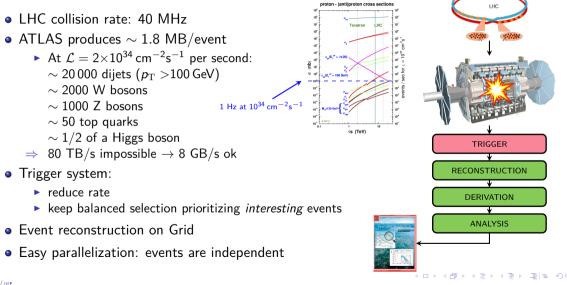


Data Processing in ATLAS

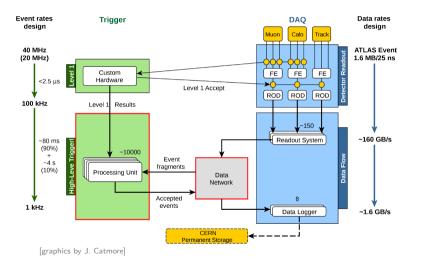
Scientific Computing Session

Wolfgang Walkowiak



CPPS Retreat 2024, Meinerzhagen

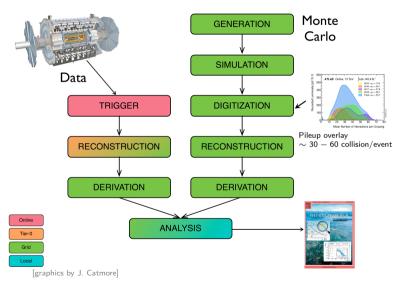
February 15, 2024


% ATLAS Data Taking

February 15, 2024

1/14

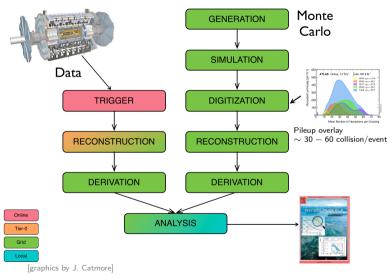
\$ ATLAS Online Trigger & Data Acquisition System



Hardware trigger (LVL1) • Decision in $\sim 2.5 \,\mu s$ • Retains $\sim 100 \, \text{kHz}$ High level trigger (HLT) • Offline-like algorithms • Decision in $\sim 500 \,\mathrm{ms}$ • Max. 8 GB/s output $\sim 3 \, \text{kHz}$ of full events $\sim 5 \, \text{kHz}$ of 'partial' events

315

< 回 > < 三 > < 三 > .

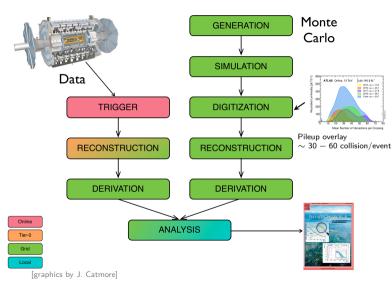

X ATLAS Event Processing Pipeline & Monte Carlo

MC generators

- MadGraph. POWHEG-BOX, Pythia8, Herwig7, Sherpa, ...
- MC production requests!
- \rightarrow 1 s to *n* hours/event

\$ ATLAS Event Processing Pipeline & Monte Carlo

MC generators

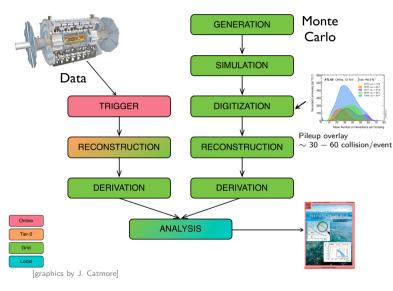

- MadGraph, POWHEG-BOX, Pythia8, Herwig7, Sherpa, . . .
- MC production requests!
- ightarrow 1s to *n* hours/event

ent Detector simulation

- Mainly GEANT4
- Esp. CPU intensive: calorimeter simulation
- $\Rightarrow \mbox{ FullSim often replaced by} \\ \mbox{ AtlFast }$

