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• ￼  mixing was discovered in 2007 by Belle and BaBar 


• Later confirmed by many others (to such an extent that the no-mixing 
hypothesis is excluded at ￼ )


• The current experimental world average for the mass difference mixing 
parameter  

D0D0

> 10σ

Introduction
Experiment
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• Sticking to the Standard Model, we look for the missing contribution from 
nonperturbative physics.

𝒜 = ξ2
s (Ass − 2Ads + Add) + 2ξsξb(Add − Ads) + ξ2

b Add
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• Box diagram is ￼∝ (ms/mc)4

• Using QCD condensates we expect ￼∝ (ms/mc)3

• Essentially, we trade a power of ￼  suppression for a 
suppression of the higher dimensional operator.


• Don't forget - there is also ￼  relative enhancement 
since this is not a loop calculation
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16π2
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QCD condensates
• Condensates are well-known and have been widely used in sum rules calculations for 

decades 

￼23

￼
⟨q(x)a

αq(0)b
β⟩ =

⟨qq⟩0

4NC
δab[δαβ (1 −

x2

4 ( m2

2
−

⟨qiσGq⟩0

2⟨qq⟩0 )…)+

+i(x)βα( m
4

−
x2

4 ( m3

12
−

m
12

⟨qiσGq⟩0

⟨qq⟩0
+

2
81

παNP
s

⟨qq⟩2
0

⟨qq⟩0 )…)]

M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, QCD and resonance physics. theoretical foundations, Nucl. Phys. B147, Issue 5, 1979, 385-447



• Condensates are well-known and have been widely used in sum rules calculations for 
decades 

￼24

QCD condensates

M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, QCD and resonance physics. theoretical foundations, Nucl. Phys. B147, Issue 5, 1979, 385-447

⟨qq⟩0 = (−243 MeV)3

￼
⟨q(x)a

αq(0)b
β⟩ =

⟨qq⟩0

4NC
δab[δαβ (1 −

x2

4 ( m2

2
−

⟨qiσGq⟩0

2⟨qq⟩0 )…)+

+i(x)βα( m
4

−
x2

4 ( m3

12
−

m
12

⟨qiσGq⟩0

⟨qq⟩0
+

2
81

παNP
s

⟨qq⟩2
0

⟨qq⟩0 )…)]

⟨qiσGq⟩0

2⟨qq⟩0
= 0.4 ± 0.1 GeV2

⟨ss⟩
⟨qq⟩

= 0.8 ± 0.3



• Condensates are well-known and have been widely used in sum rules calculations for 
decades 

￼25

QCD condensates

M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, QCD and resonance physics. theoretical foundations, Nucl. Phys. B147, Issue 5, 1979, 385-447

⟨qq⟩0 = (−243 MeV)3

￼
⟨q(x)a

αq(0)b
β⟩ =

⟨qq⟩0

4NC
δab[δαβ (1 −

x2

4 ( m2

2
−

⟨qiσGq⟩0

2⟨qq⟩0 )…)+

+i(x)βα( m
4

−
x2

4 ( m3

12
−

m
12

⟨qiσGq⟩0

⟨qq⟩0
+

2
81

παNP
s

⟨qq⟩2
0

⟨qq⟩0 )…)]

⟨qiσGq⟩0

2⟨qq⟩0
= 0.4 ± 0.1 GeV2

≈
⟨qD2q⟩

⟨qq⟩
= λ2

q

⟨ss⟩
⟨qq⟩

= 0.8 ± 0.3

quark 
virtuality



• Condensates are well-known and have been widely used in sum rules calculations for 
decades 

￼26

QCD condensates

M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, QCD and resonance physics. theoretical foundations, Nucl. Phys. B147, Issue 5, 1979, 385-447

￼
⟨q(x)a

αq(0)b
β⟩ =

⟨qq⟩0

4NC
δab[δαβ (1 −

x2

4 ( m2

2
−

⟨qiσGq⟩0

2⟨qq⟩0 )…)+

+i(x)βα( m
4

−
x2

4 ( m3

12
−

m
12

⟨qiσGq⟩0

⟨qq⟩0
+

2
81

παNP
s

⟨qq⟩2
0

⟨qq⟩0 )…)]

