Nonperturbative QCD in $D^0 \overline{D}^0$ mixing

Lovro Dulibić (Ruđer Bošković Institute, Croatia)

Funded by the European Union NextGenerationEU

in collaboration with: Blaženka Melić (Ruđer Bošković Institute, Croatia), Alexey Petrov (University of South Carolina, USA)

Quirks in Quark Flavor Physics, Zadar 2024

Outline

- 1. Introducing the formalism
- 2. Presenting the problem
- 3. Our approach nonlocal condensates
- 4. (Preliminary) results
- 5. Future research

$$i\frac{d}{dt} \begin{pmatrix} |D^{0}(t)\rangle \\ |\overline{D}^{0}(t)\rangle \end{pmatrix} = \hat{\mathcal{H}} \begin{pmatrix} |D^{0}\rangle \\ |\overline{D}^{0}\rangle \end{pmatrix}$$

$$\hat{\mathcal{H}} = \left(\hat{M} - \frac{i}{2}\hat{\Gamma}\right)$$

$$i\frac{d}{dt} \begin{pmatrix} |D^{0}(t)\rangle \\ |\overline{D}^{0}(t)\rangle \end{pmatrix} = \hat{\mathcal{H}} \begin{pmatrix} |D^{0}\rangle \\ |\overline{D}^{0}\rangle \end{pmatrix}$$

$$\hat{\mathcal{H}} = \left(\hat{M} - \frac{i}{2} \hat{\Gamma} \right)$$

$$\hat{\Gamma} = \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{11} \end{pmatrix} ; \quad \hat{M} = \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{11} \end{pmatrix}$$

$$i\frac{d}{dt} \begin{pmatrix} |D^{0}(t)\rangle \\ |\overline{D}^{0}(t)\rangle \end{pmatrix} = \hat{\mathcal{H}} \begin{pmatrix} |D^{0}\rangle \\ |\overline{D}^{0}\rangle \end{pmatrix}$$

$$\hat{U}^{-1}\left(\hat{M}-\frac{i}{2}\hat{\Gamma}\right)\hat{U} = \begin{pmatrix} M_L - \frac{i}{2}\Gamma_L & 0\\ 0 & M_H - \frac{i}{2}\Gamma_H \end{pmatrix}$$

$$\hat{\mathcal{H}} = \left(\hat{M} - \frac{i}{2} \hat{\Gamma} \right)$$

$$\hat{\Gamma} = \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{11} \end{pmatrix} ; \quad \hat{M} = \begin{pmatrix} M_{11} & M_{12} \\ M_{12}^* & M_{11} \end{pmatrix}$$

$$i\frac{d}{dt} \begin{pmatrix} |D^{0}(t)\rangle \\ |\overline{D}^{0}(t)\rangle \end{pmatrix} = \hat{\mathcal{H}} \begin{pmatrix} |D^{0}\rangle \\ |\overline{D}^{0}\rangle \end{pmatrix}$$

$$\hat{U}^{-1}\left(\hat{M}-\frac{i}{2}\hat{\Gamma}\right)\hat{U} = \begin{pmatrix} M_L - \frac{i}{2}\Gamma_L & 0\\ 0 & M_H - \frac{i}{2}\Gamma_H \end{pmatrix}$$

$$\hat{\mathcal{H}} = \left(\hat{M} - \frac{i}{2}\hat{\Gamma}\right)$$

$$\hat{\Gamma} = \begin{pmatrix}\Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{11}\end{pmatrix} ; \quad \hat{M} = \begin{pmatrix}M_{11} & M_{12} \\ M_{12}^* & M_{11}\end{pmatrix}$$

lifetime difference

$\Delta M - M_{12}$	$\lambda - \Delta \Gamma$	Γ_{12}
$x = \frac{1}{\Gamma_D} = 2 \frac{1}{\Gamma_D}$	$y - \frac{1}{2\Gamma_D}$	Γ_D

