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Introduction

Experiment

. DYDY mixing was discovered in 2007 by Belle and BaBar

» |ater confirmed by many others (to such an extent that the no-mixing
hypothesis is excluded at > 100)

* The current experimental world average for the mass difference mixing
parameter

BELLE collaboration, Evidence for D — D Mixing, Phys. Rev. Lett. 98 (2007) 211803, [hep-ex/0703036]

BaBar collaboration, Evidence for D — D Mixing, Phys. Rev. Lett. 98 (2007) 211802, [hep-ex/0703020]

HFLAV collaboration, Averages of b-hadron, c-hadron, and T -lepton properties as of 2021, Phys. Rev. D 107 (2023) 052008, [2206.07501]
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Presenting the problem
Theory - box diagram

W d,s,b
C > > U C > > > U
d,s,by Ad, 5. b W W=
U - v < C U < < < C
W S

d, 5. b
= 552 (ASS o 2Ads T Add) T zéséb(Add o Ads) T lgAdd
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Presenting the problem

Theory - box diagram

J b
o = Ef(Ay — 244+ Agy) + 2EE(Ayy — Ayy) + E7 A,

CKM leading / doubly' CKM suppressed

'‘doubly' GIM suppressed CKM suppressed
singly' GIM suppressed
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Theory - box diagram

C d, s, b U

U = Z C

1 s b
o = 532 (ASS o ZAdS + Add) + Zéséb(Add o Ads) + 5[3 Add
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Presenting the problem
Theory - box diagram

C d, S, b U , : : ;

* The contributions from naively leading
operators give a result multiple orders
of magnitude smaller than experiment.

m N / C * |t seems other contributions are
d. s. b actually leading. NLO, nonperturbative

A = ész(Ass o ZAdS T Add) + Zéséb(Add — Ads) + égAdd eﬁeCtS’
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Presenting the problem
Theory - box diagram

C d, S, b U , : : ;

* The contributions from naively leading
operators give a result multiple orders
of magnitude smaller than experiment.

m N / C * |t seems other contributions are
d. s. b actually leading. NLO, nonperturbative

A = ész(Ass o ZAdS T Add) + 2555]9(Add — Ads) + flgAdd eﬁeCtS’

o Sticking to the Standard Model, we look for the missing contribution from
nonperturbative physics.
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Different approaches

Inclusive

* SU(3) breaking
contributions from new
higher-dimension

operators
C d, s, b U
m s ol C
v 15 b

E. Golowich and A. A. Petrov, Short distance
analysis of DO - anti-D0O mixing, Phys. Lett. B625
(2005) 53-62, [hep-ph/0506185]

M. Bobrowski, A. Lenz, J. Riedl and J. Rohrwild, D

- anti-D mixing in the framework of the HQE
revisited, 0904.3971
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Dispersive

* SU(3) breaking
contributions from
'threshold' effects from
different D meson decay
channels

A. F. Falk, Y: Grossman, Z. Ligeti, Y. Nir, and A. A. Petrov,
DO-D0 mass difference from a dispersion relation, Phys.

Rev. D 69, 114021, [hep-ph/0402204]

H.-N. Li, H. Umeeda, F. Xu and F.-S. Yu, D meson mixing

as an inverse problem, Phys. Lett. B 810 (2020) 135802,
[2001.04079]

H.-n. Li, Dispersive analysis of neutral meson mixing,
Phys. Rev. D 107 (2023) 054023, [2208.14798]
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Motivation
. . 4
c d, s, b u - Box diagram is (ms/mc)
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p+m p+m m
! d s b ‘ p=— My p p

7 u « Using QCD condensates we expect (mS/mC)3
. mq
(G(x)q(0)) < 1 + ix— + ...
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Our approach - nonlocal QCD condensates

Motivation

U

<

-l

ol

ol

. . 4
- Box diagram is (mS/mC)

+m +m m2
S = prig _F q(1+—§+...)

Topr-mz p? p

3
Using QCD condensates we expect (mS/ mc)

e Essentially, we trade a power of m /m_ suppression for a
suppression of the higher dimensional operator.

e Don't forget - there iIs also 167% relative enhancement
since this is not a loop calculation
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QCD condensates

 Condensates are well-known and have been widely used in sum rules calculations for
decades

. (qq) .,
<Q(X)aQ(O)2> — 4NC05 ’ [505,8(

m
i(X)ﬁa< 1

M.A. Shifman, A.l. Vainshtein, V.l. Zakharov, QCD and resonance physics. theoretical foundations, Nucl. Phys. B147, Issue 5, 1979, 385-447
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QCD condensates

 Condensates are well-known and have been widely used in sum rules calculations for

decades
(99)o = (—243MeV)’
i
- | \91959)0 _ .4 +0.1GeV?
(Fx)3q(0)5) = jj‘é 0 5t laaﬁ( 2(4q)o
C
, m  x? ] B
l(X)ﬁa< A A ( 1 ¢ <SS> 08403
(qq)

M.A. Shifman, A.l. Vainshtein, V.l. Zakharov, QCD and resonance physics. theoretical foundations, Nucl. Phys. B147, Issue 5, 1979, 385-447
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QCD condensates

 Condensates are well-known and have been widely used in sum rules calculations for

decades
(Gq)g = (=243 MeV)?
qgiocG
o %5‘_ ;D 0 — 04 +0.1GeV?
— Na (b — 0 sab q44/0 —12
<Q(X)aQ(O)IB> 4NC 0 [505,3( ~ <qD Q> — 12
— q rtualit
» (m . <_> <QQ> virtuality
pa\ : - ? =0.8%+0.3
(qq)

