelihood ratio test
for confidence regions

Best fit point

Null hypothesis
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Fits

Consider
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Obtaining the best fit point implies minimizing 

The likelihood ratio test becomes

Theoretical estimation of the observables

 Large values of            indicate that the null hypothesis         is unlikely



Fits
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p-value estimation

If the null hypothesis is true and we reject it for values of            larger than the observed 
value                 the probability of wrongly rejecting the null hypothesis is at most                           

If

The first condition should hold
 in the limit of an infinite number 
of observations, the second condition 
should hold at least locally 

Upper incomplete gamma function

Confidence Level= 1-p



Fits in a nutshell
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● Construct the         function.

● Obtain the best fit point by minimizing over 

● Obtain the confidence region, transform 1-p value to 

 Software available

Minuit (Generic)
Flavio (Flavour physics)
EOS (Flavour physics)
MyFitter (Generic)
Make your own…

No correlations 
assumed
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Example: Non-leptonic amplitudes from 
fits to data

Gilberto Tetlalmatzi-Xolocotzi
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Consider exclusive B meson decays into pairs of light pseudoscalars
 

, etc
 

The relevant  decay amplitudes can be written as 
 

The expression for               is analogous.  
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The aim is to use experimental data to extract bounds to the annihilation 
topologies (diagrams inside the red contours) which lead to divergences in 

QFT.
 

The subamplitudes have a diagramatic representation
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Use branching fractions and CP asymmetries as observables 
 

Our         is just 
 

34 total decay channels in total
 

For every channel there are in principle  two observables, however 
experimentally not all the information is available

36 real quantities to be fitted (modulus and phases for each subamplitude )
 



● To find the best fit point we used random sampling, i.e.  we generate randomly          points in 
our 36-dimensional space obeying a flat probability distribution.

● For each point we evaluate the            and take the lowest 5000 evaluations.        .

●  We do a more sophisticated minimization taking each one of these 5000 new evaluations as 
starting points.  For this we use the algorithm sequential least squares available in python. 

● Finally we determine the confidence regions considering                            which for the real 
and imaginary components of the amplitudes translates into
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Our results are reported in the SU(3) irreducible representation basis for the best fit point 
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Signal+Background fits using smooth 
PDFs and HistFactory

Diptaparna Biswas



Maximum likelihood estimation (MLE)

● The 𝜒2 fit tries to minimize the (relative) difference 
between the theoretical prediction and observation.

● But what if the prediction is not a point estimate?
➢ Often the model prediction is a probability distribution.

■ Extract parameters using MLE.
● What is MLE?

➢ Evaluate the parameterized PDF at each of the observed data 
points.

■ The obtained expressions are just functions of the model 
parameters.

➢ Take product of them (assuming the data points are i.i.d.)
➢ Find the parameter values that maximize the product.

■ In practice, we minimize the negative log-likelihood (nll).
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Fitting signal+background using extended MLE

● Both signal and background distributions are 
known from simulation.
➢ Fit appropriate PDFs to extract their parameters.

■ Some parameter might be unknown!
➢ Convert them to extended PDFs.

■ Two extra parameters: Nsig, Nbkg

● Take the sum of those extended PDFs as the 
combined model.
➢ Fit it to the observed data.

■ Obtain Nsig, Nbkg, and any other parameters.

● Needs a data-modelling language:
➢ Example: RooFit, zfit, probfit, GooFit
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obs = zfit.Space('x', limits=(0,3))

mu = zfit.Parameter("mu",0.5, 0, 3)
lambda_ = zfit.Parameter("lambda",-2.0, -4.0, -1.0)
Nsig = zfit.Parameter("Nsig", 20., -20., 100)
Nbkg = zfit.Parameter("Nbkg", 300, 0., 1000)

signal = zfit.pdf.Gauss(obs=obs, mu=mu, sigma=0.1)
                 .create_extended(Nsig)
background = zfit.pdf.Exponential(obs=obs, lambda_=lambda_)
                     .create_extended(Nbkg)
tot_model = zfit.pdf.SumPDF([signal, background])



HistFactory

● The signal and background distributions are defined by their histograms.
➢ Each bin is fitted to a poisson distribution: no need for a data-modelling language.

