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[ | excluded area has CL > 0.95

Why look into charm? | A
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The CKM matrix is (generally) well probed from various exp. processes: lots of processes, E &
1= 0.0
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only 4 independent parameters
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Charm is the only weakly decaying up-type quark bound in hadrons F | 4

— Can still perform complementary CKM tests from the charm sector =R 2
Otherwise, assuming good control over CKM matrix: p

— Can look for rare processes where there is more room for NP to sho

® b—suy, b—svv, s—dvy, ... [ lots of work there! ]
In this search, zZ
different NP scenarios can be explored by starting off from the charm quark C
“No stone left unturned” approach !

Rich experimental programme (LHCb, Belle II, BESIII, future facilities,...) ?




LD — f)—T(D° = f)
The measurements Al =55 7557

Up to date, the only observation of CP violation in charm systems: [LHCb 2019]

AAcp = Acp(K " KT) — Agp(nnt) = (—15.4 £ 2.9) x 107*

— at least one of them is non-zero and large
— CPV from D-anti-D mixing largely cancels
Followed up by the measurement of an individual CP asymmetry: [LHCb 2022]

Acp(K~K') =1[6.84+5.4 (stat) +1.6 (syst) ] x 10~

(systematics would be the same if TT-TT+ was measured instead)

e Mixing-induced CPV also measured to be small

. . p N
— large direct CPV at least in the decay of D° to TT-TT+ Can this be explained within the SM:

ATt () = (23.2£6.1) x 107




How CP violation arises

Generally: at least 2 interfering amplitudes

Can be parameterised as

*
b _
where ropy = Im—22 ~ 6.5 x 1074

A(DO — )= A(f) +irckmB(f) i
AD® = f) = A(f)—ircxmB(f) VeaVua
|B(f)] A(f) v

and consequently A%iEeCt ~2 rokmM ——— - SIn arg c u
—— [A(f)] B(f) ‘<>L*
N——

At the scale of the charm quark mass: ~ Weak phases - %
strong phases
_ s o (uQ? AQ3 (1) — M (20_.Ci(1) Qs C
Her = \/5[ i=1 2(#)( dQf (1) + st(ﬂ)) b (i3 Ci(p) Qi (1) + SQ(N)QSQ(N))] !
N J
current-cUrrent operators penguin operators

N =VVug, q=4d,s,b. —
Nl = [\ = OO ect branching ratios ffect onlv aCP’s
anchi affectonlyaCP's >
|Cs—6] < 0.1C5, 0.03C, Challenge: to calculate <P+P_|Qi|DO>, P=m K




How to incorporate strong

Isospin is a good symmetry

of strong interactions - Use Wigner-Eckartthey_\

N

phases: isospin & unitarity

The S-matrix is unitary
In isospin-zero, spin-zero, the strong S-submatrix
is also unitary

(assumption: no other channels leak to 11T and KK)

A(D = 7m)
A(D = KK)

So(rm = 7)) So(nm — KK) A*(D — )

A*(D = KK)

Lo’ i) K

I~

(SO(KK ) So(KK = KK)

J

Y
strong-interaction-driven

g _ net2o iﬂei(‘sﬁ‘b)
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1 . 1 .
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( ) A | A | /
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A(D" — 7T+7T0) = -\A£;2|e’6”’2/
1 22 P
A(D® = KTK™) = o [|Aile™ = —
— 1 - Ny
AD° = RR) = 5 (- [l —

ADY = K°K*) o | A5 e

Both 11T and KK have an isospin-zero component

If isospin-zero 11T and KK channels didn’t communicate:

Watson’s theorem

arg A(D — norr) = arg(nm — 7w, S-wave) mod 7

Isospin=1, 2: only KK, TT1T channels respectively

Instead, now the phases of D—PP depend on the
magnitudes of D—PP + the strong S-submatrix S,




Through analyticity by applying Cauchy’s theorem

1 [ ImA(s
ReA(s):—/ ds’m—(s)

I
T Jsinr S S

s-plane

How the phases affect the amplitudes

and if rescattering is elastic,
through unitarity we get the

dispersion relation

1 oo

ReA(s) = —PV/ ds’
n Sthr

which has the solution (Omnes)

tan 01 (s’)

s —s

ReA(s")

|A(s)| = A(so) exp{Z—22 PV / ds'— Ouls ),
™ agz (8= s0)(s" — s)
j \ J
Y
Omnes factor Q;

limit of no rescattering — large N

}

Large phases modify amplitude
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No rescattering!