 $\rightarrow~1$ to $10\,min/event$

% ATLAS Event Processing Pipeline & Monte Carlo

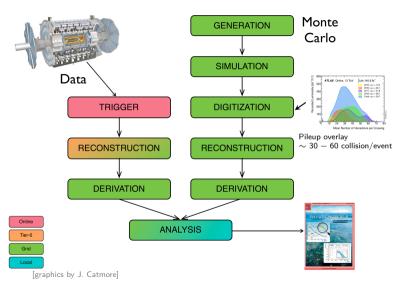


Digitization

- Material interactions \rightarrow realistic signals
- Overlay additional minimum bias pp events (pileup)
- $\rightarrow~5$ to $60\,s/event$

315

$m \ref{scalar}$ ATLAS Event Processing Pipeline & Monte Carlo

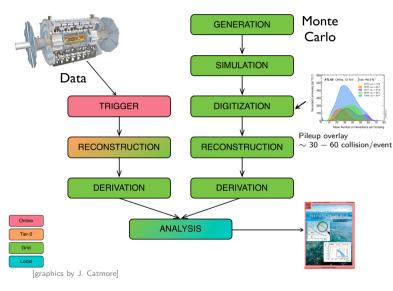

Digitization

- Material interactions \rightarrow realistic signals
- Overlay additional minimum bias pp events (pileup)
- $\rightarrow~5$ to $60\,s/event$

Event reconstruction

- Detector signals \rightarrow physics objects
- Same algorithms as for real data
- Produces AODs
- $\rightarrow \mathcal{O}(1 \min)$ February 15, 2024 3/14

$m \ref{scalar}$ ATLAS Event Processing Pipeline & Monte Carlo


Derivation

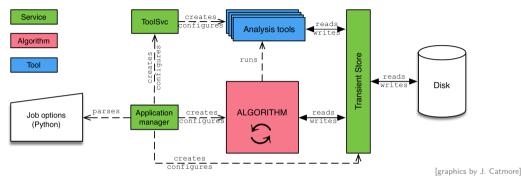
- Reduction of AOD content for analysis
- Construction of analysis-specific objects (e.g. *B*-mesons)
- many formats
 (number to be reduced)
- $ightarrow \mathcal{O}(\mathsf{seconds/event})$

315

< 回 > < 三 > < 三 > .

$m \ref{scalar}$ ATLAS Event Processing Pipeline & Monte Carlo

Derivation

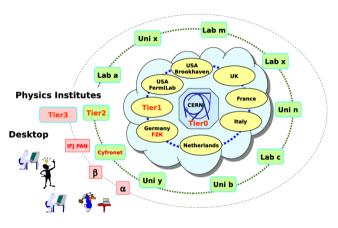

- Reduction of AOD content for analysis
- Construction of analysis-specific objects (e.g. *B*-mesons)
- many formats (number to be reduced)
- $ightarrow \mathcal{O}(\mathsf{seconds/event})$

Analysis

- Ntuples or data frames
- S/W specific to analysis

3/14

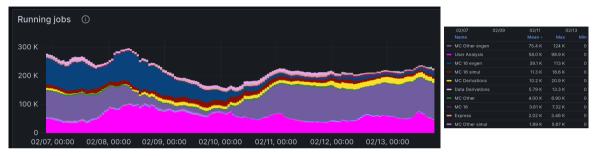
% Athena Software Framework


- \bullet Core in C++, glue (job options) in Python
- Code in open gitlab repository at CERN
- \bullet User modifies job options (Python) and writes analysis algorithms (C++)
- Users typically use Athena on DAODs to produce ntuples on the grid
- Athena framework also used for all production jobs

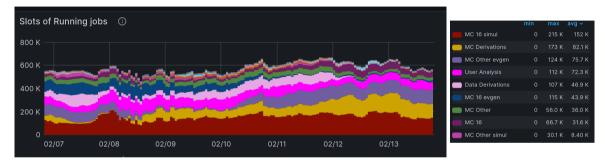
I ↓ / HEP W. Walkowiak (HEP, Universität Siegen)

CPPS Retreat 2024

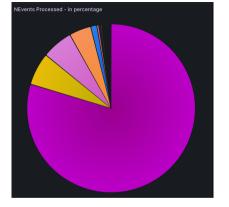
 $m \ref{scalar}$ Worldwide LHC Computing Grid