M.A. Shifman, A.l. Vainshtein, V.l. Zakharov, QCD and resonance physics. theoretical foundations, Nucl. Phys. B147, Issue 5, 1979, 385-447
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QCD condensates

 Condensates are well-known and have been widely used in sum rules calculations for

decades
(9q)o = (—243MeV)*
(qiocGq)

- e 0.4 0.1 GeV*
— \g b\ __ 0 cab qq —1)2
(Q’(X)aCI(O)ﬂ) — AN, 0 [5(1[;( 0 N <qD q) _ /12 quark
. o | ) <qq> q virtuality
) pa 4 4\ 12 ’ (55) = 0.8+0.3
(qq)

L XXX+

M.A. Shifman, A.l. Vainshtein, V.l. Zakharov, QCD and resonance physics. theoretical foundations, Nucl. Phys. B147, Issue 5, 1979, 385-447
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QCD condensates

The relevant contributions in the local expansion

Quark- quark condensate

O O O Wt

27



QCD condensates

The relevant contributions in the local expansion

Quark-quark condensate

s

Mixed condensate

e

A

L X X
M e
L N ]
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QCD condensates

The relevant contributions in the local expansion

Quark-quark condensate

A

Mixed condensate

X

* X
!

Four quark condensate
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Nonlocal QCD condensates

Nonlocal generalization

 Assumption - long distances play a crucial role In DD" mixing

_ (Gq) x> ((m*  (goGq), . m x> (m® m(GoGq), 2 (Gq)%
a b\ _ ab T : NP
(q(x)aq(0)5) = N, O [5Qﬁ<1 1 ( > 2@, )) +l(X)ﬂa< R (12 12 (@0 | 817[% @ )
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Nonlocal QCD condensates

Nonlocal generalization

 Assumption - long distances play a crucial role In DD" mixing

* Questions have been raised in the literature as to whether this expansion is well behaved

_ (Gq) x> ((m*  (goGq), . m x> (m® m(GoGq), 2 (Gq)%
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S. V. Mikhailov and A. V. Radyushkin, Nonlocal condensates and QCD sung1rules for the pion wave function, Phys. Rev. D 45 (Mar, 1992) 1754-1759
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\ & O W W W R W e e

(qq)
4N,

(q(x)3q(0)5) =

5 léaﬁF §(X) + 100 g F V(x)]

S. V. Mikhailov and A. V. Radyushkin, Nonlocal condensates and QCD sungzrules for the pion wave function, Phys. Rev. D 45 (Mar, 1992) 1754-1759



Nonlocal QCD condensates

Nonlocal generalization

L X s

5 [5aﬁF §(X) + 100) g Fy(X)

Quark-quark condensate

(qq)
4N,

(@x)3q(0)3) =
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Nonlocal QCD condensates

Nonlocal generalization

L X s

léa sFg(x) + 1(X) g, Fy/(x)

>CK >U< .

sacgbd _ _ 5ab 5cd a + E(m X+ 7%, — yyxﬂ) (qiocGq) + éXG ?naNP< 7 q)2> F(x)
pa
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Nonlocal QCD condensates

Nonlocal generalization

L X s

(@00} = 22 s [%FS(x) F 00, Fy ()

4NC e ASuRsn

>CK >U< .

sacgbd _ _ 5ab 5cd a + E(m X+ 7%, — yyxﬂ) (qiocGq) + éXG ?naNP< 7 q)2> F(x)

,Ba""‘"
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Nonlocal QCD condensates

How is the nonlocality modeled?

® Condition 1: must reproduce the expansion in small-x limit

® Condition 2: must decay in the large-x limit

0 y

Fgyox) = J do (BS,V,G fla) + Asve f’(a))e a7
0
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o0

X2 f(a)
_ / Q ,
Fgygx) = J da (BS,V,Gf(a) +AS’V,Gf((x))e 1 6
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fixed by the first moments of the expansion 4t
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How is the nonlocality modeled?
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(Preliminary) Results

For the mass difference parameter x
expanding in terms of using the simplest
local condensates nonlocal model

_4.6 % 10 ~5.8%x107°

—~1.9%x107°

total from nonlocal
condensates

—7.7 % 107°
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(Preliminary) Results

For the mass difference parameter x

expanding in terms of using the simplest
local condensates nonlocal model
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(Preliminary) Results

For the mass difference parameter x

expanding in terms of using the simplest
local condensates nonlocal model

_4.6 % 10 ~5.8%x107°

—~1.9%x107°

the perturbative total from nonlocal
contribution condensates

_ -5
—36%x107°[1=7.7 % 10~° x=—-—1.13x%x10

FINAL RESULT
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Concluding remarks

Future research & possible improvements

e The result is sensitive to

« Condensate values, as well as the ratio (55)/(qq).

. Quark virtuality for which the often quoted value is ~ 0.4 GeV? which we used, but some report
values as high as ~ 2.5 GeV?
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054034, [hep-ph/0110317] 49
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« Condensate values, as well as the ratio (55)/(qq).

. Quark virtuality for which the often quoted value is ~ 0.4 GeV? which we used, but some report
values as high as ~ 2.5 GeV?

* Future research - calculation of the four-quark condensate contribution
* Both propagators in the box diagram are replaced by condensates - expected dependence on
strange mass o (m,/ mc)2
* This is supposed to be the (parametrically) leading contribution!
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