Progress in $B \to X_s \ell \ell$ Phenomenology

Jack Jenkins University of Siegen Quirks 2024 @Zadar

CPPS Center for Particle Physics Siegen The SM applied to semileptonic decays is remarkably predictive (CKM+LFU) \hdots

 \ldots but does not explain mass and mixing hierarchies and is phenomenological in this respect

b
ightarrow s: no suppression other than $lpha^2/16\pi^2 \sim 10^{-6}$

- GIM-allowed $m_t \sim M_W$
- CKM-allowed $|V_{tb}V_{ts}| \sim |V_{cb}|^2$

Ideal environment for inclusive modes (recoil tagging or sum-over-exclusive)

Three angular observables with q^2 -dependent sensitivity to $C_{9,10}$ [Lee, Ligeti, Stewart, Tackmann 0612156]

$$\frac{d^{3}\Gamma}{dq^{2}dM_{X}dz} = \frac{3}{8}\left[(1+z^{2})H_{T} + 2z H_{A} + 2(1-z^{2})H_{L}\right]$$

$$\begin{split} H_T &\sim 2(1-\hat{q}^2)^2 \hat{q}^2 \left[\left(C_9 + 2C_7/\hat{q}^2 \right)^2 + C_{10}^2 \right] \,, \\ H_A &\sim -4(1-\hat{q}^2)^2 \hat{q}^2 \, C_{10}(C_9 + 2C_7/\hat{q}^2) \,, \\ H_L &\sim (1-\hat{q}^2)^2 \left[(C_9 + 2C_7)^2 + C_{10}^2 \right] \end{split}$$

Jack Jenkins

Krüger-Sehgal approach

3/17

Normalization

Power corrections dominate the error at high- q^2 , in particular four-quark operators which are suppressed in the ratio [Ligeti, Tackmann 0707.1694]

$$\mathcal{R}(q_0^2) = \int_{q_0^2}^{M_B^2} dq^2 rac{d\mathcal{B}(B o X_s \ell \ell)}{dq^2} \left/ \int_{q_0^2}^{M_B^2} dq^2 rac{d\mathcal{B}(B o X_u \ell
u)}{dq^2}
ight.$$

This normalization provides an indirect determination of the $B \rightarrow X_s \ell \ell$ rate [Huber, Hurth, Jenkins, Lunghi, Qin, Vos 2404.03517]

$$\begin{split} \mathcal{B}[>15] &= (2.59 \pm 0.21_{\text{scale}} \pm 0.03_{m_t} \pm 0.05_{C,m_c} \pm 0.19_{m_b} \pm 0.004_{\alpha_s} \pm 0.002_{\text{CKN}} \\ &\pm 0.04_{\text{BR}_{s1}} \pm 0.26_{\rho_1} \pm 0.10_{\lambda_2} \pm 0.54_{f_{u,s}}) \times 10^{-7} \\ &= (2.59 \pm 0.68) \times 10^{-7} \\ \mathcal{R}(15) &= (27.00 \pm 0.25_{\text{scale}} \pm 0.30_{m_t} \pm 0.11_{C,m_c} \pm 0.17_{m_b} \pm 0.15_{\alpha_s} \pm 1.16_{\text{CKM}} \\ &\pm 0.37_{\rho_1} \pm 0.07_{\lambda_2} \pm 1.43_{f_{u,s}}) \times 10^{-4} \\ &= (27.00 \pm 1.94) \times 10^{-4} \,. \end{split}$$

	Charged	Neutral	lsospin avg.
B ightarrow K	0.85 ± 0.05	0.66 ± 0.11	$0.82\pm0.05^\dagger$
$B \to K^*$	1.58 ± 0.33	1.74 ± 0.14	$1.72\pm0.13^\dagger$
$B \rightarrow K + K^*$	$2.43\pm0.33^\dagger$	$2.41\pm0.18^\dagger$	$2.41 \pm 0.16^{\dagger}$

[LHCb 1403.8044, 1606.04731, LHCb 1408.1137] † Our combinations do not include correlations