mass difference

$$i\frac{d}{dt} \begin{pmatrix} |D^{0}(t)\rangle \\ |\overline{D}^{0}(t)\rangle \end{pmatrix} = \hat{\mathcal{H}} \begin{pmatrix} |D^{0}\rangle \\ |\overline{D}^{0}\rangle \end{pmatrix}$$

$$\hat{U}^{-1}\left(\hat{M}-\frac{i}{2}\hat{\Gamma}\right)\hat{U} = \begin{pmatrix} M_L - \frac{i}{2}\Gamma_L & 0\\ 0 & M_H - \frac{i}{2}\Gamma_H \end{pmatrix}$$

$$\hat{\mathcal{H}} = \left(\hat{M} - \frac{i}{2}\hat{\Gamma}\right)$$

$$\hat{\Gamma} = \begin{pmatrix}\Gamma_{11} & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma_{11}\end{pmatrix} ; \quad \hat{M} = \begin{pmatrix}M_{11} & M_{12} \\ M_{12}^* & M_{11}\end{pmatrix}$$

lifetime difference

$$x = \frac{\Delta M}{\Gamma_D} = 2\frac{M_{12}}{\Gamma_D} \qquad \qquad y = \frac{\Delta\Gamma}{2\Gamma_D} = \frac{\Gamma_{12}}{\Gamma_D}$$
$$mass difference$$

ntroduction Experiment

- $D^0\overline{D}^0$ mixing was discovered in **2007** by Belle and BaBar
 - hypothesis is excluded at $> 10\sigma$)

parameter

BELLE collaboration, Evidence for D – D Mixing, Phys. Rev. Lett. 98 (2007) 211803, [hep-ex/0703036] BaBar collaboration, Evidence for D – D Mixing, Phys. Rev. Lett. 98 (2007) 211802, [hep-ex/0703020] HFLAV collaboration, Averages of b-hadron, c-hadron, and τ -lepton properties as of 2021, Phys. Rev. D 107 (2023) 052008, [2206.07501]

Later confirmed by many others (to such an extent that the no-mixing)

The current experimental world average for the mass difference mixing

$x_{EXP} = -0.44^{+0.13}_{-0.15} \times 10^{-2}$

 $x_{EXP} \approx 10^{-2}$

'singly' GIM suppressed

 $\mathscr{A} = \xi_s^2 (A_{ss} - 2A_{ds} + A_{dd}) + 2\xi_s \xi_b (A_{dd} - A_{ds}) + \xi_b^2 A_{dd}$

 $\mathscr{A} = \xi_{s}^{2} (A_{ss} - 2A_{ds} + A_{dd}) + 2\xi_{s}\xi_{b} (A_{dd} - A_{ds}) + \xi_{b}^{2} A_{dd}$

- The contributions from naively leading operators give a result multiple orders of magnitude smaller than experiment.
- It seems other contributions are actually leading. NLO, nonperturbative effects, ...

- The contributions from naively leading operators give a result multiple orders of magnitude smaller than experiment.
- It seems other contributions are actually leading. NLO, nonperturbative effects, ...

 Sticking to the Standard Model, we look for the missing contribution from nonperturbative physics.

Different approaches Inclusive

• SU(3) breaking contributions from new higher-dimension operators

E. Golowich and A. A. Petrov, Short distance analysis of D0 - anti-D0 mixing, Phys. Lett. B625 (2005) 53–62, [hep-ph/0506185]

M. Bobrowski, A. Lenz, J. Riedl and J. Rohrwild, D - anti-D mixing in the framework of the HQE *revisited*, 0904.3971

- - -

Different approaches Inclusive Exclusive

• SU(3) breaking contributions from new higher-dimension operators

Golowich and A. A. Petrov, Short distance E. analysis of D0 - anti-D0 mixing, Phys. Lett. B625 (2005) 53-62, [hep-ph/0506185]

M. Bobrowski, A. Lenz, J. Riedl and J. Rohrwild, D - anti-D mixing in the framework of the HQE revisited, 0904.3971

• SU(3) breaking contributions from **bound states**

. . .

