

CPPS Center for Particle Physics Siegen

Katharina Voß

Modelling systematics in ATLAS: Top quark pairs

CPPS Retreat, Meinerzhagen 16th February 2024

U Modelling studies in ATLAS

Goal of modelling studies in ATLAS is the improvement in modelling uncertainties through:

- Validation of improved nominal samples (e.g. scale uncertainty reduction through higher order accuracy in event generation)
- Improving modelling uncertainty prescription
 - (e.g. remove overestimation of modelling uncertainty through double-counting)

In the following slides:

An overview of the Powheg+Pythia8 $[t\bar{t} hvq]$ modelling uncertainty prescription and on-going studies within ATLAS to improve it

U Uncertainty prescription for the $t\overline{t}$ process

Hard process generation

- renormalisation and factorisation scale uncertainty varying $(K_R, K_F) \in \{(1, 0.5), (1, 2), (0.5, 1), (2, 1)\}$ with $\mu_{R/F} = K_{R/F}\mu_0$
- **PDF uncertainty** PDF4LHC variations added in quadrature (nominal NNPDF3.0)
- NNLO reweighting use NNLO reweighting based on truth p^{t^T}_t, m_{t^T}, p^t_T and p^T_T
- h_{damp} variation compare nominal $h_{\text{damp}} = 1.5 m_{\text{top}}$ to $h_{\text{damp}} = 3 m_{\text{top}}$
- top quark mass compare nominal $m_{top} = 172.5$ GeV to $m_{top} \in \{172.0, 173.0\}$ GeV samples

Katharina Voß (Universität Siegen)

U NNLO reweighting uncertainty

Improving modelling uncertainty prescription: NNLO reweighting Validation of improved nominal model: $t\bar{t}$ MiNNLO

Top p_T modelled better by aMC@NLO compared to Powheg \rightarrow now introduced NNLO reweighting uncertainty (recursively, $p_T^{t\bar{t}}, m_{t\bar{t}}, p_T^t, p_{\bar{t}}^{\bar{t}})$ Moving to $t\bar{t}$ MiNNLO: studying matching options [ATL-PHYS-PUB-2023-029]

• (s1)
$$p_{\rm T}^{\rm def} = 1$$
 (Py8 default), $p_{\rm T}^{\rm hard} = 0$ (Py8 default)

• (s2)
$$p_{\rm T}^{\rm def} = 2$$
 (ATLAS $t\bar{t}$ default), $p_{\rm T}^{\rm hard} = 0$ (Py8 default)

• (s3)
$$p_{\rm T}^{\rm def} = 1$$
 (Py8 default), $p_{\rm T}^{\rm hard} = 1$

Katharina Voß (Universität Siegen)

Validation of improved nominal sample: $bb4\ell$

Powheg+Pythia8 $t\bar{t}$ hvq (+tW DR)

Separate simulation of $t\bar{t}$ and [tW (Powheg+Pythia8)] final state at NLO+PS \rightarrow afterwards stack simulated events

Why is this a problem?

Real emission correction to tW Born process includes $gg/q\bar{q} \rightarrow W^- t\bar{b}$:

$$\begin{split} |\mathcal{M}|^2 &= |\mathcal{M}^{Wt\bar{b}} + \mathcal{M}^{t(\bar{t} \to W\bar{b})}|^2 \\ &= |\mathcal{M}^{Wt\bar{b}}|^2 + 2 \mathrm{Re} \mathcal{M}^{Wt\bar{b}} \mathcal{M}^{t(\bar{t} \to W\bar{b})} + |\mathcal{M}^{t(\bar{t} \to W\bar{b})}| \end{split}$$

 \rightarrow huge NLO corrections since $\sigma_{LO}(Wt) < \sigma_{LO}(t\bar{t})$

Does it makes sense to talk about a *Wt* **production or only about** *WWb* **and** *WWbb*? Yes, in phase space regions with small interference (see e.g. [arXiv:0908.0631]):

- $|\mathcal{M}^{Wt\bar{b}}|^2$ NLO correction to Wt
- LO $t\bar{t}$ separate process that can be removed

Validation of improved nominal sample: bb4ℓ

Powheg+Pythia8 $t\bar{t}$ hvq (+tW DR)

Real emission correction to tW Born process includes $gg/q\bar{q} \rightarrow W^- t\bar{b}$:

$$\begin{aligned} |\mathcal{M}|^2 &= |\mathcal{M}^{Wt\bar{b}} + \mathcal{M}^{t(\bar{t} \to W\bar{b})}|^2 \\ &= |\mathcal{M}^{Wt\bar{b}}|^2 + 2\text{Re}\mathcal{M}^{Wt\bar{b}}\mathcal{M}^{t(\bar{t} \to W\bar{b})} + |\mathcal{M}^{t(\bar{t} \to W\bar{b})}|^2 \end{aligned}$$

