

Quirks in Quark Flavour Physics 2024 Zadar, 19-06-2024

In collaboration with Meril Reboud, Danny van Dyk, Keri Vos

Carolina Bolognani

• Extraction of V_{cs}

Carolina Bolognani

Study of $c \rightarrow s \ell \nu$ **transitions**

Motivation

Particle Data Group, 2023

Extraction of V_{cs}

Carolina Bolognani

Study of $c \rightarrow s \ell \nu$ transitions

Motivation

 $c \rightarrow s \ell \nu$

Particle Data Group, 2023

Motivation

Extraction of V_{cs}

Current value by PDG

......................

HFLAV averages of \mathscr{B} combined with PDG averages for mass, lifetime, decay constant

Carolina Bolognani

Study of $c \rightarrow s \ell \nu$ transitions

Semileptonic $D \to K\{e, \mu\}\nu$

HFLAV averages of $|V_{cs}| f_+^K(0)$ combined with FLAG average for form factor

Extraction of V_{cs} using Bayesian analysis with additional decay channels, with dispersive bounds applied to the full set of theoretical inputs simultaneously

Study of $c \rightarrow s \ell \nu$ transitions

Motivation

 $c \rightarrow s \ell \nu$

Extraction of V_{cs} using Bayesian analysis with additional decay channels, with dispersive bounds applied to the full set of theoretical inputs simultaneously

- How compatible is the current data with what we predict theoretically?
- Is there preference for Standard Model or treatment in full Weak Effective Theory?

Study of $c \rightarrow s \ell \nu$ transitions

Motivation

 $c \rightarrow s \ell \nu$

Experimental data

Branching ratio:

$$D_s \to \tau^+ \nu_{\tau}$$

 $D_s \to \mu^+ \nu_\mu$

 $D^0 \rightarrow R$

 $D^{+} -$

Carolina Bolognani

$$D^{0} \rightarrow K^{-}\mu^{+}\nu_{\mu}$$

$$K^{-}e^{+}\nu_{e}$$

$$D^{+} \rightarrow K^{0}_{S}e^{+}\nu_{e}$$

$$\rightarrow K^{0}_{S}\mu^{+}\nu_{\mu}$$

Experimental data

Branching ratio: $D_{s} \rightarrow \tau^{+} \nu_{\tau}$ $D_{s} \rightarrow \mu^{+} \nu_{\mu}$ $D_{s}^{*} \rightarrow e^{+} \nu_{e}$

Shape distribution:

$$D^{0} \to K^{-}\mu^{+}\nu_{\mu}$$
$$D^{0} \to K^{-}e^{+}\nu_{e}$$
$$D^{+} \to K^{0}_{S}e^{+}\nu_{e}$$

Carolina Bolognani

$$D^{0} \rightarrow K^{-}\mu^{+}\nu_{\mu}$$

$$D^{0} \rightarrow K^{-}e^{+}\nu_{e}$$

$$D^{+} \rightarrow K^{0}_{S}e^{+}\nu_{e}$$

$$D^{+} \rightarrow K^{0}_{S}\mu^{+}\nu_{\mu}$$

$$\Lambda_c^+ \to \Lambda^0 \mu^+ \nu_\mu$$
$$\Lambda_c^+ \to \Lambda^0 e^+ \nu_e$$

not included in PDG value

 $c \rightarrow s \ell \nu$

• Decay constants f_{D_s} , $f_{D_s^*}$ and $f_{D_s^*}^I$

ETM FNAL/MILC

CLQCD

• $D \rightarrow K$ form factors

(Axial)vector and (pseudo)scalar: LQCD

Tensor: HQET + SCET relations to (axial)vector FF's

Carolina Bolognani

ETM, Phys.Rev.D 91 (2015) FNAL/MILC, Phys.Rev.D 98 (2018) CLQCD, Phys.Rev.D 109 (2024) Pullin, Zwicky, JHEP 09 (2021) 023

HPQCD, Phys.Rev.D 107 (2023) FNAL/MILC, Phys.Rev.D 107 (2023) ETM, Phys.Rev.D 96 (2017) ETM, Phys.Rev.D 98 (2018)

Meinel, Phys.Rev.Lett. 118 (2017)

