Beyond the Standard Model – (some) Theory Intro

Thorsten Feldmann

CPPS Retreat, February 2024

Ingredients of the SM Theory – and beyond?

Quantum field theory $\mathcal{L}[\phi_i(x), \partial_\mu \phi_i(x)]$	\rightarrow	quantum gravity ? string theory ?
Special relativity / Poincaré symmetry (3+1 flat space-time dimensions)	\rightarrow	(warped) extra dimensions ? SUSY ? low-energy imprints of gravity ? violation of Lorentz symmetry?
Gauge symmetries $SU(3)_C \times SU(2)_L \times U(1)_Y$	\rightarrow	GUTs ? leptoquarks ? heavier gauge bosons ?
3 generations of matter multiplets $Q_L, U_R, D_R, \ell_L, E_R$	\rightarrow	4th fermion generation ? right-handed neutrinos? DM candidates? exotic fermions ?
Spontaneous symmetry breaking from the VEV of a complex scalar Higgs doublet: $\phi = (H^+, H^0)$, $\langle H^0 \rangle = v/\sqrt{2}$	\rightarrow	extended Higgs sector ? Little Higgs models ? dynamical symm. breaking (technicolor) ?
Yukawa couplings to the Higgs field Y_U, Y_D, Y_E mass hierarchies, CKM mechanism	\rightarrow	new sources of flavour symm. breaking ? new sources of CP violation ? origin of neutrino masses ? charged-lepton flavour violation ?

- "Derive the SM" from a more fundamental underlying (renormalizable) theory ?
- Construct "Simplified Models" that can address some of the above issues ?
- Consider the SM as a low-energy effective theory and include higher-dimensional operators (SM-EFT)

Confront with experimental data:

- Direct Searches for resonances and thresholds in decay spectra, due to production and decay of new particles at high energies
- Indirect Searches for deviations from SM predictions in low-energy observables
- measure decays that are forbidden in the SM ("Null Tests")

Generic rules of the EFT game:

- Identify/postulate the symmetries of the EFT Lagrangian, here: $SU(3) \times SU(2) \times U(1)$
- Identify/postulate the field/particle content, here: SM fermions, SM gauge bosons, SM Higgs doublet
- Organize the interaction terms as a power series, here: expansion in $v/\Lambda_{\rm NP}\ll 1$

(SM = dim-4, "Weinberg operator" for Majorana neutrino masses at dim-5, many operators at dim-6)

• Assume generic values for dimensionless coefficients, here: 2499 unknowns of $\mathcal{O}(1)$ at dim-6

(more than half of it related to flavour-specific couplings!)

???

Phenomenological Challenges

WHAT SHOULD BE THE TYPICAL SIZE OF THE NEW COUPLINGS IN SM-EFT

$$\mathcal{L}_{\text{SM}-\text{EFT}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{Weinberg}}^{\text{dim}-5} + \sum_{n=1}^{2499} \frac{c_n(\mu)}{\Lambda_{\text{NP}}^2} \mathcal{O}_n^{\text{dim}-6} + \dots$$

- Allowing for anomalous couplings in the electroweak sector, how does this compare with electroweak precision measurements ? (imprints of the "custodial symmetry" of the SM Higgs sector)
- Do neutrino masses stem from Weinberg operator? (violation of accidental lepton-number symmetry of the SM)
- Figure out hierarchies in flavour-specific couplings at dim-6? (relation to SM Yukawa matrices?)
- Couplings mix under renormalization (change of reference scale μ) !

Example for flavour-specific couplings

four-fermion operators with two quark and two lepton fields in SMEFT: (→ LFU violation)

 $\frac{1}{\Lambda_{\rm NP}^2} \left[\mathcal{C}_{\ell q} \right]^{ij\alpha\beta} \left(\bar{Q}_i \gamma_\mu Q_j \right) \left(\bar{L}_\alpha \gamma^\mu L_\beta \right) \qquad \text{(for } i, j, \alpha, \beta = 1 \dots 3 \text{ generations)}$

• flavour tensor $[\mathcal{C}_{\ell q}]^{ij\alpha\beta}$ introduces $3^4 = 81$ free parameters:

 $\begin{array}{ll} \mbox{generic EFT:} & \mbox{all coefficients satisfy } \mathcal{C}^{ij\alpha\beta}_{\ell q} \sim \mathcal{O}(1) \\ & \rightarrow \mbox{flavour constraints require } \Lambda_{\rm NP} \mbox{ to be very high} \\ & \rightarrow \mbox{or: 81 coefficients must be fine-tuned} \end{array}$

MFV: expansion: $\#1\left(\delta^{ij} + \#2\left(Y_UY_U^{\dagger}\right)^{ij} + \#3\left(Y_DY_D^{\dagger}\right)^{ij} + \ldots\right)\left(\delta^{\alpha\beta} + \ldots\right)$