A. F. Falk, Y. Grossman, Z. Ligeti, and A. A. Petrov, SU(3) breaking and D0–D0 mixing, Phys. *Rev. D 65, 054034,* [hep-ph/0110317] H.-Y. Cheng and C.-W. Chiang, Long-distance contributions to D0–D0 mixing parameters, Phys. *Rev. D 81, 114020,* [1005.1106]

inclusion of intermediate

$\pi\pi, \pi K, KK, \ldots$

Different approaches Inclusive Exclusive

• SU(3) breaking contributions from new higher-dimension operators

Golowich and A. A. Petrov, Short distance analysis of D0 - anti-D0 mixing, Phys. Lett. B625 (2005) 53-62, [hep-ph/0506185]

M. Bobrowski, A. Lenz, J. Riedl and J. Rohrwild, D - anti-D mixing in the framework of the HQE revisited, 0904.3971

• SU(3) breaking contributions from **bound states**

D0–D0 mass difference from a dispersion relation, Phys. A. F. Falk, Y. Grossman, Z. Ligeti, and A. A. Petrov, SU(3) breaking and D0–D0 mixing, Phys. *Rev. D 69, 114021,* [hep-ph/0402204] *Rev. D 65, 054034,* [hep-ph/0110317] H.-N. Li, H. Umeeda, F. Xu and F.-S. Yu, D meson mixing as an inverse problem, Phys. Lett. B 810 (2020) 135802, H.-Y. Cheng and C.-W. Chiang, Long-distance [2001.04079] contributions to D0–D0 mixing parameters, Phys. *Rev. D 81, 114020,* [1005.1106] H.-n. Li, Dispersive analysis of neutral meson mixing, *Phys. Rev. D* 107 (2023) 054023, [2208.14798] 17

Dispersive

inclusion of intermediate

$\pi\pi, \pi K, KK, \ldots$

SU(3) breaking contributions from 'threshold' effects from different D meson decay channels

A. F. Falk, Y: Grossman, Z. Ligeti, Y. Nir, and A. A. Petrov,

• **Box diagram** is $\propto (m_s/m_c)^4$

• Box diagram is
$$\propto \left(\frac{m_s}{m_c}\right)^4$$

$$S_q = \frac{p + m_q}{p^2 - m_q^2} = \frac{p + m_q}{p^2} \left(1 + \frac{m_q^2}{p^2} + \dots\right)$$

• Box diagram is
$$\propto \left(\frac{m_s}{m_c}\right)^4$$

 $S_q = \frac{p + m_q}{p^2 - m_q^2} = \frac{p + m_q}{p^2} \left(1 + \frac{m_q^2}{p^2} + \dots\right)$

• Using **QCD condensates** we expect $\propto (m_s/m_c)^3$

• Box diagram is
$$\propto (m_s/m_c)^4$$

 $S_q = \frac{p + m_q}{p^2 - m_q^2} = \frac{p + m_q}{p^2} \left(1 + \frac{m_q^2}{p^2} + ...\right)$
QCD condensates we expect $\propto (m_s/m_c)^3$

$$\langle \overline{q}(x)q(0) \rangle \propto 1 + ix \frac{m_q}{4} + \dots$$

• Box diagram is
$$\propto \left(\frac{m_s}{m_c}\right)^4$$

$$S_q = \frac{p + m_q}{p^2 - m_q^2} = \frac{p + m_q}{p^2} \left(1 + \frac{m_q^2}{p^2} + \dots\right)$$

• Using **QCD condensates** we expect $\propto (m_s/m_c)^3$

Essentially, we trade a power of m_s/m_c suppression for a suppression of the higher dimensional operator.
Don't forget - there is also 16π² relative enhancement since this is not a loop calculation