 $c \rightarrow s \ell \nu$

FLAG Review 2021

3/15

Combining theory inputsDispersive bounds

• Ensures unitarity, correlates most hadronic parameters

Caprini, Functional Analysis and Optimization Methods in Hadron Physics

• Dispersion relations \Rightarrow perturbatively calculated quantities χ

Hadronic representation of correlators

• BGL-like parametrisation of FF: $f(q^2) =$

Further discussion on form factor approach: Gubernari, (Reboud), van Dyk, Virto 2021 & 2022; Blake et al. 2022; Flynn et al. 2023

Carolina Bolognani

$$\Rightarrow \chi_A^{(J=0)} \Big|_{1\text{pt}} = \frac{M_{D_s}^2 f_{D_s}^2}{(M_{D_s}^2 - Q^2)^2}$$

$$= \frac{1}{\phi_f(z) B(z)} \sum_{k=0}^K a_k^{(f)} p_k^{(f)}(z) \Big|_{z=z(q^2)} \qquad \sum_f \sum_{k=0}^K |a_k^{(f)}|^2 < 1$$

 $c \rightarrow s \ell \nu$

• HPQCD + FNAL/MILC are incompatible with ETM determination

HPQCD + FNAL/MILC: p-value = 4%

Carolina Bolognani

$D \rightarrow K$ form factors

HPQCD + FNAL/MILC + ETM: p-value < 0.1%

 $c \rightarrow s \ell \nu$

5/15

• HPQCD + FNAL/MILC are more compatible with data

Carolina Bolognani

Preliminary

$D \rightarrow K$ form factors

 $c \rightarrow s \ell \nu$

5/15

- Identified local inconsistencies between measured data and theoretical predictions
- Outliers in our fits

Shape distributions are well fitted

Carolina Bolognani

Preliminary

Theory predictions

 $c \rightarrow s \ell \nu$

• CKM

• WET

Carolina Bolognani

Bayesian model comparison between all three models Same set of hadronic nuisance parameters Same experimental likelihood

 $c \rightarrow s\ell\nu$

CKM

Carolina Bolognani

Checks compatibility of data and SM No parameter of interest in fit Fixed value of $|V_{cs}| = 0.975$ Fixed the only Wilson coefficient to SM value

• CKM

Carolina Bolognani

Joint fit to all contributions as well as for the different decay modes individually

.......................

One parameter of interest in fit $|V_{cs}|$ in [0.88 , 1.03]

Fixed the only Wilson coefficient to SM value

 $c \rightarrow s \ell \nu$

Carolina Bolognani

Weak Effective Theory allows for BSM physics

Fixed scale $|V_{cs}| = 0.975$

Fit for the parameters of 5 different Wilson Coefficients

$$c \rightarrow s\ell \nu$$

Extraction of V_{cs}

Goodness of fit							
Data set	χ^2	d.o.f.	p value $[%]$	$ V_{cs} $			
$D_s^{(*)+} \to \ell^+ \nu$	2.5	2	28.1	$0.969\substack{+0.007\\-0.007}$			
$D\to \bar{K}\ell\nu$	44.2	45	50.6	$0.953\substack{+0.004\\-0.004}$			
$\Lambda_c \to \Lambda \ell \nu$	0.3	1	58.4	$0.947\substack{+0.027 \\ -0.026}$			
joint fit	51.0	50	43.4	$0.958\substack{+0.003\\-0.003}$			

• Compatible with PDG at 2.5σ

Preliminary

11 / 15

CKM fit

 $c \rightarrow s \ell \nu$

Checking unitarity in the second column of the CKM matrix

 $|V_{us}|$ world avg. = 0.2243 ± 0.0008

 $\left|V_{cs}\right|$ our res

Assuming perfect positive correlation between determinations $\Rightarrow 4.8\sigma$ deviation from unitarity!