- Collaboration of ~ 170 computing centers worldwide
- Partnered with
 - European Grid Infrastructure (EGI)
 - Open Science Grid (OSG)
 - Nordic e-Infrastructure Collaboration (NeIC)
- Organization in Tiers 1 3
 - ▶ UNI-SIEGEN-HEP is Tier-3
- Jobs run where data reside, but data also move to idle sites

[[]Comp.Sc. 9 (2008) 47-54]


Worldwide LHC Computing Grid

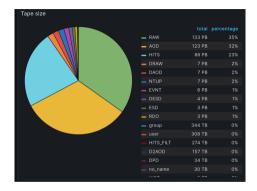
- $\bullet\,$ About ~ 250 to 300 K jobs running concurrently past 7 days
- Mostly Monte-Carlo production and then user analysis
- Note: ATLAS has not been taking new data since November last year
- Production jobs often run in multi-core configuration, while many user analysis jobs run single-core


\$ ATLAS Jobs on the Grid – by Slots

- $\bullet\,$ About $\sim\,550$ to 600 K cores occupied during past 7 days
- Mostly Monte-Carlo simulation (typically multi-core)

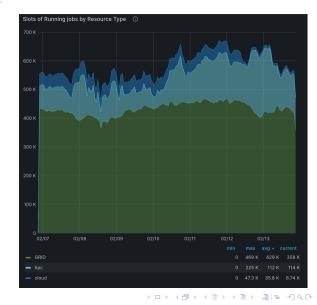
イロト 不得 トイヨト イヨト

% ATLAS Jobs on the Grid – Events Processed



	Value	Percent
🗕 User Analysis	398 Bil	81%
- MC Derivations	30.9 Bil	6%
- Data Derivations	29.5 Bil	6%
🗕 Express Analysis	20.7 Bil	4%
- MC merge	5.51 Bil	
- Express	1.55 Bil	0%
— MC 16 evgen	1.26 Bil	0%
- MC Other	854 Mil	0%
— MC 16 simul	843 Mil	0%
- Group Analysis	383 Mil	0%

- Almost 400 billion events processed during past 7 days
- More than 75% by user analysis jobs
- User analysis and derivation jobs run faster



- Almost 300 PB on disk, about 380 PB on tape (total of 680 PB)
- Analysis related data (DAOD, AOD, HITS) dominate on disk
- Raw detector data (RAW) are kept on tape, but also AODs and HITS data

\Re ATLAS Jobs – by Resource Type

- Slots of running jobs by resource type during past 7 days
- Besides classical Grid:
 - ▶ HPC centers (~ 110 K cores)
 - Cloud resources (\sim 35 K cores)

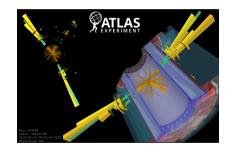
UNI-SIEGEN-HEP WLCG Instance

- $\bullet \sim 100$ slots at ENC, ~ 2300 slots at NDC
- Plot of running jobs during last 30 days
- Running multicore jobs, mostly Monte-Carlo production
- Network bandwidth limited at NDC (currently 1 Gb/s connection to world, hardware for faster connection available, waiting for ZIMT)

niversität

% User Analysis Resources

Preparation of analysis-specific datasets:


• WLCG GRID (analysis jobs for ntuple production)

For data analysis steps:

- Ixplus at CERN
- National Analysis Facility (NAF, DESY)
- OMNI cluster (ZIMT, to run e.g. ML jobs)
- SiMPLE cluster

ATLAS environment locally:

- ATLAS software via CVMFS
- Centos7 or AlmaLinux environment via apptainer container
- Locally installed versions of ROOT
- Tensorflow and Co. typically in virtual environments

SiMPLE Cluster

SiMPLE Siegen MultiProcessor Linux Environment

Cluster of HEP group

- Located in ENC-A 104
 - own HEP subnet (141.99.204.0/23)
- ullet 364 cores (compute nodes) $+ \sim$ 160 cores (PCs)
- ullet \sim 550 TB on storage servers (RAID-6)
- OS: Debian 12.5 (bookworm)
- Central installation system: FAI & Puppet
 - all compute nodes and PCs run exactly same software
- Central home directories

(on redundant hardware, multiple levels of backups)

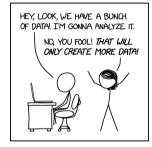
- SLURM batch system
- Experiment specific software (ATLAS, Auger, ...)