⟨qq⟩0 = (−243 MeV)3

⟨qiσGq⟩0

2⟨qq⟩0
= 0.4 ± 0.1 GeV2

≈
⟨qD2q⟩

⟨qq⟩
= λ2

q

⟨ss⟩
⟨qq⟩

= 0.8 ± 0.3

quark 
virtuality



QCD condensates
Quark-quark condensate

The relevant contributions in the local expansion

￼27



QCD condensates
Quark-quark condensate

Mixed condensate

The relevant contributions in the local expansion

￼28



QCD condensates
Quark-quark condensate

Mixed condensate

The relevant contributions in the local expansion

Four quark condensate

￼29



Nonlocal QCD condensates
Nonlocal generalization

• Assumption - long distances play a crucial role in ￼  mixingD0D0

￼30

￼⟨q(x)a
αq(0)b

β⟩ =
⟨qq⟩0

4NC
δab[δαβ (1 −

x2

4 ( m2

2
−

⟨qσGq⟩0

2⟨qq⟩0 )…) + i(x)βα( m
4

−
x2

4 ( m3

12
−

m
12

⟨qσGq⟩0

⟨qq⟩0
+

2
81

παNP
s

⟨qq⟩2
0

⟨qq⟩0 )…)]



• Assumption - long distances play a crucial role in ￼  mixing


• Questions have been raised in the literature as to whether this expansion is well behaved

D0D0

￼31

Nonlocal QCD condensates
Nonlocal generalization

S. V. Mikhailov and A. V. Radyushkin, Nonlocal condensates and QCD sum rules for the pion wave function, Phys. Rev. D 45 (Mar, 1992) 1754–1759

￼⟨q(x)a
αq(0)b

β⟩ =
⟨qq⟩0

4NC
δab[δαβ (1 −

x2

4 ( m2

2
−

⟨qσGq⟩0

2⟨qq⟩0 )…) + i(x)βα( m
4

−
x2

4 ( m3

12
−

m
12

⟨qσGq⟩0

⟨qq⟩0
+

2
81

παNP
s

⟨qq⟩2
0

⟨qq⟩0 )…)]



• Assumption - long distances play a crucial role in ￼  mixing


• Questions have been raised in the literature as to whether this expansion is well behaved

D0D0

￼32

Nonlocal QCD condensates
Nonlocal generalization

S. V. Mikhailov and A. V. Radyushkin, Nonlocal condensates and QCD sum rules for the pion wave function, Phys. Rev. D 45 (Mar, 1992) 1754–1759

￼⟨q(x)a
αq(0)b

β⟩ =
⟨qq⟩
4NC

δab[δαβFS(x) + i(x)βαFV(x)]

￼⟨q(x)a
αq(0)b

β⟩ =
⟨qq⟩0

4NC
δab[δαβ (1 −

x2

4 ( m2

2
−

⟨qσGq⟩0

2⟨qq⟩0 )…) + i(x)βα( m
4

−
x2

4 ( m3

12
−

m
12

⟨qσGq⟩0

⟨qq⟩0
+

2
81

παNP
s

⟨qq⟩2
0

⟨qq⟩0 )…)]



Nonlocal QCD condensates
Nonlocal generalization

￼⟨q(x)a
αq(0)b

β⟩ =
⟨qq⟩
4NC

δab[δαβFS(x) + i(x)βαFV(x)]

Quark-quark condensate

￼33



Nonlocal QCD condensates
Nonlocal generalization

⟨qa
α(x)Gcd

μν(0)qb
β(0)⟩ =

4
1536 (δacδbd −

1
3

δabδcd) ((σμν +
m
2

(iσμνx + γμxν − γνxμ))⟨qiσGq⟩ +
i
2

xσμν
16
9

παNP
s ⟨qq⟩2)

βα
FG(x)

