β function, Λ parameter and more

Oliver Witzel

in collaboration with Anna Hasenfratz, Chris Monahan, Matthew Rizik, Andrea Shindler

y

Quirks in Quark Flavour Physics Zadar, Croatia · June 21, 2024

[Copyright Stadt Bottro

01

No anomalies

No CKM matrix elements

WEATHER STATE BALL OF ALL PROPERTY.

BSM-systems 01

Only two (massless) flavors

• Only QCD

Small quirks to be improved.

Originates from studying many flave

Powerful prospects

Copyright Stadt Bottre

 $_{\rm OOO}^{\beta}$ function

Λ parameter 00 and more

Renormalization Group β function

$$\beta(g^2) = \mu^2 \frac{dg^2}{d\mu^2}$$

- \blacktriangleright Encodes dependence of coupling g^2 on the energy scale μ^2
- ▶ β has no explicit dependence on μ^2 , only implicit through $g^2(\mu)$
- ► Known perturbatively up to 5-loop order in the MS scheme (1- and 2-loop are universal) [Baikov, Chetyrkin, Kühn PRL118(2017)082002] [Ryttov and Shrock PRD94(2016)105015]
- ▶ Known perturbatively at 3-loop order in the gradient flow scheme [Harlander, Neumann JHEP06(2016)161]
- Perturbative predictions reliable at weak coupling, nonperturbative methods needed for strong coupling

Λ parameter 00

Lattice calculations

- \blacktriangleright Wick-rotate to Euclidean time $t \rightarrow i \tau$
- ► Discretize space-time and set up a hypercube of finite extent $(L/a)^3 \times T/a$ and spacing *a*
- ▶ Use path integral formalism

$$\langle \mathcal{O} \rangle_{\mathcal{E}} = \frac{1}{Z} \int \mathcal{D}[\psi, \overline{\psi}] \mathcal{D}[U] \mathcal{O}[\psi, \overline{\psi}, U] e^{-S_{\mathcal{E}}[\psi, \overline{\psi}, U]}$$

 \Rightarrow Large but finite dimensional path integral

- \blacktriangleright Finite lattice spacing a \rightarrow UV regulator
- \blacktriangleright Finite volume of length $L \rightarrow$ IR regulator
 - \rightarrow Study physics in a finite box of volume $(aL)^3$ plus limit $L \rightarrow \infty$
- ▶ Different discretizations for gauge and fermion actions possible
 - \rightarrow Wilson, Symanzik gauge; Wilson, staggered, domain-wall fermion
 - \rightarrow Discretization effects disappear after taking a \rightarrow 0 continuum limit

 β function 000

Λ parameter 00

Gradient flow

[Narayanan and Neuberger JHEP 0603 (2006) 064] [Lüscher CMP 293 (2010) 899][JHEP 1008 (2010) 071]

Add flow time coordinate t with dimension [-2] and define gauge field $B_{\mu}(x, t)$

$$rac{\partial}{\partial t}B_{\mu}(t)=\mathcal{D}_{
u}(t)G_{
u\mu}(t) \qquad ext{with} \qquad B_{\mu}(t=0)=A_{\mu}$$

- \rightarrow Ordinary differential equation (ODE) \rightsquigarrow solve numerically using Runge-Kutta
- $_{
 m \rightarrow}$ Covariant derivative defined in terms of the flow field $B_{\mu}(t)$ and the Yang-Mills action $S_{YM}(B)$
- ▶ Gradient flow is a smoothing/averaging transformation
 - \rightarrow Can be related to RG flow \leadsto perfect to define RG β function, \ldots
- Energy density $\langle E(t) \rangle = -\frac{1}{2} Tr \langle G_{\mu\nu}(x, t) G_{\mu\nu}(x, t) \rangle$
 - ightarrow Renormalized coupling, scale setting $(\sqrt{8t_0}, w_0)$
- \blacktriangleright Different gradient flows: Wilson flow, Symanzik flow, Zeuthen flow, \ldots

Λ parameter

Step-Scaling β function

- \blacktriangleright Discretized β function determined using numerical lattice field theory calculations <code>[Lüscher et al. NPB359(1991)221]</code>
 - \rightarrow Choose symmetric L^4 setup where the size L of the lattice is the only scale
 - \rightarrow Determine β function by calculating scale change $L \rightarrow s \cdot L$
 - \rightarrow Conventionally differs by a minus sign compared to the continuum definition
- ▶ Use gradient flow to define a renormalized coupling

$$g_c^2(L) = rac{128\pi^2}{3(N_c^2-1)} \; rac{1}{C(c,L)} t^2 \langle E(t)
angle$$

 \rightarrow Relate flow time t to scale L: $\sqrt{8t} = c \cdot L$ [Fodor et al. JHEP11(2012)007][JHEP09(2014)018]