How can we check that applied cuts indeed reduce the sensitivity to the interference terms? \rightarrow compare two different approximations to remove $t\bar{t}$ effects in Wt NLO calculation

- Diagram Removal (DR): $\mathcal{M}^{DR} = \mathcal{M}^{Wt\bar{b}} \rightarrow |\mathcal{M}^{DR}|^2 = |\mathcal{M}^{Wt\bar{b}}|^2$
- Diagram Subtraction (DS): $|\mathcal{M}^{\text{DS}}|^2 = |\mathcal{M}^{Wt\bar{b}} + \mathcal{M}^{t(\bar{t} \to W\bar{b})}|^2 \mathcal{C}^{\text{SUB}}$, with $\mathcal{C}^{\text{SUB}} \to |\mathcal{M}^{t(\bar{t} \to W\bar{b})}|^2$ for $m_{Wb} \to m_t$

$$\begin{split} |\mathcal{M}^{DS}|^2 - |\mathcal{M}^{DR}|^2 &= \text{interference term} = 2\text{Re}\mathcal{M}^{Wt\bar{b}}\mathcal{M}^{t(\bar{t} \rightarrow W\bar{b})} \text{ (if } \mathcal{C}^{\text{SUB}} - |\mathcal{M}^{t(\bar{t} \rightarrow W\bar{b})}|^2 \text{ small}) \\ \rightarrow \text{ if } |\mathcal{M}^{DS}|^2 \sim |\mathcal{M}^{DR}|^2 \text{ (DR/DS uncertainty small), then in phase space region with small interference between } t\bar{t} \text{ and } tW \end{split}$$

Katharina Voß (Universität Siegen)

Validation of improved nominal sample: $bb4\ell$

$bb4\ell$ [arXiv:1607.04538] [arXiv:2307.15653]

Matrix element calculation includes double-, single- and non-resonant diagrams \rightarrow interference terms fully included without approximation at NLO \rightarrow no additional *tW* sample to describe *WWbb* final state

Currently developing modelling uncertainty prescription for the $bb4\ell$ process

Strategy: Compare systematic uncertainties in Powheg+Pythia8 $t\bar{t}$ and $bb4\ell$ using the same prescription

Katharina Voß (Universität Siegen)

Modelling systematics in ATLAS

6th February 2024 6 / 13

U Uncertainty prescription for the $t\bar{t}$ process

Improving modelling uncertainty prescription: targeted matching uncertainty

Matching uncertainty [ATL-PHYS-PUB-2023-029]

 Pythia 8 p_T^{hard} variation compare nominal p_T^{hard} = 0 to p_T^{hard} = 1 sample

compare nominal $p_{T}^{-1} = 0$ to $p_{T}^{-1} = 1$ sample

Previous matching uncertainty definition in ATLAS: Pwg+Py8 vs. MG_aMC@NLO+Py8 → convolutes multiple modelling differences, not only matching uncertainty! → updated matching uncertainty: variation of Py8 parameter p_{T}^{hard} [SciPostPhys.12(2022)010]

What is $p_{\rm T}^{\rm hard}$?

Showering of Pwg LHE files with Py8: vetoed shower = generate emissions with Py8 in full, unrestricted phase space, but then veto emissions which have hardness scale > Pwg scale How is the Pwg scale determined?

- Born-like events: SCALUP value of LHE information
- real emission events:
 - $p_T^{hard} = 0$ (default): SCALUP value of LHE information
 - $p_T^{hard} = 1$: min(p_T of Pwg emission w.r.t. all other FS particles or beam axis)
 - $p_T^{hard} = 2$: min(p_T of all FS particles w.r.t. each-other and w.r.t. the beam axis)

U Uncertainty prescription for the $t\bar{t}$ process

Improving modelling uncertainty prescription: targeted matching uncertainty

Matching uncertainty [ATL-PHYS-PUB-2023-029]

• Pythia 8 p_{T}^{hard} variation

compare nominal $p_T^{hard} = 0$ to $p_T^{hard} = 1$ sample

U Uncertainty prescription for the $t\overline{t}$ process

Parton shower uncertainties

- initial state radiation Pythia 8 Var3c variations, vary ISR $\alpha_S(M_Z) = \{0.115, 0.140\}$, nominal $\alpha_S(M_Z) = 0.127$ [ATL-PHYS-PUB-2014-021]
- final state radiation vary μ_R FSR splitting kernels by factor 0.5 and 2
- parton shower

comparison of nominal Pwg+Py8 with Pwg+Herwig 7 (H7)

Improving modelling uncertainty prescription: factorised parton shower uncertainty