We correct large N, /factorization
by incorporating s-channel
rescattering of the final states




Two-channel case

In the isospin-zero block there are both 11T and KK : the elastic

> 01(2)
dz }
N /4M,3 (2 = s0)(z — 5) K

now becomes Y D

A(D — 7T7T) —QO. A(large Nc)(D - ﬂ—ﬂ—)
A(D — KK> B A(large N¢) (D — KK)

rescattering no rescattering

|A(D — ) (s)| = A(so) -

where Q is a 2-by-2 matrix that has to be found numerically

by solving the two-channel dispersion relation

e In the language of hadronic matrix elements: “Long-distance penguin”
Non-diagonal Q creates (mm(1 = 0)|Q7|D) #0 m
(KE(I =0)|Q{|D) #0 'Oop
n




Sorting through the uncertainties

Solving the Omnes equations provides a full description of the decay amplitudes
— Select among the strong rescattering input
the one that yields values close to exp. Br’s for all decay channels simultaneously

(Br—prediction)/(Br—exp)
1.0
— DO —> 7T+ 77- 0.8
SBE 0 Ol Close to some o
vsh available datafor ,
Q 1=2 phase v 02
. ‘>< Y TEIErRr R R
S S(TUTI=2) Only this 1=0 inelasticity survives,
o . U
giving an Omnes matrix like
8 —— DO->KO KO Qo= . . .
) # o= (e agie )
44 // — large rescattering between i
g and KK in the 1=0 channel




Results: CP asymmetry predictions

We find A Adlrect /_W
Admect( > ~ 3. 10—4 Adlrect<K K—i—) ~—9.10" 4

and similar levels predicted for 70 KYKO

e SU(3) not considered; its breaking turns out comparable to known levels
e | Multiple amplitudes interfere: I=2 vs 1=0, 1=1 vs 1=0, 1=0 vs I=0 (present because of TITT->KK rescattering)

Aep = (~154£2.0) x 1070 | o ee o
AdlreCt( +) — (232 + 61) %< 10~4| The discrepancy between theory

and exp persists in D°—
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Based on work in progress
with Antonio Pich and Luiz Vale Silva



solution I

solution IT

solution IIT

0.80e+160¢ 1 01¢-169¢ 0.39T164i (.59 2134 0.71et083% ] 352674
nd, mp=1 00 = QO = Q0 =
oo 1501 (B0 051e-181i (.56 c+2430 0.38-0981 (.49 +2651
N N 4 0.56 T84 0,61 71737 0.42e175% (.54¢7205¢ 0.35¢F1137 (7472470
g — onf, my =1 0 = _
0.57e 1410058 t2200 0.51e7 1537 (552431 0.50€7 1187 0,55 72487
; - o _ 058 et180i 064174 0.43¢+164i (5872104 0.40e*1017 (.80 =207
ny — ong, my = Q) = N
0.58 71371 .61 ¢+226¢ 0.52¢ 351 (.57 t2481 0.50e7 1114 0.56¢*2531
) - 3 0.60 1761 (.66 =174 04441531 (6172164 0.45¢+0917 (.8672531
= dng, myy =3 ) ‘
Xi .63 e+ 22 0.52¢7 1171 (.59 ¢+2537 0.50e 104 .57 7281
AT e 176% 1.91¢+060¢ 2782854 2201043 35572
sol. B: g Q0 =
0.37¢70331 (.54 o+305% 0.3160231 (.45 +3:30i 0.35 0031 (.57 ¢+340i
1.83¢t138% 2651764 1.80et039% 311 2561 2.09¢0431 3942721
sol. C': |gf)] QO = QO = QO
0.34¢7040 .57 ¢+300¢ 0.29¢024¢ .49 ¢+3241 0.32¢7003¢ (.61 ¢*334

How sizable is the effect of a potential third channel?