Carolina Bolognani

CKM fit

Unitarity

8
$$|V_{ts}|^{\text{world avg.}} = (41.5 \pm 0.9) \times 10^{-3}$$

sult
=
$$0.958 \pm 0.003$$

 $V_{Us} |^2 \simeq 0.9698$

$$c \rightarrow s\ell\nu$$

 $\mathcal{H}^{sc
u\ell} = -rac{4G_{
m F}}{\sqrt{2}} \tilde{V}_{cs} \sum_{i} \mathcal{C}_{i}^{\ell}(\mu_{b}) \mathcal{O}_{i}^{\ell} + \dots + ext{h.c.}$

Carolina Bolognani

WET fit

$$\begin{aligned} \mathcal{O}_{V,L}^{\ell} &= \left[\bar{s} \gamma^{\mu} P_L c \right] \left[\bar{\nu} \gamma_{\mu} P_L \ell \right], \quad \mathcal{O}_{V,R}^{\ell} &= \left[\bar{s} \gamma^{\mu} P_R c \right] \left[\bar{\nu} \gamma_{\mu} \right] \\ \mathcal{O}_{S,L}^{\ell} &= \left[\bar{s} P_L c \right] \left[\bar{\nu} P_L \ell \right], \qquad \mathcal{O}_{S,R}^{\ell} &= \left[\bar{s} P_R c \right] \left[\bar{\nu} P_L \ell \right] \\ \mathcal{O}_T^{\ell} &= \left[\bar{s} \sigma^{\mu\nu} b \right] \left[\bar{\nu} \sigma_{\mu\nu} P_L \ell \right]. \end{aligned}$$

• Constrain parameter space for Wilson Coefficients

 $c \rightarrow s \ell \nu$

Carolina Bolognani

WET fit

$$\mathcal{O}_{V,L}^{\ell} = [\bar{s}\gamma^{\mu}P_{L}c] [\bar{\nu}\gamma_{\mu}P_{L}\ell], \quad \mathcal{O}_{V,R}^{\ell} = [\bar{s}\gamma^{\mu}P_{R}c] [\bar{\nu}\gamma_{\mu}\mathcal{O}_{L}^{\ell}],$$
$$\mathcal{O}_{S,L}^{\ell} = [\bar{s}P_{L}c] [\bar{\nu}P_{L}\ell], \quad \mathcal{O}_{S,R}^{\ell} = [\bar{s}P_{R}c] [\bar{\nu}P_{L}\ell],$$
$$\mathcal{O}_{T}^{\ell} = [\bar{s}\sigma^{\mu\nu}b] [\bar{\nu}\sigma_{\mu\nu}P_{L}\ell].$$

• Constrain parameter space for Wilson Coefficients

$$\begin{split} &\operatorname{Re}\, \mathcal{C}^{\ell}_{V,L} = \left[\begin{array}{cc} 0.941, & 0.998 \right], \\ &\operatorname{Re}\, \mathcal{C}^{\ell}_{V,R} = \left[-0.023, -0.009 \right], &\operatorname{Im}\, \mathcal{C}^{\ell}_{V,R} = \left[-0.277, 0.277 \right], \\ &\operatorname{Re}\, \mathcal{C}^{\ell}_{S,L} = \left[-0.018, & 0.015 \right], &\operatorname{Im}\, \mathcal{C}^{\ell}_{S,L} = \left[-0.028, 0.028 \right], \\ &\operatorname{Re}\, \mathcal{C}^{\ell}_{S,R} = \left[-0.024, & 0.009 \right], &\operatorname{Im}\, \mathcal{C}^{\ell}_{S,R} = \left[-0.029, 0.029 \right], \\ &\operatorname{Re}\, \mathcal{C}^{\ell}_{T} = \left[-0.023, & 0.045 \right], &\operatorname{Im}\, \mathcal{C}^{\ell}_{T} = \left[-0.065, 0.065 \right]. \end{split}$$

 $c \rightarrow s\ell\nu$

	goodness of fit				
fit model M	χ^2	d.o.f.	p value $[%]$	$\ln P(D, M)$	
\mathbf{SM}	61.2	51	15.5	$239.1\pm0.$	
CKM	52.1	50	39.2	251.4 ± 0.6	
WET	47.2	42	26.8	251.0 ± 0.0	

P(all data WET) = 147267	P(all data WET)
P(all data SM) = 147207	P(all data CKM)

CKM corresponds to barely worth mentioning improvement wrt. WET

Integral over much larger parameter space for WET provides basically same efficiency in describing the data as for CKM

Cannot distinguish between the two

Carolina Bolognani

$$c \rightarrow s \ell \nu$$

- Analysed compatibility between current $c \rightarrow s\ell \nu$ data and theoretical predictions
- Extracted new determination of the CKM element