Example entanglement in $t\bar{t}$ [2311.07288]:

 \rightarrow dipole vs angular ordered shower has the largest influence on the Py8 vs H7 difference in the entanglement measurement

Goal: factorised parton shower uncertainty to understand which part of the parton shower modelling (e.g. shower ordering or hadronisation) influences measurement the most

Katharina Voß (Universität Siegen)

U Uncertainty prescription for the $t\overline{t}$ process

Specialised uncertainty definitions

- top line shape (only for analysis in off-shell region) comparison of nominal Pwg+Py8 to Pwg+MadSpin+Py8 tt sample
- recoil-to-top compare nominal (recoil-to-colour) to alternative recoil-to-top sample

• underlying event Py8 A14 Var1 variations (MPI and UE tuning parameters) [ATL-PHYS-PUB-2014-021]

 colour reconnection comparison of nominal to tuned results with different CR models CR1 and CR2 [ATL-PHYS-PUB-2017-008]

Katharina Voß (Universität Siegen)

Modelling systematics in ATLAS

16th February 2024 10 / 13

U Top lineshape uncertainty

Improving modelling uncertainty prescription: dedicated line shape uncertainty Validation of improved nominal sample: $bb4\ell$

Pwhg+Py8 $t\bar{t}$ hvq: narrow width approximation + LO top decay

Narrow width approximation: simulate $t\bar{t}$ with on-shell final state particles and subsequent top decay at LO with Breit-Wigner smearing of the top quark invariant masses [Frixione,Laenen,Motylinski,Webber-method arXiv:0702198]

$bb4\ell$: complete offshell effects and top decay at NLO

Description of top decay at NLO:

& top off-shell effects are included without approximation since full top quark propagator is used in NLO matrix element calculation

Katharina Voß (Universität Siegen)

U Top lineshape uncertainty

Improving modelling uncertainty prescription: dedicated line shape uncertainty Validation of improved nominal sample: $bb4\ell$

Recently introduced top line shape uncertainty in the Powheg+Pythia8 hvq $t\bar{t}$ uncertainty prescription to quantify the discrepancy between hvq internal and external MadSpin implementations of Breit-Wigner smearing of top quark mass [ATL-PHYS-PUB-2023-029]

 \to top line shape uncertainty can be sizeable e.g. in top mass measurements \to uncertainty removed when moving to $bb4\ell$

Ú Conclusions and Outlook

Goal of modelling studies in ATLAS is the improvement in modelling uncertainties through:

- Validation of improved nominal samples
 - *bb*4ℓ
 - tt MiNNLO
 - tt Powheg+VINCIA
- Improving modelling uncertainty prescription
 - recently finished: p_T^{hard} , lineshape, NNLO reweighting
 - factorised parton shower uncertainty study

Ú Conclusions and Outlook

Goal of modelling studies in ATLAS is the improvement in modelling uncertainties through:

- Validation of improved nominal samples
 - *bb*4ℓ
 - tt MiNNLO
 - tt Powheg+VINCIA
- Improving modelling uncertainty prescription
 - recently finished: p_T^{hard} , lineshape, NNLO reweighting
 - factorised parton shower uncertainty study

Thank you for your attention!

Katharina Voß (Universität Siegen)

Modelling systematics in ATLAS

16th February 2024 13 / 13

û Recoil uncertainty

Validation of improved nominal sample: Powheg+VINCIA

ATLAS default $t\bar{t}$ Pwg+Py8 setting: recoilToColoured = on \rightarrow out of cone radiation is supressed **Recoil-to-top**: *W*-boson as a recoiler (more out of cone radiation), but multiply with correction factor \rightarrow in principle the better description!

 \rightarrow especially top mass measurement found to be sensitive to this uncertainty

 $\rightarrow t\bar{t}$ Powheg+VINCIA sample would provide correct emission pattern, matching options currently studied in ATLAS

Katharina Voß (Universität Siegen)

U Comparison with p_{T}^{def} variation

What is $p_{\rm T}^{\rm def}$?

Which p_T definition is used when calculating the hardness in the matching?

- $p_{T}^{def} = 0$: Pwg ISR p_{T} definition for ISR and FSR
- $p_{T}^{\text{def}} = 1$ (Pythia 8 default): Pwg ISR p_{T} and FSR d_{ij} definition
- $p_{T}^{def} = 2$ (ATLAS default): Pythia 8 p_{T} definition

 \rightarrow ATLAS default $p_{\rm T}^{\rm def}=2$ chosen due to better data-MC agreement

 $\rightarrow {\it p}_{\rm T}^{\rm def}$ variation has large effect on presented variables, mostly worsening data-MC agreement

Katharina Voß (Universität Siegen)