 \rightarrow Calculate scale difference

$$\beta_{s}^{c}(g_{c}^{2};L) = \frac{g_{c}^{2}(sL) - g_{c}^{2}(L)}{\log(s^{2})}$$

 \rightarrow Extrapolate $L/a \rightarrow \infty$ to remove discretization effects and take combined continuum and infinite volume limit

Oliver Witzel (University of Siegen)

troduction β function Λ parame 000 00 00 00	:er
---	-----

Gradient flow and real-space renormalization Group (RG) flow

Gradient flow and real-space renormalization Group (RG) flow

- ▶ RG flow: change of (bare) parameters and coarse graining (blocking)
- ▶ Gradient flow is a continuous transformation
 - → Define real-space RG blocked quantities by incorporating coarse graining as part of calculating expectation values [Carosso, Hasenfratz, Neil PRL 121 (2018) 201601]
- \blacktriangleright Relate GF time t/a^2 to RG scale change $b \propto \sqrt{t/a^2}$
 - \rightarrow Quantities at flow time t/a^2 describe physical quantities at energy scale $\mu \propto 1/\sqrt{t}$
 - \rightarrow Local operator with non-vanishing expectation value can be used to define running coupling Simplest choice: $t^2/F(t)$ || instead ||UER 1009 (2010) 071|
 - \sim Simplest choice: $t^2 \langle E(t) \rangle$ [Lüscher JHEP 1008 (2010) 071]

• Continuous RG
$$\beta$$
 function

$$\beta_{GF}(g_{GF}^2) = \mu^2 \frac{dg_{GF}^2}{d\mu^2} = -t \frac{dg_{GF}^2}{dt}$$

Λ parameter 00

New in next

FLAG edition!

Continuous RG β function

[Fodor et al. EPJ Web Conf. 175 (2018) 08027] [Hasenfratz, OW PRD 101 (2020) 034514] [Hasenfratz, OW PoS LATTICE2019 (2019) 094] [Wong et al. PoS LATTICE2022 (2023) 043] [Hasenfratz, Peterson, Van Sickle, OW PRD108 (2023) 014502]

- ► Extract $g_{GF}^2(t; \beta_b, L/a)$ its derivative $\beta_{GF}(t; \beta_b, L/a)$ for a range of GF times on each ensembles → Different bare coupling β_b on different volumes $(L/a)^4$ or $(L/a)^3 \times T/a$
- ▶ Perform infinite volume extrapolation at fixed bare coupling β_b and GF time t→ Obtain $g_{GF}^2(t; \beta_b)$ and $\beta_{GF}(t; \beta_b)$
- ▶ Interpolate discrete infinite volume values to get continuous values at fixed flow time $\rightarrow g_{GF}^2(t)$ and $\beta_{GF}(t; g_{GF}^2)$
- ▶ Take continuum limit $(a^2/t \rightarrow 0)$ for fixed g^2_{GF} and obtain $\beta_{GF}(g^2_{GF})$

Λ parameter

Continuous RG β function

- Extract $g_{GF}^2(t; \beta_b, L/a)$ its derivative $\beta_{GF}(t; \beta_b, L/a)$ for a range of GF times on each ensembles
 - $_{\rightarrow}$ Different bare coupling β_b on different volumes $(L/a)^4$ or $(L/a)^3 \times$ T/a
- \blacktriangleright Perform infinite volume extrapolation at fixed bare coupling β_b and GF time t
 - ightarrow Obtain $g_{GF}^2(t; \beta_b)$ and $\beta_{GF}(t; \beta_b)$

Λ parameter

Continuous RG β function

- Extract $g_{GF}^2(t; \beta_b, L/a)$ its derivative $\beta_{GF}(t; \beta_b, L/a)$ for a range of GF times on each ensembles
 - $_{\rightarrow}$ Different bare coupling β_b on different volumes $(L/a)^4$ or $(L/a)^3 \times$ T/a
- \blacktriangleright Perform infinite volume extrapolation at fixed bare coupling β_b and GF time t
 - ightarrow Obtain $g_{GF}^2(t; \beta_b)$ and $\beta_{GF}(t; \beta_b)$

Λ parameter

Continuous RG β function

▶ Interpolate discrete infinite volume values to get continuous values at fixed flow time $\rightarrow g_{GF}^2(t)$ and $\beta_{GF}(t; g_{GF}^2)$

Λ parameter

and more

Continuous RG β function

▶ Take continuum limit $(a^2/t \rightarrow 0)$ for fixed g_{GF}^2 and obtain $\beta_{GF}(g_{GF}^2)$

Oliver Witzel (University of Siegen)