Stretching the theory predictions

We have not provided uncertainties

— Parametric uncertainties: check for Br’s close enough to the exp. value

20

15t

(Br—prediction)/(Br—exp)

Lose on predictivity - provide an upper bound for the asymmetries as an alternative for uncertainties

Within the uncertainties the CP asymmetries are still very far from the experimental values
— Systematic uncertainties: The main one comes from the two-channel isospin-zero hypothesis.

Goal: scrutinise the two-channel hypothesis, see how far the CP asymmetries can reach

o(rtrr,l=2)
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Limiting the sources of uncertainties.

Within a data-driven approach: can we bypass some of the input data? 0.8

e Biggest source of uncertainties in the input: inelasticity mm— KK 0.6

Sy = Dl i/ 1= peree) 04
0= imeiwﬁ—%) 7»]62'252

0.2
B ( So(mm — 7m) | So(nm — KK) )
N KK — KK —- KK N e ———
Sol ) Sof ) V06 08 10 12 14 16 18
e Phase also relatively uncertain \/;(GeV)
® Less uncertain input: phase of mm+KK 0
Y, (s)
— Parameterisation in three energy regions: 350
1. Below the inelastic threshold (= phase of T1TT): very well known 300

2. Below ~1.5 GeV: dispersion relations respected

3. Below ~1.9 GeV: analytical parameterisation fitting data 230

— Extrapolation for higher energies




Consequences of the two-channel hypothesis

Assumption: no further rescattering to 41T or any other channels of isospin zero

1. A(D — 7T7T) —QO. A(large Nc)(D — 7T7T)
.A(D — KK) -A(large NC)(D — KK)

We do not solve the DRs for the Omnes matrix Q.
Instead, just solve for the determinant of Q: obeys an elastic dispersion relation
— has an analytical solution:

detQ(s) = eXP{wg(S)}eXp{S — 50 pys /400 ds Vg (2)

R P CErn EET

2. lwg(s) at infinity has to go to 21T or a higher multiple of Tr 350
Reasonable assumption: lng(s) — 21T
(no further resonances at higher energies)

3. CPT constraint: unitarity + CPT symmetry

Acp(mm(0—-0)) _2]A(K+K_)|2 OK

Acp(KK(0—-10))  3lA(rT7n)]2 o,

14




Experimental information to be used

We make use of all the available experimental Br’s for all the decay channels related through isospin

1 )
0 +.—\ — = AI=0) i0rr0 rr,2
AD” = 7n) = \/—‘Am \/—|A |e — can fit to |AI 2| |A | COS((Smrz 67”770)
I=1 =
A(D® = 7070) = — | AIO|eibero 1 L AI=2gnes g he AR |A il cos(Ox k1 — Oxxco)
V6 V3
\/—
A(DtY — 77 AI2 .2
1( ) 2\/—‘ ( D—)?T?T 5 Q(large]\fc) D—>7T7T)>
A(D® — KK") = 5 (JAfGe s — AL e ) AD = KK Aange iy (D = KK)
1 . .
0 _ _ I=1 ZaKK,l _ IZO ZCSKK,O
A(D” — K’ K") ~ 9 (—lAkKle [ Akl ) Isospin-zero component ofe g. Iéfn 0 I
—0 3

A(DY = K KT) = |Al5}|erma A(D? = mtn7) o< Crdg(m 77 |QF|1D°) pac 0 Fo 0 "

and for the CP asymmetries: include

— X (Co(m T 77|Qa| D) e + Co(n 17| Q6| D°) fac)
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CP asymmetry from |=0/I=0 interference

Jarlskog, 3*107

We find:
@ cC C’C P cc CC P -3 (Im)
Acp(mm(0—0)) = 3 pre— (T T + TETRy + T  Thy) = 1.7 - 1077w
\ large Nc limit (of current-current and penguin operators)

experiment  Ng cancellations between different terms
rescattering dynamics:

(Im) — Im{QHQlQ} and similarly for KK wﬁm) = Im{Q;Q%}

The constraints from _detQ(s), the exp. isospin-zero invariant amplitudes and CPT result in
| det Q(m3%)] w(Im)| - | det Q(m?%)|
l+o./0k ~ l+ok/ox
therefore | Acp(mm(0—0))] <3.1-107"  [Acp(KK(0—0))] <1.7-1071

very small fraction of the experimental Tr+1T- ACP

with an opposite sign; both up to ~0.2

wi™] <

7
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CP asymmetry from |=2/I=0 interference

common penguin-tree interference present in K—TI1T

The other source of CP violation for the pion channels:

AT cc TP .
Acp(nTn™ (2 —-0)) = Tir +1T Qo] sin(dpro — argt) T |1 sin(0yr 0 — arg2
cp(mm( ) 3v/2| \| |A(DO 7T+7T_)|2[( KK)‘ 12| Sin (G gfhs) + €011 $in(0rr o g1 )]

~ (2.1@in(— Opm2) + 3.@sin(— Srr2)) - 1074

In order to reach the observed asymmetry we would need at least |Qll| ~ |Ql2| ~ 4
There exist Omnes matrices that satisfy all the imposed constraints of this work & do not spoil the smallness of ACP in D—K+K-
but some “fine tuning” needed to keep det 2 = 211{299 — (215{25; to the determined value of ~0.4
& to reproduce the 1=0 amplitudes extracted from the exp. fit P 11315

Q ( ' )

3.79¢ 092 3.84¢0:9%

If the 2/0 interference is the only significant CPV source,
CPV should be equally sizable in the neutral pion mode (i.e. no cancellations)

[Erom the full dispersive calculation [2305.11951], with all the rescattering input implemented:
none of the Omnes matrices comes close to the required values
while reproducing the experimental Br’s for the decay channels |

17



Outlook

Independent theoretical determinations agree on small CPV: LCSRs [Khodjamirian et al ‘17 + Lenz et al ‘23] ¢/, U-spin breaking arguments [Schacht ‘23]

Could something be missing from the theory prediction?

3rd channel in isospin zero? e.g. pp, a, 1T (— 417)
— no data available as required for dispersion relations - would need model dependence [Kubis et al.]

Theoretical cross-checks:

° Could try to understand better |I=2 (we do not calculate Omnes but use exp. Br’s)

— no known resonances that would lead to inelastic Tr— 17T

More theoretical determinations of related channels: D—31T (could highlight the enhancement of CPV from some resonance), D—TTTTu
Address indirect CPV theoretically? (could shed light into underlying long-distance dynamics)

Experimental cross-checks: 7TO7TO, KO KO already theoretically calculated

— if large CPV observed in charged pion mode, equally sizable in the neutral pion mode [see also Nierste, Schacht ‘15]
— if two-channel hypothesis not valid, CPV should manifest in other channels (41T)

NP? Z’ model breaking U-spin, see [Hiller et al. ‘23] also [Lenz, Rusov et al. ‘19] etc.

18



O utl_o 0 k The ACP remains an open question! An exciting flavour anomaly

Independent theoretical determinations agree on small CPV: LCSRs [Khodjamirian et al ‘17 + Lenz et al ‘23] ¢/, U-spin breaking arguments [Schacht ‘23]

Could something be missing from the theory prediction?

3rd channel in isospin zero? e.g. pp, a, 1T (— 417)

— no data available as required for dispersion relations - would need model dependence [Kubis et al.]

Theoretical cross-checks: More predictions, more

° Could try to understand better |=2 (we do not calculate Omnes but use exp. Br’s) measurements needed

— no known resonances that would lead to inelastic TT— 1717 A lot of work to be done!

° More theoretical determinations of related channels: D—3TT (could highlight the enhancement of CPV from some resonance), D—TITTuu
e  Address indirect CPV theoretically? (could shed light into underlying long-distance dynamics)

Experimental cross-checks: ——~ already theoretically calculated

7% KYKO
— if large CPV observed in charged pion mode, equally sizable in the neutral pion mode [see also Nierste, Schacht ‘15]
— if two-channel hypothesis not valid, CPV should manifest in other channels (41T)

NP? Z’ model breaking U-spin, see [Hiller et al. ‘23] also [Lenz, Rusov et al. ‘19] etc.
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Full implementation of the strong rescattering

Isospin zero:

o ( 1)et2o1 iy/1— 7’}2€i(61+52)) B ( So(rm — ww)  So(nm — KK) )
0= =
i

/1 — 12ei01+02) 1)et22 So(KK — ) So(KK — KK)

1.0
350 500 H.
ess certain :

