

Violations of Lorentz Invariance and Extensive Air Showers

In collaboration with: J.S. Díaz, F. Duenkel, F.R. Klinkhamer, M. Risse

Marcus Niechciol Center for Particle Physics Siegen, University of Siegen

CPPS Retreat 15 February 2024

LV in the Photon Sector in the Standard Model Extension

[Colladay, Kostelecký; Phys. Rev. D 58 (1998) 116002]

• Look at the Lagrangian density:

$$\mathcal{L}(x) = -\frac{1}{4} F^{\mu\nu}(x) F_{\mu\nu}(x) + \overline{\psi}(x) (\gamma^{\mu} [i\partial_{\mu} - eA_{\mu}(x)] - m) \psi(x) - \frac{1}{4} (k_F)_{\mu\nu\rho\sigma} F^{\mu\nu}(x) F^{\rho\sigma}(x)$$

- First two terms correspond to conventional quantum electrodynamics (QED)
- Last term introduces a dimension-four operator that gives rise to LV while preserving CPT and gauge

invariance ^[Chadha, Nielsen; Nucl. Phys. B 217 (1983) 125] [Kostelecký, Mewes; Phys. Rev. D 66 (2002) 056005]

• Notes on notation: natural units $\hbar = c = 1$ and the Minkowski metric $\eta_{\mu\nu} = [\text{diag}(+1, -1, -1, -1)]_{\mu\nu}$ are used; the Maxwell field strength tensor is defined as usual through $F_{\mu\nu} \equiv \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$

LV in the Photon Sector

- The tensor $(k_F)_{\mu\nu\rho\sigma}$ has **19 independent, dimensionless components**
 - 10 components lead to birefringence in the photon sector: constrained to high precision (10⁻³²) by cosmological observations [Carroll, Field, Jackiw; Phys. Rev. D 41 (1990) 1231] [Klinkhamer, Risse; Phys. Rev. D 77 (2008) 117901]
 - 8 components lead to direction-dependent modifications of the photon-propagation properties: not discussed here
 - Focus on the last remaining component, which leads to an **isotropic** modification of the photonpropagation properties
- Isotropic, non-birefringent LV in the photon sector is ultimately controlled by a single, dimensionless parameter κ, which relates to k_F through:

$$(k_F)^{\lambda}_{\ \mu\lambda\nu} = \frac{\kappa}{2} [\operatorname{diag}(3,1,1,1)]_{\mu\nu}$$

Isotropic, Nonbirefringent LV

- Restriction on κ from microcausality and unitarity: $\kappa \in (-1, 1]$ [Klinkhamer, Schreck; Nucl. Phys. B 848 (2011) 90]
- Photon propagation is determined by the field equations obtained from the previous equations: look specifically at the phase velocity of the photon

$$v_{\gamma} = \frac{\omega}{\left|\vec{k}\right|} = c_{\gamma} \sqrt{\frac{1-\kappa}{1+\kappa}}$$

- Note: *c* refers here to the maximum attainable velocity of a massive Dirac fermion (but still *c* = 1 in natural units)
- For non-zero values of κ , certain processes forbidden in the conventional, Lorentzinvariant theory ($\kappa = 0$) become allowed [Jacobson, Liberati, Mattingly; Ann. Phys. 321 (2006) 150] [Kaufhold, Klinkhamer; Nucl. Phys. B 734 (2006) 1]
 - $\kappa > 0$: vacuum Cherenkov radiation (VCh), $f^{\pm} \rightarrow f^{\pm} + \tilde{\gamma}$
 - $\kappa < 0$: photon decay (PhD), $\tilde{\gamma} \rightarrow e^- + e^+$

Vacuum Cherenkov Radiation ($\kappa > 0$)

• Charged particles of mass *M* emit vacuum Cherenkov radiation above the threshold

$$E_{\rm thr}^{\rm VCh}(\kappa) = M_{\sqrt{\frac{1+\kappa}{2\kappa}}}$$

 Radiation length below cm-scales right at the threshold: particles above the threshold lose their energy rapidly, dropping almost immediately below threshold

Photon Decay ($\kappa < 0$)

• Photons decay above the threshold

$$E_{\rm thr}^{\rm PhD}(\kappa) = 2m_e \sqrt{\frac{1-\kappa}{-2\kappa}}$$

• Decay length drops to cm-scales right at the threshold: essentially instantaneous decay

What if Photons in an Air Shower Decay?