 Condensates are well-known and have bee decades

$$\begin{split} \langle \overline{q}(x)^a_{\alpha}q(0)^b_{\beta} \rangle &= \frac{\langle \overline{q}q \rangle_0}{4N_C} \delta^{ab} \left[\delta_{\alpha\beta} \left(1 - \frac{x^2}{4} \left(\frac{m^2}{2} - \frac{\langle \overline{q}i\sigma G}{2\langle \overline{q}q \rangle} \right) \right) \right] \\ &+ i(x)_{\beta\alpha} \left(\frac{m}{4} - \frac{x^2}{4} \left(\frac{m^3}{12} - \frac{m}{12} \frac{\langle \overline{q}i\sigma Gq \rangle_0}{\langle \overline{q}q \rangle_0} + \frac{2}{81} \pi \alpha_s^{NP} \frac{\langle \overline{q}q \rangle_0}{\langle \overline{q}q \rangle_0} \right) \right] \end{split}$$

M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, QCD and resonance physics. theoretical foundations, Nucl. Phys. B147, Issue 5, 1979, 385-447

Condensates are well-known and have been widely used in sum rules calculations for

 Condensates are well-known and have bee decades

$$\begin{split} \langle \overline{q}(x)^a_{\alpha}q(0)^b_{\beta} \rangle &= \frac{\langle \overline{q}q \rangle_0}{4N_C} \delta^{ab} \left[\delta_{\alpha\beta} \left(1 - \frac{x^2}{4} \left(\frac{m^2}{2} - \frac{\langle \overline{q}i\sigma G}{2\langle \overline{q}q \rangle} \right) \right) \right] \\ &+ i(x)_{\beta\alpha} \left(\frac{m}{4} - \frac{x^2}{4} \left(\frac{m^3}{12} - \frac{m}{12} \frac{\langle \overline{q}i\sigma Gq \rangle_0}{\langle \overline{q}q \rangle_0} + \frac{2}{81} \pi \alpha_s^{NP} \frac{\langle \overline{q}q \rangle_0}{\langle \overline{q}q \rangle_0} \right) \right] \end{split}$$

M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, QCD and resonance physics. theoretical foundations, Nucl. Phys. B147, Issue 5, 1979, 385-447

Condensates are well-known and have been widely used in sum rules calculations for

$$\langle \overline{q}q \rangle_0 = (-243 \text{ MeV})^3$$

 $\frac{\langle \overline{q}i\sigma Gq \rangle_0}{2\langle \overline{q}q \rangle_0} = 0.4 \pm 0.1 \text{ GeV}^2$
 $\frac{\langle \overline{s}s \rangle}{\langle \overline{q}q \rangle} = 0.8 \pm 0.3$

Condensates are well-known and have been widely used in sum rules calculations for • decades

$$\begin{split} \langle \overline{q}(x)^a_{\alpha}q(0)^b_{\beta} \rangle &= \frac{\langle \overline{q}q \rangle_0}{4N_C} \delta^{ab} \left[\delta_{\alpha\beta} \left(1 - \frac{x^2}{4} \left(\frac{m^2}{2} - \frac{\langle \overline{q}i\sigma G}{2\langle \overline{q}q \rangle} \right) \right) \right] \\ &+ i(x)_{\beta\alpha} \left(\frac{m}{4} - \frac{x^2}{4} \left(\frac{m^3}{12} - \frac{m}{12} \frac{\langle \overline{q}i\sigma Gq \rangle_0}{\langle \overline{q}q \rangle_0} + \frac{2}{81} \pi \alpha_s^{NP} \frac{\langle \overline{q}q \rangle_0}{\langle \overline{q}q \rangle_0} \right) \right] \end{split}$$

M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, QCD and resonance physics. theoretical foundations, Nucl. Phys. B147, Issue 5, 1979, 385-447

$$\langle \overline{q}q \rangle_0 = (-243 \text{ MeV})^3$$
$$\frac{\langle \overline{q}i\sigma Gq \rangle_0}{2\langle \overline{q}q \rangle_0} = 0.4 \pm 0.1 \text{ GeV}^2$$
$$\approx \frac{\langle \overline{q}D^2q \rangle}{\langle \overline{q}q \rangle} = \lambda_q^2$$
$$\frac{\langle \overline{s}s \rangle}{\langle \overline{q}q \rangle} = 0.8 \pm 0.3$$