Investigated preference for WET treatment \Rightarrow cannot distinguish from CKM fit * Placed new constraints on parameter space for Wilson coefficients \star Data on angular distribution on $\Lambda_c \to \Lambda \ell \nu$ decays may resolve model preference

Conclusions

 $|V_{cs}| = 0.958 \pm 0.003$

$$c \rightarrow s \ell \nu$$

Hadronic matrix elements

$$\langle 0 | \, \bar{s} \gamma^{\mu} \gamma_5 c \, | D_s^+(p) \rangle = i f_{D_s} p^{\mu} \,, \quad \langle 0 | \, \bar{s} \gamma_5 c \, | D_s^+(p) \rangle = -i \frac{M_{D_s}^2}{m_c(\mu_c) + m_s(\mu_c)} f_{D_s} \,.$$

$$\langle 0 | \bar{s} \gamma^{\mu} c | D_s^+(p,\varepsilon) \rangle = f_{D_s^*} M_{D_s} \varepsilon^{\mu} ,$$

$$\begin{split} \langle K(k) | \, \bar{s} \gamma^{\mu} c \, | D(p) \rangle &= f_{+}^{D \to K}(q^2) \left[(p+k)^{\mu} - q^{\mu} \frac{M_D^2 - M_K^2}{q^2} \right] + f_0^{D \to K}(q^2) q^{\mu} \frac{M_D^2 - M_K^2}{q^2} \,, \\ \langle K(k) | \, \bar{s} c \, | D(p) \rangle &= f_0^{D \to K}(q^2) \frac{M_D^2 - M_K^2}{m_c(\mu_c) - m_s(\mu_c)} \,, \\ K(k) | \, \bar{s} \sigma^{\mu\nu} q_{\nu} c \, | D(p) \rangle &= \frac{i f_T^{D \to K}(q^2)}{M_D + M_K} \left[q^2 (p+k)^{\mu} - (M_D^2 - M_K^2) q^{\mu} \right] \,. \end{split}$$

Carolina Bolognani

$$\langle 0 | \bar{s} \sigma^{\mu\nu} c | D_s^{*+}(p,\varepsilon) \rangle = i f_{D_s^*}^T \left(\varepsilon^{\mu} p^{\nu} - p^{\mu} \varepsilon^{\nu} \right) \,.$$