- If photons above the threshold decay immediately into electron-positron pairs: expect shorter showers (smaller X_{max})
 - NB: secondary photons with up to ~10 % of the primary energy possible: 1 EeV cosmic ray → 100 PeV photons
- How large is the **impact of LV on** $\langle X_{\text{max}} \rangle$?
 - Simulation study using the Monte Carlo code

CONEX, extended to include LV processes

[Bergmann et al.; Astropart. Phys. 26 (2007) 420] [Pierog et al.; Nucl. Phys. B, Proc. Suppl. 151 (2006) 159] [Klinkhamer, MN, Risse; Phys. Rev. D 96 (2017) 116011]

Impact of LV on $\langle X_{\max} \rangle$

[Klinkhamer, MN, Risse; Phys. Rev. D 96 (2017) 116011]

Comparison to $\langle X_{\max} \rangle$ Data

[Klinkhamer, MN, Risse; Phys. Rev. D 96 (2017) 116011]

If **deeper showers** are observed than expected for a given κ for primary protons: exclude this κ

Full analysis yields a bound $\kappa > -3 \times 10^{-19}$ (98 % C.L.)

Only protons so far taken into account (conservative assumption)

Including $\sigma(X_{\max})$

[Duenkel, MN, Risse; Phys. Rev. D 104 (2021) 015010]

Simulate **mixtures** of protons and heavier nuclei (He, O, Fe)

The **"umbrellas"** bracket the range of allowed values in the $\langle X_{\max} \rangle / \sigma(X_{\max})$ space for a given κ (and energy)

If there is **no overlap** with data in any energy bin, then this κ can be **excluded**

A New Bound on $\kappa < 0$

[Duenkel, MN, Risse; Phys. Rev. D 104 (2021) 015010]

Full analysis yields a bound $\kappa > -6 \times 10^{-21}$ (98 % C.L.)

More **general takeaway**: shower profiles at ultra-high energies are quite "normal"

Vacuum Cherenkov Radiation in Air Showers

- What if electrons and positrons (most numerous and lightest charged particles in an air shower) lose their energy immediately due to vacuum Cherenkov radiation?
 - Expect again **shorter showers** with smaller X_{max} !
- Perform again a **simulation study** with CONEX

Vacuum Cherenkov Radiation in Air Showers: $\langle X_{max} \rangle$

[Duenkel, MN, Risse; Proc. UHECR 2022]

Which Primaries Can Actually Reach Earth?

Need to take into account that the **primary particle** also emits vacuum Cherenkov radiation to be consistent: Not all primaries can actually reach Earth \rightarrow composition constraint

Back to the Umbrella Plots

Consequence:

Umbrellas get smaller as more primaries drop out

Result after comparison with Auger data: $\kappa < 3 \times 10^{-20}$ (98 % C.L.)

What about muons?

[Duenkel, MN, Risse; PoS (ICRC 2023) 217] 1.25 CONEX v2r7p50, SIBYLL2.3d - Proton, $\kappa = 0$ 1.2 Proton, $\kappa = 3 \times 10^{-20}$ 1.15 Proton, $\kappa = -6 \times 10^{-21}$ 1.1 $N_{\mu,\kappa}/N_{\mu,\kappa}=0$.05 0.95 look at 0.9 0.85 10¹⁷ **10¹⁸ 10**¹⁹ 10²⁰ Energy of the primary particle [eV]

The number of muons at ground level N_{μ} increases with energy for $\kappa < 0$ and decreases for $\kappa > 0$

Correlation between X_{max} and N_{μ} can be an additional observable to look at