 Condensates are well-known and have been widely used in sum rules calculations for decades

$$\langle \overline{q}q \rangle_{0} = (-243 \text{ MeV})^{3}$$

$$\langle \overline{q}q \rangle_{0} = 0.4 \pm 0.1 \text{ GeV}^{2}$$

$$\approx \frac{\langle \overline{q}D^{2}q \rangle}{\langle \overline{q}q \rangle} = \lambda_{q}^{2}$$

$$\langle \overline{q}q \rangle_{0} = 0.4 \pm 0.1 \text{ GeV}^{2}$$

$$\approx \frac{\langle \overline{q}D^{2}q \rangle}{\langle \overline{q}q \rangle} = \lambda_{q}^{2}$$

$$\langle \overline{q}q \rangle_{0} = (-243 \text{ MeV})^{3}$$

$$\langle \overline{q}q \rangle_{0} = 0.4 \pm 0.1 \text{ GeV}^{2}$$

$$\langle \overline{q}q \rangle_{0} = \lambda_{q}^{2}$$

$$\langle \overline{q}q \rangle_{0} = 0.8 \pm 0.3$$

M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, QCD and resonance physics. theoretical foundations, Nucl. Phys. B147, Issue 5, 1979, 385-447

QCD condensates The relevant contributions in the local expansion

...

QCD condensates The relevant contributions in the local expansion

...

QCD condensates The relevant contributions in the local expansion

29

...

Nonlocal generalization

• Assumption - long distances play a crucial role in $D^0\overline{D}^0$ mixing

$$\langle \overline{q}(x)^a_{\alpha}q(0)^b_{\beta} \rangle = \frac{\langle \overline{q}q \rangle_0}{4N_C} \delta^{ab} \left[\delta_{\alpha\beta} \left(1 - \frac{x^2}{4} \left(\frac{m^2}{2} - \frac{\langle \overline{q}\sigma Gq \rangle_0}{2\langle \overline{q}q \rangle_0} \right) \dots \right) + i(x)_{\beta\alpha} \left(\frac{m}{4} - \frac{x^2}{4} \left(\frac{m^3}{12} - \frac{m}{12} \frac{\langle \overline{q}\sigma Gq \rangle_0}{\langle \overline{q}q \rangle_0} + \frac{2}{81} \pi \alpha_s^{NP} \frac{\langle \overline{q}q \rangle_0^2}{\langle \overline{q}q \rangle_0} \right) \right) \right]$$

- Assumption long distances play a crucial role in $D^0\overline{D}^0$ mixing
- Questions have been raised in the literature as to whether this expansion is well behaved $\dots \right) + i(x)_{\beta\alpha} \left(\frac{m}{4} - \frac{x^2}{4} \left(\frac{m^3}{12} - \frac{m}{12} \frac{\langle \overline{q}\sigma Gq \rangle_0}{\langle \overline{a}q \rangle_0} + \frac{2}{81} \pi \alpha_s^{NP} \frac{\langle \overline{q}q \rangle_0^2}{\langle \overline{a}q \rangle_0} \right) \dots \right) \right)$

$$\langle \overline{q}(x)^a_{\alpha}q(0)^b_{\beta} \rangle = \frac{\langle \overline{q}q \rangle_0}{4N_C} \delta^{ab} \left[\delta_{\alpha\beta} \left(1 - \frac{x^2}{4} \left(\frac{m^2}{2} - \frac{\langle \overline{q}\sigma Gq \rangle_0}{2\langle \overline{q}q \rangle_0} \right) \right) \right] \right]$$

S. V. Mikhailov and A. V. Radyushkin, Nonlocal condensates and QCD sum rules for the pion wave function, Phys. Rev. D 45 (Mar, 1992) 1754–1759