300 KKthreshold e re o ’
250 — 0(1370) 450 dlffe g nt datasadb
200
1o \ 0g) | e
1000 0(980) 350} o
50 IR
I GeV)0. 0 bttt

04 06 08 10 1.2 1.4\/;(69") 14 15 16 17 18 1-9‘/;( Y06 08 10 12 1.4 16 1.8

[Kaminski et al ‘07, Garcia-Martin et al ‘11, Pelaez et al ‘19] Vs Gev)
e Data-driven parameterizations, incorporating the effect of known resonances & other features
e Extrapolations for energies higher than 1.9 GeV

Isospins 1 and 2: A(DT — 7r7%) = V'3 | AL=
e  Elastic 11T, KK rescattering \/_ iv free

e No (adequate) data available — use measured Br’s of D+ decays A(D"‘ v K K"’) — |A




ACP, direct and indirect

d0(Dpyys 0 =F)  dD(DOpnys (D =f)  d(DY () = F)  dD(Dns(t) > f)

o< (|Ag|* = [Af]?) (cosh(AT/2t) + cos(Amt))

ACP (f t) = dt _ dt dt dt
’ dr'(D);,,.(t)—=f) dD(DO s () f) + <]%{2|Zf|2 - §|2|Af|2> (cosh(AT'/2t) — cos(Amt))
dt dt

+2Re (5AfAf - 6A7A?> sinh(AT"/2¢)

q .« p T* :
—2Im <5AfAf - EAfAf> sin(Amt).

irec t in an irec t in
Acp(f5t) = ABE(F) 4 ad e Agp(f) = Adie(f) + L2 g

time-integrated ™

Jind _ TCP q| ‘p‘> (|q‘ ‘p‘) .
= —| — =] )y cosargAr)— | |—| + |—| | T sinarg
Ty [<‘p q <:> pl g
-
mixing CPV

interference CPV + final-state dependence
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Sources of CP violation

At the quark level (full theory):

At the level of amplitudes: y
Recall: different weak phases & strong phases needed — VS /
For D— 11T (similarly for D—KK): )\d )\S, )\b a

One I=2 amplitude
Ai - {7 1=s|(dc) (@d)| D)

and several I=0 amplitudes

(current-current operators implied)

Ag <7T7TI:0‘(EC) (ﬂd)|D> + Ag - <7T7TI:0|(§C) (ﬂs)lD) — Ay <7T7T[:0|penguin operators‘D>

« ~ .Y, g . ,,\ ' /
Long-distance penguin®  ghort-distance penguin
If TT1T did not rescatter to KK: (significant for Q6
(em1mo|(50)@s)| D) =0 AND ) operator-annihilation topology)
D) = arg(nm;—o|(dc)(ud)| D) (Watson’s theorem)

al“g <7T7T]:0 ‘ penguin operators

— Only source would be interference of |=2 vs |=0 short-distance penguin

Instead: more sources of CP violation now ; no significant cancellations between different CPV sources
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|Isospin-two rescattering

S-wave isospin-two 1T phase

& (s)
0 2 i i i " ;
4 06 08 10 12 1 .4‘/: (Gev)
<50 Elastic - admits Omnes solution
_ o] 52

=30 |Ar—2(D — 7m)(s)| = Ar_a(so) x eap{’ WSOPV AM;% dz%}
J 30 Omnes factor

" which at infinity behaves as

L 8Rleo) - )

sn’ T

Q(s) ~

and has to go to zero »

— phase has to go to positive multiples of 1T

KK in I=1: not available




Naive estimate of final-state-interaction effects

We can write [Bauer, Stech, Wirbel ‘86]

1261 ; _ . 2,i(61+02)
=0 =0 . e ’L\/l %e
A7r7r — Sl/2 . Aﬂ'ﬂ',bare Ss = (Z /1 — ])26i(61+52) }762262
A%{ :Ig S AL=0 .