 $c \rightarrow s\ell\nu$

Hadronic matrix elements

$$\begin{split} \langle \Lambda(k,s_{\Lambda}) | \, \bar{s} \, \gamma^{\mu} \, c \, | \Lambda_{c}(p,s_{\Lambda_{c}}) \rangle &= \bar{u}_{\Lambda}(k,s_{\Lambda}) \bigg[f_{V,t}^{\Lambda_{c} \to \Lambda}(q^{2}) \, (m_{\Lambda_{c}} - m_{\Lambda}) \frac{q^{\mu}}{q^{2}} \\ &+ f_{V,0}^{\Lambda_{c} \to \Lambda}(q^{2}) \frac{m_{\Lambda_{c}} + m_{\Lambda}}{s_{+}} \left(p^{\mu} + k^{\mu} - (m_{\Lambda_{c}}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \right) \\ &+ f_{V,\perp}^{\Lambda_{c} \to \Lambda}(q^{2}) \left(\gamma^{\mu} - \frac{2m_{\Lambda}}{s_{+}} p^{\mu} - \frac{2m_{\Lambda_{c}}}{s_{+}} k^{\mu} \right) \bigg] u_{\Lambda_{c}}(p,s_{\Lambda_{c}}) \,, \\ \langle \Lambda(k,s_{\Lambda}) | \, \bar{s} \, \gamma^{\mu} \gamma_{5} \, c \, | \Lambda_{c}(p,s_{\Lambda_{c}}) \rangle &= -\bar{u}_{\Lambda}(k,s_{\Lambda}) \, \gamma_{5} \bigg[f_{A,t}^{\Lambda_{c} \to \Lambda}(q^{2}) \, (m_{\Lambda_{c}} + m_{\Lambda}) \frac{q^{\mu}}{q^{2}} \\ &+ f_{A,0}^{\Lambda_{c} \to \Lambda}(q^{2}) \frac{m_{\Lambda_{c}} - m_{\Lambda}}{s_{-}} \left(p^{\mu} + k^{\mu} - (m_{\Lambda_{c}}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \right) \\ &+ f_{A,\perp}^{\Lambda_{c} \to \Lambda}(q^{2}) \left(\gamma^{\mu} + \frac{2m_{\Lambda}}{s_{-}} p^{\mu} - \frac{2m_{\Lambda_{c}}}{s_{-}} k^{\mu} \right) \bigg] u_{\Lambda_{c}}(p_{\Lambda_{c}}, s_{\Lambda_{c}}), \\ \langle \Lambda(k,s_{\Lambda}) | \, \bar{s} \, i \sigma^{\mu\nu} q_{\nu} \, b \, | \Lambda_{c}(p,s_{\Lambda_{c}}) \rangle &= -\bar{u}_{\Lambda}(k,s_{\Lambda}) \bigg[f_{T,0}^{\Lambda_{c} \to \Lambda}(q^{2}) \frac{q^{2}}{s_{+}} \left(p^{\mu} + k^{\mu} - (m_{\Lambda_{c}}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \right) \\ &+ f_{T,\perp}^{\Lambda_{c} \to \Lambda}(q^{2}) \left(m_{\Lambda_{c}} + m_{\Lambda} \right) \left(\gamma^{\mu} - \frac{2m_{\Lambda}}{s_{+}} p^{\mu} - \frac{2m_{\Lambda_{c}}}{s_{+}} k^{\mu} \right) \bigg] u_{\Lambda_{c}}(p,s_{\Lambda_{c}}) \,, \\ \langle \Lambda(k,s_{\Lambda}) | \, \bar{s} \, i \sigma^{\mu\nu} q_{\nu} \gamma_{5} \, c \, | \Lambda_{c}(p,s_{\Lambda_{c}}) \rangle &= -\bar{u}_{\Lambda}(k,s_{\Lambda}) \, \gamma_{5} \bigg[f_{T,0}^{\Lambda_{c} \to \Lambda}(q^{2}) \frac{q^{2}}{s_{-}} \left(p^{\mu} + k^{\mu} - (m_{\Lambda_{c}}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \right) \\ &+ f_{T,\perp}^{\Lambda_{c} \to \Lambda}(q^{2}) \left(m_{\Lambda_{c}} - m_{\Lambda} \right) \left(\gamma^{\mu} - \frac{2m_{\Lambda}}{s_{+}} p^{\mu} - \frac{2m_{\Lambda_{c}}}{s_{+}} k^{\mu} \right) \bigg] u_{\Lambda_{c}}(p,s_{\Lambda_{c}}) \,, \end{aligned}$$

Carolina Bolognani

 $c \rightarrow s\ell\nu$

Dispersive bounds

- $J_V^{\mu}(x) = \bar{s}(x) \,\gamma^{\mu} c(x) \,,$ $J^{\mu}_{T}(x) = \bar{s}(x) \, \sigma^{\mu\alpha} q_{\alpha} c(x)$
- Two-point correlation functions \Rightarrow min

$$\chi_{\Gamma}^{(\lambda)}(Q^2) = \frac{1}{n!} \left[\frac{\partial}{\partial q^2} \right]^n \Pi_{\Gamma}^{(\lambda)}(q^2) \bigg|_{q^2 = Q^2} = \frac{1}{\pi} \int_0^\infty ds \, \frac{\operatorname{Im} \Pi_{\Gamma}^{(\lambda)}(s)}{(s - Q^2)^{n+1}}$$

Hadronic representation of correlation

BGL-like parametrisation of FF: $f(q^2) =$

Further discussion on form factor approach: Gubernari, (Reboud), van Dyk, Virto 2021 & 2022; Blake et al. 2022; Flynn et al. 2023