● Easy to include uncertainties.
➢ Statistical uncertainties are included as poisson fluctuations.
➢ Systematic uncertainties are included as “up” and “down” variation histograms.
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Profile likelihood unfolding

Buddhadeb Mondal



Buddhadeb Mondal

Why unfolding?
● True spectrum of a physical quantity is deformed by the detector effects -> observed spectrum

● Unfolding method is used to correct those detector effects to get the underlying true spectra 
(In mathematics known as inverse problem, deconvolution or unsmearing)

● Unfolding is not always necessary
○ If the goal is to compare the measured result with prediction, one can modify the prediction to include the 

detector distortion

● But in HEP we compare the results with other experiments, without unfolding the its difficult to 
compare the measurement with results from the other experiments

Unfolding



Buddhadeb Mondal

Formulation of unfolding problem

R(x|y) is response function

Likelihood construction:

μ_j = true histogram bin content

In binned histogram, expected events at reconstruction level

ML estimator is 

If the matrix isn’t easily invertible,
this becomes difficult



Buddhadeb Mondal

Profile likelihood unfolding
● Assign free floating normalization factor μ 

(POI) for each truth bin

● Fold the truth distribution with response 
matrix to obtain signal at reconstruction 
level

● Background templates needed at 
reconstruction level

● Construct the likelihood function 
(Diptaparna’s talk)

○ Systematics are included as nuisance 
parameter with proper constraints

● Profile likelihood fit to the reconstruction 
level distribution -> fitted POIs measures the 
normalization of the truth, thus truth 
spectrum is obtained

** If the response matrix is not diagonal, use regularization

Toy example

Response matrix



Buddhadeb Mondal

Are we biased by inputs?
● The goal is to correctly measure the signal from the 

data, unsmear the detector effects

● Unfolding using inputs obtained from MC (truth 
spectrum, response matrix), are we biased by the 
input shape?

● Stress test can be performed before actual fit is 
performed to data

○ Construct pseudo-data (Sum of all the MC templates)
○ Reweight the signal template in pseudo-data with 

some function
○ unfold using the nominal inputs, compare the 

unfolded result and truth

Dotted line := unfolded reweighted
Solid line := truth reweighted

Linear reweighting

non-linear reweighting

Example reweighting function
Y=+1, -1
i = bin
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EFTfitter: Interpreting measurements in 
the context of effective field theories

Jan-Joachim Hahn



EFTfitter
● Check compatibility of measurements with effective field theory (EFT) models
● Framework to perform fits to different models
● Written in Julia → Language optimised for calculation
● Needs measurements and correlation between them
● Declare observables→ Contain dependence of measured property on 

parameters to be fitted
● Input in multiple txt files, declaring properties in Julia-internal format

○ Vectors, matrix etc.
○ Can also interface with Python

Website: https://tudo-physik-e4.github.io/EFTfitter.jl/stable/
arXiv: 1605.05585



How does it work

● Use Bayesian inference
● Build likelihood from covariance M, measured value x and dependence on 

model parameter  
● Sample parameter space according to chosen prior using Markov-Chain 

Monte Carlo
○ Propose step, calculate probability to accept, draw number to choose if accepted, repeat
○ User just defines model, algorithm, number of samples, as well as range and prior
○ Outputs histograms and sampled values, as well as summary (mean, confidence level etc.)



Procedure to extract the
 limits of EFT parameters



Example

● This is a set of outputs as 
produced by the framework

● Shown are examples where 
the inputs are defined



3. Machine learning for physics
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Eleonora Guido



From classic computing to machine learning

403.  Machine learning for physics



What about deep learning?

413.  Machine learning for physics



Building neural networks

423.  Machine learning for physics



Building neural networks

433.  Machine learning for physics



Training, validation and test

443.  Machine learning for physics



Different kinds of neural networks

453.  Machine learning for physics
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CNNs applied to a photon search in Auger 

Eleonora Guido



Extensive air showers

473.  Machine learning for physics, example 3: CNNs applied to a photon search in Auger

The Pierre Auger Observatory



UHE photons at the Pierre Auger Observatory

483.  Machine learning for physics, example 3: CNNs applied to a photon search in Auger

Surface Detector (SD) station



Signal traces of SD stations

493.  Machine learning for physics, example 3: CNNs applied to a photon search in Auger



Convolutional Neural Network

503.  Machine learning for physics, example 3: CNNs applied to a photon search in Auger



Results

513.  Machine learning for physics, example 3: CNNs applied to a photon search in Auger
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Signal/Background separation using BDT 
and hyperparameter optimization

Arpan Ghosal



Introduction 
● In HEP, datasets with diverse variables challenge signal-background discrimination 

- most events not characteristic of either signal or background. 

● Boosted Decision Trees build on cut based selection, extending the search for 
signal-background discrimination to multivariate regime. 

● Idea - combine many weak classifiers (trees) to form a powerful discriminant.
“Nuance over exclusion” - Idea is to consider all events, even those failing 
individual criteria. BDTs evaluate multiple criteria, avoiding outright event rejection 
based on single failures, continuously refine classification and minimize 
misclassifications over successive iterations.

● Transparency and Decision Clarity - Simpler formulation, clearer boundaries and 
easier optimization compared to other “black-box” NN techniques. 