- Interpolated B factory results to LHCb's phase space:
 - \circ BaBar: $q^2 > 14.2$ (e/μ avg)
 - \circ Belle: $q^2 > 14.4$ (e/μ avg)
 - \circ LHCb: $q^2 > 15$ (noQED, μ only)
- Used inclusive theory predictions to correct for phase space and QED

$$\mathcal{B}[>14.4]/\mathcal{B}[>14.2]=0.96$$

$$\circ \ {\cal B}[>15]_{
m noQED}/{\cal B}[>14.4]=0.97$$

The picture is obscured by a spread of experimental and theoretical determinations (B factory vs LHCb, direct vs indirect)

No clear anomaly in the inclusive mode

Comparison to Experiment

Constraints on SM Coefficients

Jack Jenkins

M_X Distribution: Angular Observables

Jack Jenkins

Belle II projections

10/17

- We considered the effect of collinear photon radiation in inclusive $B \to X_s \ell \ell$, suitable for analyses at LHCb
- The inclusive theory predictions can also be used to compare LHCb results to the B factories: bounds on C_9 from the inclusive mode are consistent with the SM.

Several directions to progress (before a fully inclusive measurement at Belle II):

- LHCb updates of $B o K^{(*)}$ at high- q^2
- Closer look at $K\pi$ and $K\pi\pi$ (theory and experiment)
- Updates of power corrections parameters and $B
 ightarrow X_u \ell
 u$

Progress in $B \rightarrow X_s \ell \ell$ Phenomenology

Thank you for listening ! Any Questions ?

Estimate of nonresonant contributions [2305.03076]

 ${
m Br}(B o (K\pi)_{S}\ell\ell) [> 15] = (0.58 \pm 0.25) imes 10^{-7}$

This estimate is consistent with and superceded by more precise $B \to K\pi$ and $B \to K\pi\pi$ from LHCb

Results without log-enhanced QED corrections

q^2 range [GeV ²]	[1,6]	[1, 3.5]		[3.5, 6]
\mathcal{B} $[10^{-7}]$	16.87 ± 1.25	9.17 ± 0.61		7.70 ± 0.65
${\cal H}_T~[10^{-7}]$	3.14 ± 0.25	1.49 ± 0.09		1.65 ± 0.17
\mathcal{H}_L $[10^{-7}]$	13.65 ± 1.00	7.63 ± 0.54		6.02 ± 0.49
$\mathcal{H}_A \; [10^{-7}]$	-0.27 ± 0.21	-1.08 ± 0.08		0.81 ± 0.16
q^2 range [GeV ²]	> 14.4		> 15	
${\cal B}~[10^{-7}]$	3.04 ± 0.69		2.59 ± 0.68	
${\cal R}(q_0^2) \; [10^{-4}]$	26.02 ± 1.76		27.00 ± 1.94	

Results including log-enhanced QED corrections

q^2 range [GeV ²]	[1,6]	[1, 3.5]	[3.5,6]		
${\cal B}~[10^{-7}]$	17.41 ± 1.31	9.58 ± 0.65	7.83 ± 0.67		
\mathcal{H}_{T} $[10^{-7}]$	4.77 ± 0.40	2.50 ± 0.18	2.27 ± 0.22		
$\mathcal{H}_L \ [10^{-7}]$	12.65 ± 0.92	7.085 ± 0.48	5.56 ± 0.45		
$\mathcal{H}_A \; [10^{-7}]$	-0.10 ± 0.21	-0.989 ± 0.080	0.89 ± 0.16		
q^2 range [GeV ²]	> 14.4				
$\mathcal{B}~[10^{-7}]$	2.66 ± 0.70				
${\cal R}(q_0^2) \; [10^{-4}]$	$24.12\pm2.01^{\dagger}$				

† The denominator of $\mathcal{R}(q_0^2)$ (the $B \to X_u \ell \nu$ rate) does not include log-enhanced QED corrections

Constraints on SM coefficients (expanded plane)

Jack Jenkins

17/17