Carolina Bolognani

$$J_A^{\mu}(x) = \bar{s}(x) \gamma^{\mu} \gamma_5 c(x) ,$$

, $J_{AT}^{\mu}(x) = \bar{s}(x) \sigma^{\mu\alpha} q_{\alpha} \gamma_5 c(x) .$
numally subtracted correlators

calculated numerically: NLO in α_s , up to order $1/m_c^5$

$$\begin{aligned} &\text{functions} \Rightarrow \left. \chi_A^{(J=0)} \right|_{1\text{pt}} = \frac{M_{D_s}^2 f_{D_s}^2}{(M_{D_s}^2 - Q^2)^2} \\ &= \frac{1}{\phi_f(z)B(z)} \sum_{k=0}^K a_k^{(f)} p_k^{(f)}(z) \Big|_{z=z(q^2)} \qquad \sum_f \sum_{k=0}^K |a_k^{(f)}|^2 < 1 \end{aligned}$$

$$c \rightarrow s \ell \nu$$

Heavy Quark lim Large Energy lim

$$\begin{split} \text{it} \Rightarrow \text{expansion in } \alpha_s / \pi \ , \ \Lambda_{\text{QCD}} / m_c \\ \text{it} \Rightarrow \text{expansion in } \alpha_s / \pi \ , \ \Lambda_{\text{had}} / m_c \ , \ \Lambda_{\text{had}} / E_\Lambda \\ \frac{\xi}{m_{\Lambda_c}} &= f_{V,t}(0) = f_{V,\perp}(0) = f_{V,0}(0) = f_{A,t}(0) = f_{A,\perp}(0) = f_{A,0}(0) \\ &= f_{T,\perp}(0) = f_{T,0}(0) = f_{T5,\perp}(0) = f_{T5,0}(0) \ , \\ \frac{\xi_1 - \xi_2}{m_{\Lambda_c}} &= f_{V,\perp}(q_{\text{max}}^2) = f_{V,0}(q_{\text{max}}^2) = f_{A,t}(q_{\text{max}}^2) = f_{T,\perp}(q_{\text{max}}^2) = f_{T,0}(q_{\text{max}}^2) \ , \\ \frac{\xi_1 + \xi_2}{m_{\Lambda_c}} &= f_{A,\perp}(q_{\text{max}}^2) = f_{A,0}(q_{\text{max}}^2) = f_{V,t}(q_{\text{max}}^2) = f_{T5,\perp}(q_{\text{max}}^2) = f_{T5,0}(q_{\text{max}}^2) \ . \end{split}$$

Carolina Bolognani

 $f_{T5,\perp}/f_{A,\perp} = 1 \pm 0.35, \quad f_{T5,0}/f_{A,0} = 1 \pm 0.35,$

 $c \rightarrow s \ell \nu$

Form factors in the full q^2 range $z(q^2 = t_0) = 0$ **Parametrisation**

Modified BGL: analyticity + unitarity

$$q^2 \mapsto z(q^2) = \frac{\sqrt{t_{\Gamma} - q^2} - \sqrt{t_{\Gamma} - t_0}}{\sqrt{t_{\Gamma} - q^2} + \sqrt{t_{\Gamma} - t_0}}$$

$$Im q^{2}$$

$$two particle contribution$$

$$t_{0}$$

$$pole$$

$$t_{\Gamma}$$

$$Re q^{2}$$

$$Used K = 4$$

Carolina Bolognani

$$c \rightarrow s \ell \nu$$

Form factors in the full q^2 range **Parametrisation**

• Modified BGL: analyticity + unitarity + (pair production \neq first branch point)

$$q^{2} \mapsto z(q^{2}) = \frac{\sqrt{t_{\Gamma} - q^{2}} - \sqrt{t_{\Gamma} - t_{0}}}{\sqrt{t_{\Gamma} - q^{2}} + \sqrt{t_{\Gamma} - t_{0}}} \qquad \qquad f(q^{2}) = \frac{1}{\sqrt{\chi} \ \phi(q^{2})} \frac{B(q^{2})}{B(q^{2})} \sum_{k}^{K} a_{k} \ p_{k} \left(z(q^{2}) \right) \qquad \qquad f_{+}(q^{2} = 0) = f_{0}(q^{2})$$

Carolina Bolognani

 $t_+ = (m_{B_s} + m_K)^2$

Further discussion on form factor approach: Gubernari, (Reboud), van Dyk, Virto 2021 & 2022; Blake et al. 2022; Flynn et al. 2023

 $c \rightarrow s \ell \nu$

Statistical treatment in EOS

Bayesian inference

Model + prior knowledge of parameter space

 (Dynamic) nested sampling: Access probabilities of the predicted samples

Carolina Bolognani

Likelihood constraints Sample of predictions

Posterior sample of parameter space

