Unbinned analyses of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ Quirks in Quark Flavour Physics 2024

Matthew Birch on behalf of the LHCb collaboration

Imperial College London

June 18, 2024

Motivation

- The decay B⁰ → K^{*0}µ⁺µ⁻ requires a b → s Flavour Changing Neutral Current, thus is suppressed in the SM.
- Due to the SM suppression and the coupling to 3rd generation, this decay is highly sensitive to New Physics (NP).
- These processes are sensitive to contributions towards O(10)TeV, which is inaccessible by current LHC direct searches.

Angular analysis

• The decay rate of $B^0 \to K^{*0}\mu^+\mu^-$, where $K^{*0} \to K^+\pi^-$, is described by the three angles θ_l , θ_K and ϕ and the invariant mass of the dimuon system squared, $q^2 = m_{\mu^+\mu^-}^2$.

Differential decay rate is given by [JHEP 01 (2009) 019]

$$\frac{\mathrm{d}^4\Gamma[B^0\to K^{*0}\mu^+\mu^-]}{\mathrm{d}\cos\theta_I\mathrm{d}\cos\theta_K\mathrm{d}\phi\mathrm{d}q^2}=\frac{9}{32\pi}\sum_i J_i(q^2)f_i(\Omega),$$

where

- *J_i* are *q*²-dependent angular observables. These are written in terms of bilinear combinations of the complex decay amplitudes.
- f_i are combinations of spherical harmonics involving θ_I , θ_K and ϕ .

Unbinned analyses of $B^0 \rightarrow \kappa^{*0} \mu^+ \mu^-$

$B^0 ightarrow {\cal K}^{*0} \mu^+ \mu^-$ measurements at LHCb

- Binned analysis
 - Binned angular observables
 - Run 1 + 2016 shows discrepanceis wrt the SM [PRL 125.011802 (2020)]
 - Upcoming Run 1 + Run 2 analysis in progress
 - See Eluned's talk for more information
- Ansatz analysis
 - Unbinned analysis in q^2 , using Legendre polynomials to describe the amplitudes
 - Upcoming Run 1 + Run 2 analysis in progress
 - This talk
- z-expansion analysis
 - Recently published [PRD.109.052009] [PRL.132.131801] analysis unbinned in q^2 , using the same dataset as the Run 1 + 2016 binned analysis
 - Fit $C_9^{(\prime)}$, $C_{10}^{(\prime)}$, polynomials are used to describe the non-local contributions
 - This talk
- Dispersion model analysis
 - Analysis unbinned in q^2 , using the full Run 1 + Run 2 datasets [arXiv:2405.17347]
 - Fit $C_9^{(\prime)}$, $C_{10}^{(\prime)}$, C_9^{τ} , non-local phases and magnitudes
 - Eluned's talk

Commonalities

- Selections, for example
 - Particle identification selections
 - Veto peaking backgrounds
 - Train BDTs to remove combinatorial background
- Acceptance

Amplitude ansatz

- Perform an unbinned measurement of the q²-dependent amplitudes which is as model independent as possible
- Method is described in JHEP06(2015)084
- Apply the ansatz

$$\mathcal{A} = \sum_{i} \alpha_{i} L_{i}(q^{2}) \tag{1}$$

to the amplitudes, where L_i are Legendre polynomials of order i

- \blacksquare Use four parameters for the amplitudes and fit in the $1.1 < q^2 < 8~{\rm GeV^2}/c^4$ region
- Due to symmetries in the PDF, define which amplitude basis to work in
- Work in the basis where

$$\mathit{Im}(\mathcal{A}^{R}_{\perp}) = \mathit{Im}(\mathcal{A}^{L}_{0}) = \mathit{Re}(\mathcal{A}^{R}_{0}) = \mathit{Im}(\mathcal{A}^{R}_{0}) = 0$$

• Fit
$$m_B$$
, $\cos \theta_\ell$, $\cos \theta_K$, ϕ and q^2

Integrate over $m_{K\pi}$

Amplitude ansatz

The ansatz used for the amplitudes can be described by a variety of models

It is also validated via goodness-of-fits to the data

4 parameters, CP-symmetries fit

Amplitude ansatz - pseudoexperiment studies

From amplitude components (signal fit parameters) compute the q^2 -dependent amplitudes $\mathcal{A} = \sum_i \alpha_i L_i(q^{2'})$

These can be used to compute the observables

Applications of the ansatz results

- Aim to present amplitude components with uncertainties and correlations.
- This would allow one to generate pseudoexperiments and fit that pseudoexperiment with any choice of model
- A model-independent parameterisation of the LHCb dataset which can be used to generate synthetic datasets and fit back with any choice of model!
- e.g. fit the Wilson coefficients to a pseudoexperiment by using flavio.

z-expansion

Standard Model description of local amplitudes

- Wilson coefficients
- Form factors

Parametric form (polynomials) used to describe the non-local contributions

Amplitude is written as

$$\mathcal{A}_{\lambda}^{L,R} = N_{\lambda}([(C_{9} \pm C_{9}') \mp (C_{10} \pm C_{10}')]\mathcal{F}_{\lambda}(q^{2}) + \frac{2m_{b}M_{B}}{q^{2}}[(C_{7} \pm C_{7}')\mathcal{F}_{T}(q^{2}) - 16\pi^{2}\frac{M_{B}}{m_{b}}\mathcal{H}_{\lambda}(q^{2})])$$
(2)

where the z-expansion [JHEP09(2022)133] is used for the non-local contributions $\mathcal{H}_{\lambda}(q^2)$, i.e.