- Assumption long distances play a crucial role in $D^0\overline{D}^0$ mixing
- Questions have been raised in the literature as to whether this expansion is well behaved $\dots \right) + i(x)_{\beta\alpha} \left(\frac{m}{4} - \frac{x^2}{4} \left(\frac{m^3}{12} - \frac{m}{12} \frac{\langle \overline{q}\sigma Gq \rangle_0}{\langle \overline{q}q \rangle_0} + \frac{2}{81} \pi \alpha_s^{NP} \frac{\langle \overline{q}q \rangle_0^2}{\langle \overline{q}q \rangle_0} \right) \dots \right) \right)$ $\delta_{\alpha\beta}F_S(x) + i(x)_{\beta\alpha}F_V(x)$

$$\langle \overline{q}(x)^a_{\alpha}q(0)^b_{\beta} \rangle = \frac{\langle \overline{q}q \rangle_0}{4N_C} \delta^{ab} \left[\delta_{\alpha\beta} \left(1 - \frac{x^2}{4} \left(\frac{m^2}{2} - \frac{\langle \overline{q}\sigma Gq \rangle_0}{2\langle \overline{q}q \rangle_0} \right) \right) \right] \right]$$

$$\left\langle \overline{q}(x)^a_{\alpha} q(0)^b_{\beta} \right\rangle = \frac{\left\langle \overline{q}q \right\rangle}{4N_C} \delta^{ab}$$

S. V. Mikhailov and A. V. Radyushkin, Nonlocal condensates and QCD sum rules for the pion wave function, Phys. Rev. D 45 (Mar, 1992) 1754–1759

- Condition 1: must reproduce the expansion in small-x limit
- Condition 2: must decay in the large-x limit

$$F_{S,V,G}(x) = \int_0^\infty d\alpha \left(B_{S,V,G} f(\alpha) + A_{S,V,G} f'(\alpha) \right)$$

- Condition 1: must reproduce the expansion in small-x limit
- Condition 2: must decay in the large-x limit

$$F_{S,V,G}(x) = \int_{0}^{\infty} d\alpha \left(B_{S,V,G} f(\alpha) + A_{S,V,G} f'(\alpha) \right)$$

fixed by the first moments of the expansion

 $)e^{-\alpha \frac{x^2}{4}}$

- Condition 1: must reproduce the expansion in small-x limit
- Condition 2: must decay in the large-x limit

$$F_{S,V,G}(x) = \int_{0}^{\infty} d\alpha \left(B_{S,V,G} f(\alpha) + A_{S,V,G} f'(\alpha) \right) e^{-1}$$
fixed by the first moments of the expansion

V. M. Braun, D. Y. Ivanov and G. P. Korchemsky, The B meson distribution amplitude in QCD, Phys. Rev. D 69 (2004) 034014, [hep-ph/0309330]

- Condition 1: must reproduce the expansion in small-x limit
- Condition 2: must decay in the large-x limit

$$F_{S,V,G}(x) = \int_{0}^{\infty} d\alpha \left(B_{S,V,G} f(\alpha) + A_{S,V,G} f'(\alpha) \right)$$

fixed by the first moments of the expansion

V. M. Braun, D. Y. Ivanov and G. P. Korchemsky, The B meson distribution amplitude in QCD, Phys. Rev. D 69 (2004) 034014, [hep-ph/0309330]

- Condition 1: must reproduce the expansion in small-x limit
- Condition 2: must decay in the large-x limit

$$F_{S,V,G}(x) = \int_{0}^{\infty} d\alpha \left(B_{S,V,G} f(\alpha) + A_{S,V,G} f'(\alpha) \right)$$

fixed by the first moments of the expansion

$$\lambda_q^2 = \frac{\langle \overline{q}(D)^2 q \rangle}{\langle \overline{q}q \rangle} \approx \frac{\langle \overline{q}i\sigma Gq \rangle}{2\langle \overline{q}q \rangle}$$
average quark virtuality

V. M. Braun, D. Y. Ivanov and G. P. Korchemsky, The B meson distribution amplitude in QCD, Phys. Rev. D 69 (2004) 034014, [hep-ph/0309330]