● Impressive Success Stories in HEP so far - 
- MiniBooNE at Fermilab for neutrino oscillation anomaly studies
- D0 experiment at Tevatron for single top search
- Higgs boson discovery at LHC 
- 𝝉-lepton identification and flavour tagging in ATLAS in LHC Run2 
- particle identifications in T2K, NOvA

Arpan Ghosal



Algorithm and Specifications
● BDTs combine multiple weak decision trees to form a strong classifier.
● Each tree is built on the errors of the previous, improving accuracy iteratively.

General Algorithm:

● Initialization: Start with a single decision tree.
● Iteration: For each subsequent tree, focus on misclassified events by the previous trees.
● Boosting: Increase the weight of misclassified events, making them a priority for the next tree.
● Final Prediction from combination: Aggregate decision of all trees (e.g. Gradient Boosting). In some algorithms, it’s weighted performance (e.g. AdaBoost).

Key (Hyper)Parameters:

● Learning Rate: Controls step size.
● Tree Depth: Maximum number of splits in each tree.
● Number of Trees: Total trees to combine.
● Splitting Criterion: Metric to choose best variable and its threshold for each split (e.g., Gini impurity, entropy etc.).

Additional Specifications:

● Regularization: Techniques like leaf size constraints to prevent overfitting.
● Loss Function: Defines penalty for misclassification.
● Feature Importance: Measures contribution of each input variable to final prediction.

Representative Diagram showing 
node splitting (Tree-0) 

Arpan Ghosal

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html


Hyperparameter Optimisation
● Why is it important? OVERFITTING !!

Maximize the performance, minimize overfitting.

              When model spends much time on the data (model is complex), it starts to learn the noise in the data.
 
              What follows? Poor generalization to new data. High variance - model is overly sensitive. 

              Cross-validation: key strategy to evaluate model performance on unseen data. Split data into sets and use them                                                                    
              iteratively for training and validation. 

● Manual Optimization: tedious, prone to human bias, inefficient exploration of search space, difficult to scale with 

complex models. Try at your own risk!!

● Various techniques of Automatised Tuning:

- Grid search: can be computationally expensive and inefficient in high-dims.

- Random search: more efficient in high-dim spaces.

- Bayesian optimization: uses prior evaluations to inform next set of hyperparameters. “Reason” before “Run”.

- Others like Gradient-based optimization, Evolutionary Optimization (based on mutations), Early-Stopping based Search etc.
● Several tools available - Hyperopt (Bayesian optimization), Ray Tune, Scikit-Optimize (skopt, efficient 

optimization for ML), SigOpt (commercial, sophisticated interface), Katib (Kubernetes, distributed environments), 

Google Vizier (internal Google use, black-box optimization), Optuna.

Grid search                         Random Search

Use case scenario with BDTs

Arpan Ghosal

http://hyperopt.github.io/hyperopt/
https://docs.ray.io/en/latest/tune/index.html
https://scikit-optimize.github.io/stable/
https://sigopt.com/
https://www.kubeflow.org/docs/components/katib/overview/
https://cloud.google.com/ai-platform/optimizer/docs/overview
https://optuna.org/


Hyperparameter Optimisation with Optuna
 Open-source Python library, supports various optimization algorithms (TPE by default), efficiently explores the search space of 
hyperparameters by intelligently selecting promising values to evaluate, automatically stops unpromising trials to save resources.

1. Define the Search Space: Specify the hyperparameters to optimize and their ranges.

2. Objective Function: Create a function that returns the model’s performance metric to be optimized.

3. Optimization: Create study object to organize the results. Optuna iteratively suggests hyperparameter values, evaluates them 
using the objective function, and refines its suggestions based on past results.

4. Best Parameters: After completing the trials, Optuna identifies the hyperparameter set that resulted in the best performance.

Example code on GithubArpan Ghosal

https://optuna.org/
https://github.com/arpanghosal/Pycharm-Python-projects/tree/master/ML_Optuna_Optimisation/optuna


Visualization with Optuna
 ● Study results can be stored as structured database.

● Plotly - helps with visual plots of Optuna’s search space.
study = optuna.create_study(study_name='trial1',load_if_exists=True,storage="sqlite:///./results.db", 
direction="minimize")  # minimizing loss here

Example code on GithubArpan Ghosal

https://optuna.org/
https://github.com/plotly/plotly.py
https://github.com/arpanghosal/Pycharm-Python-projects/tree/master/ML_Optuna_Optimisation/optuna
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Jet flavour tagging using
Deep Sets and GNN
Diptaparna Biswas



Things get 
complicated as we 

go to higher pT

History of jet flavour tagging at ATLAS
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● B-hadrons have long lifetime (~1.5 ps)
➢ B-taggers exploits this feature.

■ Search for secondary vertex.

● But a (fake) secondary vertex can get reconstructed!