Mixed condensate

￼⟨q(x)a
αq(0)b

β⟩ =
⟨qq⟩
4NC

δab[δαβFS(x) + i(x)βαFV(x)]

Quark-quark condensate



Nonlocal QCD condensates
Nonlocal generalization

⟨qa
α(x)Gcd

μν(0)qb
β(0)⟩ =

4
1536 (δacδbd −

1
3

δabδcd) ((σμν +
m
2

(iσμνx + γμxν − γνxμ))⟨qiσGq⟩ +
i
2

xσμν
16
9

παNP
s ⟨qq⟩2)

βα
FG(x)

Mixed condensate

￼⟨q(x)a
αq(0)b

β⟩ =
⟨qq⟩
4NC

δab[δαβFS(x) + i(x)βαFV(x)]

Quark-quark condensate



• Condition 1: must reproduce the expansion in small-x limit


• Condition 2: must decay in the large-x limit

￼36

Nonlocal QCD condensates
How is the nonlocality modeled?

FS,V,G(x) = ∫
∞

0
dα (BS,V,G f(α) + AS,V,G f′￼(α))e−α x2

4



• Condition 1: must reproduce the expansion in small-x limit


• Condition 2: must decay in the large-x limit

￼37

Nonlocal QCD condensates
How is the nonlocality modeled?

FS,V,G(x) = ∫
∞

0
dα (BS,V,G f(α) + AS,V,G f′￼(α))e−α x2

4

fixed by the first moments of the expansion



• Condition 1: must reproduce the expansion in small-x limit


• Condition 2: must decay in the large-x limit

￼38

Nonlocal QCD condensates
How is the nonlocality modeled?

FS,V,G(x) = ∫
∞

0
dα (BS,V,G f(α) + AS,V,G f′￼(α))e−α x2

4

V. M. Braun, D. Y. Ivanov and G. P. Korchemsky, The B meson distribution 
amplitude in QCD, Phys. Rev. D 69 (2004) 034014, [hep-ph/0309330]

fixed by the first moments of the expansion



• Condition 1: must reproduce the expansion in small-x limit


• Condition 2: must decay in the large-x limit

￼39

Nonlocal QCD condensates
How is the nonlocality modeled?

FS,V,G(x) = ∫
∞

0
dα (BS,V,G f(α) + AS,V,G f′￼(α))e−α x2

4

V. M. Braun, D. Y. Ivanov and G. P. Korchemsky, The B meson distribution 
amplitude in QCD, Phys. Rev. D 69 (2004) 034014, [hep-ph/0309330]

reproduces the expansion in 
terms of local condensates

f(α) = δ(α)

fixed by the first moments of the expansion



• Condition 1: must reproduce the expansion in small-x limit


• Condition 2: must decay in the large-x limit

￼40

Nonlocal QCD condensates
How is the nonlocality modeled?

FS,V,G(x) = ∫
∞

0
dα (BS,V,G f(α) + AS,V,G f′￼(α))e−α x2

4

V. M. Braun, D. Y. Ivanov and G. P. Korchemsky, The B meson distribution 
amplitude in QCD, Phys. Rev. D 69 (2004) 034014, [hep-ph/0309330]

reproduces the expansion in 
terms of local condensates

f(α) = δ(α)

λ2
q =

⟨q(D)2q⟩
⟨qq⟩

≈
⟨qiσGq⟩
2⟨qq⟩

average quark virtuality

fixed by the first moments of the expansion



• Condition 1: must reproduce the expansion in small-x limit


• Condition 2: must decay in the large-x limit

￼41

Nonlocal QCD condensates
How is the nonlocality modeled?