K K ,bare

where the bare amplitudes come from factorization (no strong phases)
This reproduces correctly Watson’s theorem in the limit of elastic rescattering
What S-matrix unitarity gives: A7IT;O S (A{T;O ) *
AI:O — PS5 (AIzO)*
KK KK

— No direct solution for the amplitudes; can relate them to the rescattering phases
(12 — (BERDa — )

A7)
(1 + )2 — (FZ) (1 — 1?)
A7)
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argALZ% = 5, + G,TCCOS\

argAL= 2 = 65 + a’l"CCOS\




Br's and ACP’s as functions of the free phases

ratios: theo./exp.

ratios: theo./exp.
N 200

‘m§

3 ¢> (rad)

AN N\

|sospin-2 ) |sospin-1
I// £y
1 \@\3 ¢4 (rad) 26
— DO—=>K+K-
—> JT+JT— i
—— DO->=KO0 KO

— DO —> 7107570




Quantified sources of CP asymmetry

Acp(r~nT); |. : final
o_o. |interference expression ]
Acp(m°7”) numerics
1=0/1=0 0.0019 x w{™ 0.00027
numerator | oy o | 0.00041 x ® 1 0.00026 x ©; [-0.00009;
—0.00081 x @™ — 0.00052 x @™ | 0.00018
1=0/1=0 ||Q®? +0.57 x |29 — 1.51 x w&| 1.1
~(Re) _ —(Re). .
——— 0.64 x wW%Re) 0.49 x w,,z(Re,) 0.03;
—1.28 X W,y * +0.97 X W, -0.07
1=2/1=2 122 x 0.10; |2@? x 0.41 0.08; 0.33
Acp(K~K™);|. . final
interference expression
Acp(KsKs) numerics
1=0/1=0 0.0019 x w'i™ -0.00032
(). y .
numerator 1=0/I=1 0.0019 x wK(Im,) 0.00019;
—0.0019 x & 0.00019
1=0/1=0 (O +0.57 x |QD|? —1.51 x wF9| 1.05
—(Re) _ —(Re), .
enenieaden | i 1.15 x Dl 1.51 x Ty 1.23;
~1.15 x @) 4 151 xaFy 198
I=1/1=1 QW2 x 0.57 0.36
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If I=2 was inelastic

1 )
AD® — 1) = ———=|ALZ0)eimmo | AI=2|gi0nm 2
e f
A(D° — n7%) = ——\A Olgionmo 4 | AI=2|pi0nr.2
V6 f
ADT — 77%) = V3 | AI=2 |02

22

Still true; extraction from D+ Br is valid, just no longer representing the Omnes function
If inelasticities are to TITTKK: In large Nc corresponds to initial weak decay like D—?@ (?=an isospin-2 resonance), CKM
factor associated: )\,

— additional 1=2/2 interference would contribute to CPV; different interferences between 1=2 and 1=0
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Extrapolation to high energies

0 0

S3(E) =+ (BY(En) —n°m) S ) E) = oo + (19(En) — moc) o [
0
O (E) =1 + (0 (Eo) — £°m) fs T, Noo — 1 (strong coupling — 0)

No data available; if only resonances, sum of phases of all communicating channels — multiple of 1T

g (s)
If there was a third channel: we would still need the sum of all
300 phases to go to 311. Then 11T + KK could go to e.g. TT

250

200 I
10 12 14 16 18 20's(©eV)

More “natural” to send to 21T than 231T ; no resonances past that energy

oy



CP asymmetries in the rare decays

The unnormalised CP-asymmetric observables e.g. from the P-wave go as see also [2312.07501]

Im(A\ A3 Im(CE,CE®)

where roughly

eiéi’l’
Coa= 5 @
! P,(q%)
i
P _ eWerd
Cos = Py(q?) () 0.00025
This on top of the resonance gives 3 - 10~° (from the CKM) x (up to 500). 0.00020
On the other hand, the observables are normalised to the decay rates, which go as 0.00015
I\al*|Csq + Coal® (4) 0.00010
which gives 5- 1072 (from the CKM) x (up to 5 - 10%). 0.00005
Thus the effect on top of the resonances is very small. On the contrary, away from the resonances - 3 = -
there are some comparative enhancement patterns. Still because of the typical CKM suppression P ' : -

factor 6.4-10~% of charm decays the overall, normalised CP-asymmetrical observables are expected
to be very small, less than per mille.

Figure 1: Generic CP-asymmetric observable A over generic CP-symmetric observable
S/differential decay rate, as a function of the invariant mass of the dimuon. CKM factors in-
cluded.
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https://arxiv.org/abs/2312.07501

