Beyond the Standard Model - (some) Theory Intro

Physics Siegen

Ingredients of the SM Theory - and beyond?

Quantum field theory $\mathcal{L}\left[\phi_{i}(x), \partial_{\mu} \phi_{i}(x)\right]$	\rightarrow	quantum gravity ? string theory ?
Special relativity / Poincaré symmetry (3+1 flat space-time dimensions)		(warped) extra dimensions ? SUSY? low-energy imprints of gravity ? violation of Lorentz symmetry?
Gauge symmetries $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$	\rightarrow	GUTs ? leptoquarks ? heavier gauge bosons ?
3 generations of matter multiplets $Q_{L}, U_{R}, D_{R}, \ell_{L}, E_{R}$	\rightarrow	4th fermion generation ? right-handed neutrinos? DM candidates? exotic fermions ?
Spontaneous symmetry breaking from the VEV of a complex scalar Higgs doublet: $\phi=\left(H^{+}, H^{0}\right), \quad\left\langle H^{0}\right\rangle=v / \sqrt{2}$	\rightarrow	extended Higgs sector? Little Higgs models? dynamical symm. breaking (technicolor) ?
Yukawa couplings to the Higgs field Y_{U}, Y_{D}, Y_{E} mass hierarchies, CKM mechanism		new sources of flavour symm. breaking? new sources of CP violation? origin of neutrino masses? charged-lepton flavour violation?

Parameterizing the "Beyond"

- "Derive the SM" from a more fundamental underlying (renormalizable) theory ?
- Construct "Simplified Models" that can address some of the above issues ?
- Consider the SM as a low-energy effective theory and include higher-dimensional operators (SM-EFT)

Confront with experimental data:

- Direct Searches for resonances and thresholds in decay spectra, due to production and decay of new particles at high energies
- Indirect Searches for deviations from SM predictions in low-energy observables
- measure decays that are forbidden in the SM ("Null Tests")

More on SM-EFT

Generic rules of the EFT game:

- Identify/postulate the symmetries of the EFT Lagrangian, here:
$S U(3) \times S U(2) \times U(1)$
- Identify/postulate the field/particle content, here:

SM fermions, SM gauge bosons, SM Higgs doublet

- Organize the interaction terms as a power series, here:
expansion in $v / \Lambda_{\mathrm{NP}} \ll 1$
(SM = dim-4, "Weinberg operator" for Majorana neutrino masses at dim-5, many operators at dim-6)
- Assume generic values for dimensionless coefficients, here:

2499 unknowns of $\mathcal{O}(1)$ at dim-6
(more than half of it related to flavour-specific couplings!)

Phenomenological Challenges

What should be the typical size of the new couplings in SM-EFT

$$
\mathcal{L}_{\mathrm{SM}-\mathrm{EFT}}=\mathcal{L}_{\mathrm{SM}}+\mathcal{L}_{\text {Weinberg }}^{\text {dim }-5}+\sum_{n=1}^{2499} \frac{c_{n}(\mu)}{\Lambda_{\mathrm{NP}}^{2}} \mathcal{O}_{n}^{\text {dim }-6}+\ldots
$$

- Allowing for anomalous couplings in the electroweak sector, how does this compare with electroweak precision measurements ? (imprints of the "custodial symmetry" of the SM Higgs sector)
- Do neutrino masses stem from Weinberg operator? (violation of accidental lepton-number symmetry of the SM)
- Figure out hierarchies in flavour-specific couplings at dim-6? (relation to SM Yukawa matrices?)
- Couplings mix under renormalization (change of reference scale μ) !

Example for flavour-specific couplings

- four-fermion operators with two quark and two lepton fields in SMEFT:

$$
\frac{1}{\Lambda_{\mathrm{NP}}^{2}}\left[\mathcal{C}_{\ell q}\right]^{i j \alpha \beta}\left(\bar{Q}_{i} \gamma_{\mu} Q_{j}\right)\left(\bar{L}_{\alpha} \gamma^{\mu} L_{\beta}\right) \quad \text { (for } i, j, \alpha, \beta=1 \ldots 3 \text { generations) }
$$

- flavour tensor $\left[\mathcal{C}_{\ell q}\right]^{i j \alpha \beta}$ introduces $3^{4}=81$ free parameters:

```
generic EFT: all coefficients satisfy }\mp@subsup{\mathcal{C}}{\ellq}{ij\alpha\beta}~\mathcal{O}(1
\(\rightarrow\) flavour constraints require \(\Lambda_{\mathrm{NP}}\) to be very high
\(\rightarrow\) or: 81 coefficients must be fine-tuned
```

MFV: \quad| | expansion: $\# 1\left(\delta^{i j}+\# 2\left(Y_{U} Y_{U}^{\dagger}\right)^{i j}+\# 3\left(Y_{D} Y_{D}^{\dagger}\right)^{i j}+\ldots\right)\left(\delta^{\alpha \beta}+\ldots\right)$ |
| :--- | :--- |
| | \rightarrow reduction to a few unknown numbers |
| | \rightarrow inherits flavour hierarchies from SM |
| | \rightarrow independent of flavour bases |
| | \rightarrow valueconsistent under renormalization Λ_{NP} can be reasonably low |