0.5

 β function 00• Λ parameter

and more

Continuum limit of continuous RG β function for $N_f = 2$

- Weak coupling well described by PT 3-loop GF result [Harlander, Neumann JHEP06(2016)161]
- ▶ Qualitatively more similar to 1-loop result at strong coupling
 → Very different to 3-loop GF
- ► Apparently linear β_{GF} function at strong coupling
 - \rightarrow Nonperturbative phenomenon

 β function 00• Λ parameter

and more

Continuum limit of continuous RG β function for $N_f = 2$

 β function 000

∧ parameter ●O

Λ parameter

- ▶ Integrate inverse β function to obtain Λ_{GF}
 - $\rightarrow g_m^2~{\rm GF}$ renormalized coupling at energy scale $\mu = 1/\sqrt{8t_0}$
 - \rightarrow Only need t_0 lattice scale
 - \rightarrow b₀, b₁ universal 1-loop coefficients

$$\Lambda_{GF} = \mu ig(b_0 g_m^2 ig)^{-rac{b_1}{2b_0^2}} \expig(-rac{1}{2b_0 g_m^2} ig) \expig[-\int_0^{g_m^2} \mathrm{d}g^2 ig(rac{1}{eta(g^2)} +rac{1}{b_0 g^4} -rac{b_1}{b_0^2 g^2} ig) ig]$$

 $_{\rm (OOO)}^{\beta}$ function

Λ parameter O●

and more

Match to 3-loop GF β function at small g_{GF}^2

 Presently large uncertainty in Λ due to matching at weak coupling

▶ $g_m^2 \approx 15.8$

- \blacktriangleright In principal could relate Λ to α_s
 - $\rightarrow N_f = 2 \text{ requires running "through"}$ strange quark threshold
 - \rightarrow Better repeat with $\mathit{N_f}=3$ or 4

introduction	
0000	

 β function 000

Λ parameter

Gradient Flow renormalization [Hasenfratz, Monahan, Rizik, Shindler, OW PoS Lattice2021 155]

$$\mathcal{O}_{R}^{\overline{\text{MS}}}(\mu_{\text{UV}}) = c^{\overline{\text{MS}} \leftarrow \text{GF}}(\mu_{\text{UV}}, \mu_{\text{IR}}) \quad Z_{\mathcal{O}}^{\text{GF}}(a; \mu_{\text{IR}}) \quad \mathcal{O}(a)$$
PT matching to $\overline{\text{MS}}$
connect $\mu_{\text{IR}} \rightarrow \mu_{\text{UV}}$

define matching factor $Z_{\mathcal{O}}^{\mathsf{GF}}(a; t)$

► Need fermionic gradient flow

$$\partial_t \chi(t,x) = \mathcal{D}^2(t)\chi(t,x)$$
 with $\chi(0,x) = q(x)$

 β function 000 Λ parameter

and more

Gradient flow renormalization scheme [Hasenfratz, Monahan, Rizik, Shindler, OW PoS Lattice2021 155]

$$ar{Z}^{\mathsf{GF}}_{\mathcal{O}}(a;t_0)ar{R}_{\mathcal{O}}(a;x_4,t_0)=ar{R}^{\mathsf{tree}}_{\mathcal{O}}(a;x_4,t_0) \quad ext{for } x_4/\sqrt{8t_0} o \infty$$

▶ Obtain anomalous dimension $\gamma_{\mathcal{O}}(a; t)$ with $R_{\mathcal{O}} = G_{\mathcal{O}}/G_V$

$$\gamma_{\mathcal{O}}(\mathsf{a}; \mathsf{t}) = \mu rac{d\log ar{Z}_{\mathcal{O}}^{\mathsf{GF}}(\mathsf{a}; \mu)}{d\mu} = 2t rac{d\log R_{\mathcal{O}}(\mathsf{a}; \mathsf{x}_{\mathsf{4}}, t)}{dt} \qquad ext{with} \quad \mu = 1/\sqrt{8t}$$

▶ Typical 2-pt correlation function parametrized by

$$egin{aligned} G_{\mathcal{O}}(t) &= A_1(t)e^{-m_1x_4} + A_2(t)e^{-m_2x_4} + \dots \ &\Rightarrow & 2trac{d\log G_{\mathcal{O}}(t)}{dt} = rac{d\log A_1(t)}{dt} + \mathcal{O}(e^{-(m_2-m_1)x_4}) \end{aligned}$$

• Expect $\gamma_{\mathcal{O}}(t)$ independent of x_4 (for $x_4 \ll \sqrt{8t}$)

 \rightarrow Corresponds to the lightest state because others die out

Oliver Witzel (University of Siegen)

 β function 000

Λ parameter 00

Example: extract anomalous dimension for the pseudoscalar

[Hasenfratz, Monahan, Rizik, Shindler, OW PoS Lattice2021 155]

► Signal at weak and strong coupling

 β function 000

Λ parameter 00

and more

Use gradient flow to run and match at $\mu_{\rm UV}$

[Hasenfratz, Monahan, Rizik, Shindler, OW PoS Lattice2021 155]