Manually optimized low-level taggers

● Jet and track inputs are fed to low level taggers: 
IPxD, SV1 and JetFitter

● Output of these taggers are fed into a high-level 
tagger: BDT (MV2) or DNN (DL1)
➢ We get classification scores: pb, pc and pl

● Can we feed the low-level jet and track 
features directly into a DNN?
➢ A jet can contain variable number of tracks.
➢ RNN can handle variable sequence length, right?

■ This gives us DL1r (along with low-level taggers)
■ Yes, but it’s not permutation invariant!
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Mathematical interlude: Deep sets

● Ꭓ = {x1, x2, x3, …} (unordered collection of objects)

● Any such function f : ℝ →ℝ can be decomposed into:
➢ 𝜙 : ℝ →ℝn

➢ ⍴ : ℝn →ℝ

● Examples:
➢ f ≡ count

■ 𝜙(x) = 1, ⍴(v) = v
➢ f ≡ sum

■ 𝜙(x) = x, ⍴(v) = v
➢ f ≡ average

■ 𝜙(x) = [x, 1], ⍴(v) = v[0]/v[1]
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arXiv:1703.06114 arXiv:1810.05165

https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1810.05165


Deep impact parameter sets (DIPS)
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● How to get 𝜙 and ⍴ ?

➢ Approximate them using DNN.

➢ This gives us DIPS.

➢ DIPS, along with low-level 
taggers, gives us DL1d.

● Can we get rid of the 
low-level taggers?

⍴

Introducing GN1



Graph neural network based “all in one” tagger
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Architecture of GN1/GN2 models
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arXiv:2105.14491 arXiv:1706.03762

https://cds.cern.ch/record/2811135/files/ATL-PHYS-PUB-2022-027.pdf

https://arxiv.org/abs/2105.14491
https://arxiv.org/abs/1706.03762
https://cds.cern.ch/record/2811135/files/ATL-PHYS-PUB-2022-027.pdf


Performance of GN1 and GN2
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Thank You!
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Backup slides
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Double-Charm Tagging using Event Shapes

Gilberto Tetlalmatzi-Xolocotzi



● The main goal is improving our sensitivity towards the measurement of the charm Yukawa.

● In general, bottom- or charm-taggers are designed to find jets initiated by individual b or c quarks.

● In searches for light or boosted resonances that decay into a charm or bottom pair, such algorithms might 
not be ideal, as they neglect correlations between the decay products.

● To increase the sensitivity in searches for new physics or Higgs boson measurements it can be beneficial 
to design dedicated 2-prong reconstruction algorithms that allow to utilise more information about the 
decaying resonances.

● Observables that are particularly sensitive to the radiation profile of the event are so-called event shape 
observables. 

● We developed a procedure to identify jets initiated by      pairs from Higgs boson decays based on the 
application of different event shapes and the transverse momenta of leptons (e and µ )..
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Signal channel

Background channel

A boosted Higgs decaying into a pair        produces a jet with a  large active area         

Reconstruct the Z boson in the highly  boosted regime using dileptonic final states.

We used TMVA and a Boosted Descition Tree as our multivariable classifier
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Main discriminating observables ROC curves

Results: Optimal tagging point
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Combined interpretation of data measured 
at the Pierre Auger Observatory

Eleonora Guido



Measurements of UHECRs at the Auger experiment

732.  Fit techniques, example X: Combined interpretation of data at the Pierre Auger Observatory



Combined fit of Auger data

742.  Fit techniques, example X: Combined interpretation of data at the Pierre Auger Observatory



Combined fit of Auger data

752.  Fit techniques, example X: Combined interpretation of data at the Pierre Auger Observatory



Fit procedure

762.  Fit techniques, example X: Combined interpretation of data at the Pierre Auger Observatory

● This analysis is performed with a program written in C++ and making use of the ROOT libraries
● The Minuit package within ROOT is used for the minimization and for estimating most of the 

parameter uncertainties
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Data visualization
Additional plots 

Chaira Papior and Fabian Dünkel



Searching for secondary photons

1.  Understanding your data, example 1: data analyses in astroparticle physics 78

● Besides primary photons, we can 

also search for secondary photons 

produced during the propagation 

of protons compared to the total 

flux of cosmic-ray particles

● A histogram is used to show the 

integral flux of particles depending 

on initial proton energy 

● Plot is generated using pyplot and 

numpy.histogram



Testing Lorentz violation using air showers

1.  Understanding your data, example 1: data analyses in astroparticle physics 79

● Testing the impact of LV on the 

development of simulated air 

showers

● With LV parameter κ < 0, photon 

decay above a threshold possible

● LV accelerates shower 

development, showers become 

shorter
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CNN back-up

Eleonora Guido



Measures of evaluation in a classification task

813.  Machine learning for physics, example 3: CNNs applied to a photon search in Auger