- \rightarrow reduction to a few unknown numbers
- \rightarrow inherits flavour hierarchies from SM
- \rightarrow independent of flavour bases
- \rightarrow self-consistent under renormalization
- \rightarrow value of $\Lambda_{\rm NP}$ can be reasonably low

Example for flavour-specific couplings

four-fermion operators with two quark and two lepton fields in SMEFT: (→ LFU violation)

 $\frac{1}{\Lambda_{\rm NP}^2} \left[\mathcal{C}_{\ell q} \right]^{ij\alpha\beta} \left(\bar{Q}_i \gamma_\mu Q_j \right) \left(\bar{L}_\alpha \gamma^\mu L_\beta \right) \qquad \text{(for } i, j, \alpha, \beta = 1 \dots 3 \text{ generations)}$

• flavour tensor $[\mathcal{C}_{\ell q}]^{ij\alpha\beta}$ introduces $3^4 = 81$ free parameters:

generic EFT:	all coefficients satisfy $C_{\ell q}^{ij\alpha\beta} \sim \mathcal{O}(1)$ \rightarrow flavour constraints require $\Lambda_{\rm NP}$ to be very high \rightarrow or: 81 coefficients must be fine-tuned
	\$ alternatives ? \$
MFV:	expansion: $\#1\left(\delta^{ij} + \#2\left(Y_UY_U^{\dagger}\right)^{ij} + \#3\left(Y_DY_D^{\dagger}\right)^{ij} + \ldots\right)\left(\delta^{\alpha\beta} + \ldots\right)$ \rightarrow reduction to a few unknown numbers \rightarrow inherits flavour hierarchies from SM \rightarrow independent of flavour bases \rightarrow self-consistent under renormalization \rightarrow value of Λ_{NP} can be reasonably low

Example: Simplified models with Leptoquarks

• four-fermion operators with two quark and two lepton fields in SMEFT: $(\rightarrow LFU \text{ violation})$

 $\frac{1}{\Lambda_{\rm NP}^2} \left[\mathcal{C}_{\ell q} \right]^{ij\alpha\beta} \left(\bar{Q}_i \gamma_\mu Q_j \right) \left(\bar{L}_\alpha \gamma^\mu L_\beta \right) \qquad (\text{for } i, j, \alpha, \beta = 1 \dots 3 \text{ generations})$

leptoquark exchange: $C_{\ell q}^{ij\alpha\beta} \sim \#1 \, (\Delta_{QL})^{i\beta} (\Delta_{QL}^{\dagger})^{\alpha j} + \dots$

→ reduction to $2 \times 9 = 18$ parameters (leptoquark couplings) → new leptoquark couplings also enter renormalization of SM Yukawa matrices → requires self-consistency relations among Yukawas $Y_{U,D,E}$ and Δ_{QL} → e.g. in the SM, we have $|Y_U^{ij}| \ge |(Y_D Y_D^{\dagger} Y_U)^{ij}|$ → now, also require $|Y_E^{\alpha\beta}| \ge |(\Delta_{OL}^{\dagger} \Delta_{QL} Y_E)^{\alpha\beta}|$

Self-consistency from Froggatt-Nielsen power-counting

• Easiest way to fulfill self-consistency relations via FN charges

$$\begin{array}{lcl} (Y_U)^{ij} & \sim & \lambda^{|b_Q^i - b_U^j|} \\ (Y_D)^{ij} & \sim & \lambda^{|b_Q^i - b_D^j|} \\ (Y_E)^{\alpha\beta} & \sim & \lambda^{|b_L^\alpha - b_E^\beta|} \\ \hline (\Delta_{QL})^{i\alpha} & \sim & \lambda^{|b_Q^i - b_L^\alpha|} \end{array}$$

with generation-dependent FN charges b_X , and $\lambda \ll 1$

- Consistency relations automatically fulfilled due to triangle inequalities
- Different viable choices for FN charges to reproduce SM Yukawa hierarchies, where

$$y_u \sim \lambda^{|b_Q^1 - b_U^1|}$$
 etc. $heta_{ij}^{ ext{CKM}} \sim \lambda^{|b_Q^i - b_Q^j|}$

(my personal) Lessons for Top-Bottom Connection

- Generic EFT is already spoiled by the SM Yukawas
- MFV is too special !
- Before adressing the SM-EFT flavour structure, we first have to understand the origin of the SM flavour hierarchies encoded in the Yukawa matrices !
- In the meantime, NP operators with bottom or top quarks have a priori independent coefficients, with no particular correlations between BSM effects in top or flavour observables !
- Keep in mind that any connection between BSM searches in the top or bottom sector is based on (more or less) ad-hoc model assumptions !

... but let's see how this works in practice ...