\blacktriangleright Connect $\mu_{\rm IR} \rightarrow \mu_{\rm UV}$ by integrating RG equations

$$\lim_{a \to 0} \frac{Z_{\mathcal{O}}^{\mathsf{GF}}(a, \mu_{\mathsf{UV}})}{Z_{\mathcal{O}}^{\mathsf{GF}}(a, \mu_{\mathsf{IR}})} = \exp\left\{\int_{\tilde{g}_{\mathsf{IR}}}^{\tilde{g}_{\mathsf{UV}}} dg' \frac{\gamma_{\mathcal{O}}^{\mathsf{GF}}(g')}{\beta^{\mathsf{GF}}(g')}\right\}$$

▶ Requires continuum limit of β^{GF} and $\gamma^{\text{GF}}_{\mathcal{O}}$ calculated in the GF scheme

$$egin{aligned} &\lim_{a o 0} \left[eta^{\mathsf{GF}}(a;g_{\mathsf{GF}}^2) = -t rac{dg_{\mathsf{GF}}^2(a;t)}{dt}
ight] \ &\lim_{a o 0} \left[\gamma_{\mathcal{O}}^{\mathsf{GF}}(a;g_{\mathsf{GF}}^2) = -2t rac{d\log Z_{\mathcal{O}}^{\mathsf{GF}}(a;t)}{dt}
ight] \end{aligned}$$

ntroduction	
0000	

Λ parameter 00

Running anomalous dimension for the pseudoscalar

[Hasenfratz, Monahan, Rizik, Shindler, OW PoS Lattice2021 155]

 β function 000

Summary

- ▶ Gradient flow is a powerful tool
- \blacktriangleright Continuous β function can be calculated in the deconfined as well as the confined regime
 - \rightarrow Provides new method to nonperturbatively determine the A parameter ($\rightsquigarrow \alpha_{s})$
 - \rightarrow Only \textit{t}_0 scale in GeV needed to convert to physical units
- ► Fermionic gradient flow allows for new nonperturbative renormalization method → Using gradient flow to run and match at higher energies

Quirky details: gradient flown 2-pt correlation functions

- ► Evaluate gradient flown quark propagator on the lattice: $\chi_{GF}(t) = Z_{\chi}^{1/2}\chi(t)$ \rightarrow Picks-up unknown wave-function renormalization $Z_{\chi}^{1/2}$
- ► Calculate 2-pt function to determine $G_{\mathcal{O}}(a; x_4, t)$ with operator $\mathcal{O}_{\Gamma}(t) = \bar{\chi}(t)\Gamma\chi(t)$

$$G_{\mathcal{O}}(a; x_4, t) = \int d^3 \vec{x} \, d^3 \vec{x}' \langle \mathcal{O}(\vec{x}, x_4, t) \mathcal{O}(\vec{x}', 0, t = 0) \rangle$$

 \rightarrow t gradient flow time, x4 Euclidean time, \vec{x} spatial components

► If \mathcal{O} is a scaling operator, RG transformation with scale change $b \propto \sqrt{8t/a^2}$ predicts $G_{\mathcal{O}}(g_i, x_4) = b^{-\Delta_{\mathcal{O}}} G_{\mathcal{O}}(g_i^{(b)}, x_4/b)$ with $x_4 \gg b$ and $g_i^{(b)}$ RG flown couplings [Carosso et al. PRL 121 (2018) 201601] Quirky details: gradient flown ratios of correlation functions

▶ Calculate log derivative of $G_{\mathcal{O}}$ w.r.t. GF time t

- $t\frac{\mathrm{d}}{\mathrm{d}t}\log G_{\mathcal{O}}(a;x_4,t) = \Delta_{\mathcal{O}} = d_{\mathcal{O}} + \gamma_{\mathcal{O}} + \eta$
 - $\rightarrow d_{\mathcal{O}}$ canonical dimension of the operator
 - $\rightarrow \gamma_{\mathcal{O}}$ anomalous dimension of the operator
 - $\rightarrow\eta$ field anomalous dimension

▶ Define ratios using vector currents ($\gamma_V = 0$) to cancel η (wave-function renormalization Z_{χ})

$$R_{\mathcal{O}}(a; x_4, t) = \frac{G_{\mathcal{O}}(a; x_4, t)}{G_V(a; x_4, t)}$$

▶ Use double-ratios to eliminate the unflown probe

$$\bar{R}_{\mathcal{O}}(a; x_4, t) = \frac{R_{\mathcal{O}}(a; x_4, t = 0)}{R_{\mathcal{O}}(a; x_4, t)}$$

 $_{\rightarrow}$ i.e. $\bar{R}_{\cal O}$ renormalizes with $\bar{Z}_{\cal O}=Z_{\cal O}/Z_V$