FS,V,G(x) = ∫
∞

0
dα (BS,V,G f(α) + AS,V,G f′￼(α))e−α x2

4

V. M. Braun, D. Y. Ivanov and G. P. Korchemsky, The B meson distribution 
amplitude in QCD, Phys. Rev. D 69 (2004) 034014, [hep-ph/0309330]

reproduces the expansion in 
terms of local condensates

f(α) = δ(α)

models large-x behavior to 
be like ￼e−λ2x2

f(α) = δ(α − λ2
q /2)

λ2
q =

⟨q(D)2q⟩
⟨qq⟩

≈
⟨qiσGq⟩
2⟨qq⟩

average quark virtuality

fixed by the first moments of the expansion



• Condition 1: must reproduce the expansion in small-x limit


• Condition 2: must decay in the large-x limit

￼42

Nonlocal QCD condensates
How is the nonlocality modeled?

FS,V,G(x) = ∫
∞

0
dα (BS,V,G f(α) + AS,V,G f′￼(α))e−α x2

4

V. M. Braun, D. Y. Ivanov and G. P. Korchemsky, The B meson distribution 
amplitude in QCD, Phys. Rev. D 69 (2004) 034014, [hep-ph/0309330]

reproduces the expansion in 
terms of local condensates

f(α) = δ(α)

models large-x behavior to 
be like ￼e−λ2x2

f(α) = δ(α − λ2
q /2)

models large-x behavior 
to be like ￼e−λx

f(α) =
λ6

q

2
α−4e−λ2

q /α

λ2
q =

⟨q(D)2q⟩
⟨qq⟩

≈
⟨qiσGq⟩
2⟨qq⟩

average quark virtuality

fixed by the first moments of the expansion



(Preliminary) Results
For the mass difference parameter x

−4.6 × 10−6

expanding in terms of 
local condensates



For the mass difference parameter x

−4.6 × 10−6 −5.8 × 10−6

expanding in terms of 
local condensates

using the simplest 
nonlocal model

(Preliminary) Results



For the mass difference parameter x

−4.6 × 10−6 −5.8 × 10−6

−1.9 × 10−6

expanding in terms of 
local condensates

using the simplest 
nonlocal model

(Preliminary) Results



For the mass difference parameter x

￼46

−4.6 × 10−6 −5.8 × 10−6

−1.9 × 10−6

−7.7 × 10−6

expanding in terms of 
local condensates

using the simplest 
nonlocal model

total from nonlocal 
condensates

(Preliminary) Results



For the mass difference parameter x

￼47

−3.6 × 10−6

−4.6 × 10−6 −5.8 × 10−6

−1.9 × 10−6

−7.7 × 10−6

expanding in terms of 
local condensates

using the simplest 
nonlocal model

total from nonlocal 
condensates

the perturbative 
contribution

(Preliminary) Results



For the mass difference parameter x

￼48

−3.6 × 10−6

−4.6 × 10−6 −5.8 × 10−6

−1.9 × 10−6

−7.7 × 10−6 x = − 1.13 × 10−5

expanding in terms of 
local condensates

using the simplest 
nonlocal model

total from nonlocal 
condensates

the perturbative 
contribution

FINAL RESULT

(Preliminary) Results



Concluding remarks
Future research & possible improvements

x = − 1.13 × 10−5

FINAL RESULT

• The result is sensitive to


• Condensate values, as well as the ratio ￼ . 


• Quark virtuality for which the often quoted value is ￼  which we used, but some report 
values as high as ￼

⟨ss⟩/⟨qq⟩

∼ 0.4 GeV2

∼ 2.5 GeV2

P. Gubler and D. Satow, Recent Progress in QCD Condensate Evaluations and Sum Rules, Prog. Part. 
Nucl. Phys. 106 (2019) 1–67, [1812.00385]

A. F. Falk, Y. Grossman, Z. Ligeti, and A. A. Petrov, SU⁡(3) breaking and 𝐷0−𝐷0 mixing, Phys. Rev. D 65, 
054034, [hep-ph/0110317] ￼49



Concluding remarks
Future research & possible improvements

x = − 1.13 × 10−5

FINAL RESULT

• The result is sensitive to


• Condensate values, as well as the ratio ￼ . 


• Quark virtuality for which the often quoted value is ￼  which we used, but some report 
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• Future research - calculation of the four-quark condensate contribution
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