→

315

S Conclusions

Detector data processing:

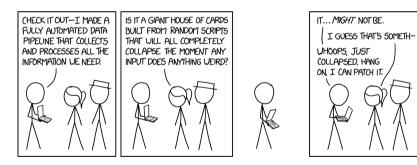

- Complex selection of interesting processes by trigger system
- Reconstruction of physics objects on the Grid

Monte-Carlo production:

- Various MC generators for physics processes
- Detector simulation is CPU & time consuming
- Same reconstruction algorithms run as for data
- All production steps performed on the Grid

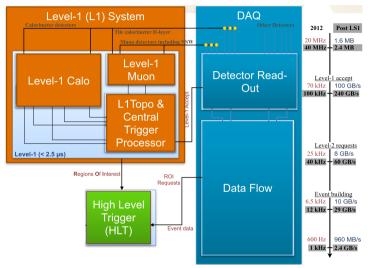
User analysis:

- Analysis specific datasets derived (data and MC)
- User typically produces ntuples on the Grid
- Runs analysis locally


[xkcd/2582]

 ▶ < 클 ▶ < 클 ▶ < 클 ▶ < 클 ■ </td>
 > ○ < ○</td>

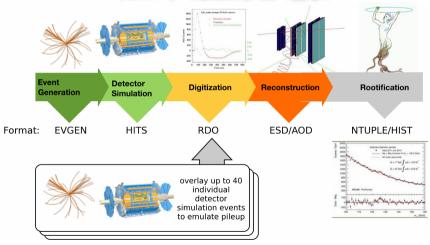
 February 15, 2024
 14 / 14



Bonus Material

[xkcd/2054]

\Re ATLAS TDAQ System



[graphics by C. Bernius]

CPPS Retreat 2024

$m \ref{kernol}$ ATLAS Monte Carlo Production Chain

From 4-vectors to ROOT

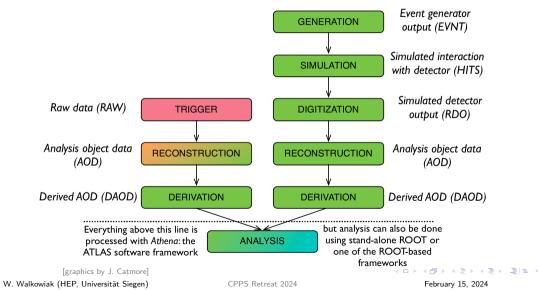

[graphics by C. Debenedetti, CHEP 2013]

Image: Image

CPPS Retreat 2024

February 15, 2024 2 / 5

% ATLAS Data Formats

3/5

% Run 3 AtlFast3 Configuration

	Inner Detector	Calorimeters				Muon Spectrometer
Electrons Photons		FastCaloGAN V2 Except [0.9< n <1.1, 1.35< n <1.5]		FastCaloSim V2 <i>Eurr</i> > 16 GeV && n < 2.4, All <i>Eurr</i> && (0.9< n <1.1, 1.35< n <1.5, n >2.4]		
Charged Pions Kaons	Coopt4	Geant4 Geant4	<i>E_{kin}</i> < 4 GeV && ŋ < 1.4,		FastCaloGAN V2 Extr. > 8 GeV && ri < 1.4, Extr. > 2 GeV && 1.4 < ri < 3.15, All Extr. && ri < 3.15	Muon Punchthrough + Geant4
Baryons	Geant4	E _{kin} < 200 MeV Other hadrons: E _{kin} < 400 MeV	F	FastCaloGAN V2		
Muons		Geant4				
[J. Dandoy, ATLA	S week Feb. 2024]				□≻∢⊡≻∢≣≻∢

✔/^{HEP} W. Walkowiak (HEP, Universität Siegen)

CPPS Retreat 2024

February 15, 2024

4/5

% ATLAS Analysis Model

✔/^{HEP} W. Walkowiak (HEP, Universität Siegen)

CPPS Retreat 2024

February 15, 2024 5 / 5