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•   mixing was discovered in 2007 by Belle and BaBar 


• Later confirmed by many others (to such an extent that the no-mixing 
hypothesis is excluded at  )


• The current experimental world average for the mass difference mixing 
parameter  

D0D0

> 10σ

Introduction
Experiment
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• Sticking to the Standard Model, we look for the missing contribution from 
nonperturbative physics.

𝒜 = ξ2
s (Ass − 2Ads + Add) + 2ξsξb(Add − Ads) + ξ2

b Add



Different approaches

• SU(3) breaking 
contributions from new 
higher-dimension 
operators 
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• SU(3) breaking 
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• Box diagram is  ∝ (ms/mc)4

• Using QCD condensates we expect  ∝ (ms/mc)3

• Essentially, we trade a power of   suppression for a 
suppression of the higher dimensional operator. 

• Don't forget - there is also   relative enhancement 
since this is not a loop calculation

ms/mc

16π2

Sq =
p + mq

p2 − m2
q

=
p + mq

p2 (1 +
m2

q

p2
+ …)



QCD condensates
• Condensates are well-known and have been widely used in sum rules calculations for 

decades 
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• Questions have been raised in the literature as to whether this expansion is well behaved

D0D0
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• Condition 1: must reproduce the expansion in small-x limit


• Condition 2: must decay in the large-x limit
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• Future research - calculation of the four-quark condensate contribution


• Both propagators in the box diagram are replaced by condensates - expected dependence on 
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• This is supposed to be the (parametrically) leading contribution!
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