$$\mathcal{H}_{\lambda}(q^{2}) = \frac{1 - zz_{J/\psi}}{z - z_{J/\psi}} \frac{1 - zz_{\psi(2S)}}{z - z_{\psi(2S)}} \phi_{\lambda}^{-1}(z) \sum_{k} \alpha_{k} z^{k}$$
(3)

Unbinned analyses of ${\it B}^0
ightarrow {\it K}^{*0} \mu^+ \mu^-$

Matthew Birch

$$\begin{aligned} \mathcal{A}_{\lambda}^{L,R} &= \mathsf{N}_{\lambda}([(C_{9}\pm C_{9}')\mp (C_{10}\pm C_{10}')]\mathcal{F}_{\lambda}(q^{2}) \\ &+ \frac{2m_{b}M_{B}}{q^{2}}[(C_{7}\pm C_{7}')\mathcal{F}_{T}(q^{2}) - 16\pi^{2}\frac{M_{B}}{m_{b}}\mathcal{H}_{\lambda}(q^{2})]) \end{aligned}$$

where the z-expansion [JHEP09(2022)133] is used for the non-local contributions $\mathcal{H}_{\lambda}(q^2)$, i.e.

$$\mathcal{H}_{\lambda}(q^2) = \frac{1 - zz_{J/\psi}}{z - z_{J/\psi}} \frac{1 - zz_{\psi(2S)}}{z - z_{\psi(2S)}} \phi_{\lambda}^{-1}(z) \sum_{k} \alpha_k z^k$$

- C_9 , C'_9 , C_{10} , C'_{10} float in the fit
- C_7 and C'_7 are fixed to the SM
- Form factors *F* are constrained to theory predictions from LCSR+Lattice [JHEP01(2019)150] [PoSLATTICE2014 (2015)372]

Unbinned analyses of ${\cal B}^0 o {\cal K}^{*0} \mu^+ \mu^-$

$$\mathcal{A}_{\lambda}^{L,R} = N_{\lambda}([(C_{9} \pm C_{9}') \mp (C_{10} \pm C_{10}')]\mathcal{F}_{\lambda}(q^{2}) \\ + \frac{2m_{b}M_{B}}{q^{2}}[(C_{7} \pm C_{7}')\mathcal{F}_{T}(q^{2}) - 16\pi^{2}\frac{M_{B}}{m_{b}}\mathcal{H}_{\lambda}(q^{2})])$$

where the z-expansion [JHEP09(2022)133] is used for the non-local contributions $\mathcal{H}_{\lambda}(q^2)$, i.e.

$$\mathcal{H}_{\lambda}(q^2) = \frac{1 - zz_{J/\psi}}{z - z_{J/\psi}} \frac{1 - zz_{\psi(2S)}}{z - z_{\psi(2S)}} \phi_{\lambda}^{-1}(z) \sum_{k} \alpha_k z^k$$

- Two fit configurations:
 - With $q^2 < 0$ predictions using predictions from [JHEP02(2021)088]
 - Without $q^2 < 0$ predictions
- Use experimental inputs to the magnitudes and phases from [PRD.90.112009] [PRD.76.031102] [PRD.88.074026] [PRD.88.052002] [EPJC72,2118(2012)]

• Also include
$$m_{K\pi} = k^2$$
 dependence

Unbinned analyses of $B^0 \rightarrow \kappa^{*0} \mu^+ \mu^-$

Local form factors [PRD.109.052009] [PRL.132.131801]

- Results in the two fit configurations are shown (with and without theory constraints)
- As seen on the right, the $\mathcal{F}_{\parallel,\perp}/\mathcal{F}_0$ ratios slightly pull at lower values

Non-local form factors [PRD.109.052009] [PRL.132.131801]

- In general, good agreement between the two fit configurations
- Some discrepancies in the imaginary parts, e.g. in $Im(\mathcal{H}_{\parallel})$

Angular observables - S basis [PRD.109.052009] [PRL.132.131801]

Angular observables - P basis [PRD.109.052009] [PRL.132.131801]

Wilson coefficients [PRD.109.052009] [PRL.132.131801]

1D profiles:

Unbinned analyses of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Matthew Birch

Wilson coefficients [PRD.109.052009] [PRL.132.131801]

2D profiles:

Global compatibility wrt the SM has been computed and is at the level of $1.3 - 1.4\sigma$ Unbinned analyses of $B^0 \rightarrow \kappa^{*0}\mu^+\mu^-$ Matthew Birch

Summary

- Upcoming binned angular analysis
 - More data than previous analysis, now fitting both the CP-symmetries and the CP-asymmetries.
 - Run 1 + Run 2 analysis is in collaboration-wide review
- Ansatz analysis
 - Unbinned analysis in q², using Legendre polynomials to describe the amplitudes
 - Run 1 + Run 2 analysis is in collaboration-wide review
- z-expansion analysis
 - Recently published [PRD.109.052009] [PRL.132.131801] analyses shows shifts of $1.8 1.9\sigma$ when considering C_9 only
- Dispersion model analysis
 - Analysis unbinned in q^2 , using the full Run 1 + Run 2 datasets [arXiv:2405.17347] presents 2.1 σ shift of C_9 , and the world's first direct measurement of $C_{9\tau}$
- \blacksquare Last CMS binned analysis of $B^0\to K^{*0}\mu^+\mu^-$ also presents tensions with the SM
- Very exciting times ahead!