- Condition 1: must reproduce the expansion in small-x limit
- Condition 2: must decay in the large-x limit

$$F_{S,V,G}(x) = \int_{0}^{\infty} d\alpha \left(B_{S,V,G} f(\alpha) + A_{S,V,G} f'(\alpha) \right)$$

fixed by the first moments of the expansion

$$\lambda_q^2 = \frac{\langle \overline{q}(D)^2 q \rangle}{\langle \overline{q}q \rangle} \approx \frac{\langle \overline{q}i\sigma Gq \rangle}{2\langle \overline{q}q \rangle}$$
average quark virtuality

V. M. Braun, D. Y. Ivanov and G. P. Korchemsky, *The B meson distribution* amplitude in QCD, Phys. Rev. D 69 (2004) 034014, [hep-ph/0309330]

α

- Condition 1: must reproduce the expansion in small-x limit
- Condition 2: must decay in the large-x limit

$$F_{S,V,G}(x) = \int_{0}^{\infty} d\alpha \left(B_{S,V,G} f(\alpha) + A_{S,V,G} f'(\alpha) \right)$$

fixed by the first moments of the expansion

$$\lambda_q^2 = \frac{\langle \overline{q}(D)^2 q \rangle}{\langle \overline{q}q \rangle} \approx \frac{\langle \overline{q}i\sigma Gq \rangle}{2\langle \overline{q}q \rangle}$$
average quark virtuality

amplitude in QCD, Phys. Rev. D 69 (2004) 034014, [hep-ph/0309330]

expanding in terms of local condensates

$$-4.6 \times 10^{-6}$$

expanding in terms of local condensates

$$-4.6 \times 10^{-6}$$

using the simplest nonlocal model

$$-5.8 \times 10^{-6}$$

expanding in terms of local condensates

 -4.6×10^{-6}

using the simplest nonlocal model

$$-5.8 \times 10^{-6}$$

$$-1.9 \times 10^{-6}$$

(Preliminary) Results

Concluding remarks Future research & possible improvements

- The result is sensitive to
 - Condensate values, as well as the ratio $\langle \overline{ss} \rangle / \langle \overline{qq} \rangle$.
 - values as high as $\sim 2.5 \, \mathrm{GeV}^2$

P. Gubler and D. Satow, Recent Progress in QCD Condensate Evaluations and Sum Rules, Prog. Part. Nucl. Phys. 106 (2019) 1–67, [1812.00385] A. F. Falk, Y. Grossman, Z. Ligeti, and A. A. Petrov, SU(3) breaking and D0-D0 mixing, Phys. Rev. D 65, 054034, [hep-ph/0110317] 49

• Quark virtuality for which the often quoted value is $\sim 0.4 \, {
m GeV}^2$ which we used, but some report

Concluding remarks Future research & possible improvements

- The result is sensitive to
 - Condensate values, as well as the ratio $\langle \overline{ss} \rangle / \langle \overline{qq} \rangle$.
 - values as high as $\sim 2.5 \, {\rm GeV^2}$
- Future research calculation of the four-quark condensate contribution
 - strange mass $\propto (m_s/m_c)^2$
 - This is supposed to be the (parametrically) **leading contribution!**

P. Gubler and D. Satow, Recent Progress in QCD Condensate Evaluations and Sum Rules, Prog. Part. Nucl. Phys. 106 (2019) 1-67, [1812.00385] A. F. Falk, Y. Grossman, Z. Ligeti, and A. A. Petrov, SU(3) breaking and D0–D0 mixing, Phys. Rev. D 65, 054034, [hep-ph/0110317] 50

• Quark virtuality for which the often quoted value is $\sim 0.4 \, {
m GeV^2}$ which we used, but some report

• Both propagators in the box diagram are replaced by condensates - expected dependence on

Lovro Dulibić (Ruđer Bošković Institute, Croatia)

Funded by the European Union NextGenerationEU

in collaboration with: Blaženka Melić (Ruđer Bošković Institute, Croatia), Alexey Petrov (University of South Carolina, USA)

Quirks in Quark Flavor Physics, Zadar 2024