Example for flavour-specific couplings

- four-fermion operators with two quark and two lepton fields in SMEFT:

$$
\frac{1}{\Lambda_{\mathrm{NP}}^{2}}\left[\mathcal{C}_{\ell q}\right]^{i j \alpha \beta}\left(\bar{Q}_{i} \gamma_{\mu} Q_{j}\right)\left(\bar{L}_{\alpha} \gamma^{\mu} L_{\beta}\right) \quad \text { (for } i, j, \alpha, \beta=1 \ldots 3 \text { generations) }
$$

- flavour tensor $\left[\mathcal{C}_{\ell q}\right]^{i j \alpha \beta}$ introduces $3^{4}=81$ free parameters:

generic EFT:	all coefficients satisfy $\mathcal{C}_{\ell q}^{i j \alpha \beta} \sim \mathcal{O}(1)$ \rightarrow flavour constraints require Λ_{NP} to be very high \rightarrow or: 81 coefficients must be fine-tuned
	\downarrow alternatives ? \downarrow
MFV:	expansion: $\# 1\left(\delta^{i j}+\# 2\left(Y_{U} Y_{U}^{\dagger}\right)^{i j}+\# 3\left(Y_{D} Y_{D}^{\dagger}\right)^{i j}+\ldots\right)\left(\delta^{\alpha \beta}+\ldots\right)$ \rightarrow reduction to a few unknown numbers \rightarrow inherits flavour hierarchies from SM \rightarrow independent of flavour bases \rightarrow self-consistent under renormalization \rightarrow value of Λ_{NP} can be reasonably low

Example: Simplified models with Leptoquarks

- four-fermion operators with two quark and two lepton fields in SMEFT:

$$
\frac{1}{\Lambda_{\mathrm{NP}}^{2}}\left[\mathcal{C}_{\ell q}\right]^{i j \alpha \beta}\left(\bar{Q}_{i} \gamma_{\mu} Q_{j}\right)\left(\bar{L}_{\alpha} \gamma^{\mu} L_{\beta}\right) \quad \text { (for } i, j, \alpha, \beta=1 \ldots 3 \text { generations) }
$$

leptoquark exchange:	$\mathcal{C}_{\ell q}^{i j \alpha \beta} \sim \# 1\left(\Delta_{Q L}\right)^{i \beta}\left(\Delta_{Q L}^{\dagger}\right)^{\alpha j}+\ldots$
	\rightarrow reduction to $2 \times 9=18$ parameters (leptoquark couplings)
	\rightarrow new leptoquark couplings also enter renormalization of SM Yukawa matrices
	\rightarrow requires self-consistency relations among Yukawas $Y_{U, D, E}$ and $\Delta_{Q L}$
	\rightarrow e.g. in the SM, we have $\left\|Y_{U}^{i j}\right\| \geq\left\|\left(Y_{D} Y_{D}^{\dagger} Y_{U}\right)^{i j}\right\|$
	\rightarrow now, also require $\left\|Y_{E}^{\alpha \beta}\right\| \geq\left\|\left(\Delta_{Q L}^{\dagger} \Delta_{Q L} Y_{E}\right)^{\alpha \beta}\right\|$

Self-consistency from Froggatt-Nielsen power-counting

- Easiest way to fulfill self-consistency relations via FN charges

$$
\begin{aligned}
\left(Y_{U}\right)^{i j} & \sim \lambda^{\left|b_{Q}^{i}-b_{U}^{j}\right|} \\
\left(Y_{D}\right)^{i j} & \sim \lambda^{\left|b_{Q}^{i}-b_{D}^{j}\right|} \\
\left(Y_{E}\right)^{\alpha \beta} & \sim \lambda^{\left|b_{L}^{\alpha}-b_{E}^{\beta}\right|} \\
\left(\Delta_{Q L}\right)^{i \alpha} & \sim \lambda^{\left|b_{Q}^{i}-b_{L}^{\alpha}\right|}
\end{aligned}
$$

with generation-dependent FN charges b_{X}, and $\lambda \ll 1$

- Consistency relations automatically fulfilled due to triangle inequalities
- Different viable choices for FN charges to reproduce SM Yukawa hierarchies, where

$$
y_{u} \sim \lambda^{\left|b_{Q}^{1}-b_{U}^{1}\right|} \quad \text { etc. } \quad \theta_{i j}^{\mathrm{CKM}} \sim \lambda^{\left|b_{Q}^{i}-b_{Q}^{j}\right|}
$$

- Generic EFT is already spoiled by the SM Yukawas
- MFV is too special !
- Before adressing the SM-EFT flavour structure, we first have to understand the origin of the SM flavour hierarchies encoded in the Yukawa matrices !
- In the meantime, NP operators with bottom or top quarks have a priori independent coefficients, with no particular correlations between BSM effects in top or flavour observables!
- Keep in mind that any connection between BSM searches in the top or bottom sector is based on (more or less) ad-hoc model assumptions !
... but let's see how this works in practice ...

