

Collaborative Research Center TRR 257

Particle Physics Phenomenology after the Higgs Discovery

Institut für Theoretische Teilchenphysik (KIT)

Flavour anomalies, leptoquarks, renormalisation group fixed-points, and collider physics Ulrich Nierste, Karlsruhe Institute of Technology KIT Center Elementary Particle and Astroparticle Physics (KCETA)

Institute for Theoretical Particle Physics (TTP)

Leptoquarks and semileptonic decays

Scalar leptoquarks are a popular explanation of flavour anomalies.

 S_1 or R_2 for $R(D^{(*)}) = \frac{D(D \cup D^{(*)}(D))}{D(D \cup D^{(*)}(D))},$ $B(B \to D^{(*)} \tau \nu)$ $B(B \to D^{(*)} \ell \nu)$ $\ell = e, \mu$,

 S_3 for low- q^2 deficit in several $b \rightarrow s\ell^+\ell^-, \qquad \ell = e, \mu,$ decay distributions.

 $\mathbf{b_L}$

2 Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,… Ulrich Nierste

cL*,*^R

BSM mass reach

Flavour physics probes virtual effects of new heavy particles coupling to quarks, with a mass reach of

a few TeV in the case of S_1 or R_2 for $b\to c\tau\bar{\nu}$ and a few tens of TeV in the case of S_3 for $b \to s\ell^+\ell^-$.

 \Rightarrow The firm establishment of a flavour anomaly helps for the design of a future hadron collider and could establish a "no-lose" situation for FCC-hh.

FCC-hh fans **flavour physics** flavour physicists \bullet FCC-ee: 10^{13} Z bosons are a perfect b factory!

Outline

- Status of new physics in *b* → *cτν*
	- Status of new physics in $b \to s\ell^+\ell^-$
- Renormalisation group analysis of leptoquark solutions
- Leptoquarks at colliders
- Summary and outlook

Status of new physics in *b* → *cτν*

 $b \rightarrow c\tau\nu$

b-flavoured hadron $H_b = B_d, B^+, \Lambda_b$:

$$
R(H_c) \equiv \frac{B(H_b \to H_c \tau \nu)}{B(H_b \to H_c \ell \nu)}
$$
 with $\ell = e, \mu$

 $\vert P$ redictions involve form factors like $\langle D(\vec{p}_D) \, | \, \gamma^\mu \, | \, B(\vec{p}_B) \rangle$ or $\langle D^*(\vec{p}_D,\epsilon) \, | \, \gamma^\mu \gamma_5 \, | \, B(\vec{p}_B) \rangle$. ⃗ ⃗ ⃗

Lattice gauge theory calculates form factors for $\vec{p}_D = \vec{p}_B = 0$ and a few points with small $D^{(*)}$ velocity. ⃗ ⃗

 $B(H_b \to H_c \tau \nu)$ $R(D^*)$ $R(H_c) \equiv$ HFLA $B(H_b \to H_c\ell\nu)$ **Belle**^a Moriond 2024

b → *cτν***: Developments since** *Quirks 2022*

New LHCb $R(D^+)$ measurement: Significance of deviation from SM down:

 $3.3\sigma \rightarrow 3.1\sigma$,

for the form factors used by HFLAV.

 $\overline{}$ Different measurements (from four experiments) agree within normal statistical fluctuations.

$B \to D^*$ form factors

Compare

BGL (Boyd, Grinstein, Lebed 1995):

 global fit by Gambino, Jung, Schacht in 2019 to all available calculations \mathcal{B} and data in $B\to D^*\ell\nu$ with light leptons $\ell=e,\mu$. Phys. Lett. B 795 (2019) 386

HQET (using expansions in $\Lambda_{\rm QCD}/m_{c,b}$):

 global fit by Iguro, Kitahara and Watanabe in 2022 to all available ρ calculations and $\,$ data (including q^2 shapes) in $B\to D^*\ell\nu$ with light **leptons** $\ell = e, \mu$. arXiv:2210.10751 Fermilab/MILC (2021):

first lattice calculation employing $q^2 \neq q^2_{\rm max}$.

Eur. Phys. J. C 82 (2022) 1141, Eur.Phys.J.C 83, 21 (2023).

$B \to D^*$ form factors

DM (Dispersive Matrix approach, Rome lattice group): uses Fermilab/MILC data and Rome calculation of susceptibility χ , employs analyticity and unitarity constraints to derive two-sided bounds on form factors.

> G. Martinelli, S. Simula, and L. Vittorio, Phys. Rev. D 104 (2021) 094512, Eur. Phys. J. C 82 (2022) 1083, JHEP 08 (2022) 022. G. Martinelli, M. Naviglio, S. Simula, and L. Vittorio, Phys. Rev. D 106 (2022) 093002.

With DM method find $R(D^{\ast})$ compatible with Standard Model prediction and furthermore $|V_{cb}|$ from $B \to D^* \ell \nu$ consistent with $|V_{cb}|$ from inclusive $B \to X_c \ell^{\prime} \nu$ decays.

P $B \to D^*$ form factors vs new physics

Next slides: confront all four form factor predictions with new data on the fraction $F_L^{D^*,\text{light}}$ of longitudinally polarized D^* in $B\to D^*\ell\nu$ and the forward-backward asymmetries A_{FB}^{e} and $\,A_{\text{FB}}^{\mu}$

Belle, 2301.07529; Belle II, talk by Chaoyi Lyu at ALPS, March 2023

Discriminating $B\to D^*\ell\nu$ form factors via polarization observables and asymmetries

Fedele,Blanke,Crivellin,Iguro,UN,Simula,Vittorio, arXiv:2305.15457.

 $\bm{\textsf{Predictions}}$ for $F_L^{D^\ast,\text{light}}$ and $A_\text{FB}^{e,\mu}$

Effective BSM operators interaction. The analogue of using Fermi at energy far below $\frac{1}{2}$

Nice: We can describe all types of new physics in terms of effective four-quark operators: an december of two on a Net aller and operators: e can describe all types of he

$$
O_V^L = \bar{c}_L \gamma^\mu b_L \bar{\tau}_L \gamma_\mu \nu_{\tau L},
$$

\n
$$
O_S^R = \bar{c}_L b_R \bar{\tau}_R \nu_{\tau L},
$$

\n
$$
O_S^L = \bar{c}_R b_L \bar{\tau}_R \nu_{\tau L},
$$

\n
$$
O_T = \bar{c}_R \sigma^{\mu \nu} b_L \bar{\tau}_R \sigma_{\mu \nu} \nu_{\tau L}.
$$

Fit the corresponding coefficients $C_V^L, C_S^{R,L}, C_T$ to data.

C
Blanke,Crivellin,de Boer,UN,Nisandzic,Kitahara, *Phys.Rev.D* 100(2019) 3, 035035

Iguro, Kitahara,Watanabe, arXiv:2210:10751, arXiv:2405:06062

13 Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,... **b Auden Cluck 19 Feb 2019**

No BSM scenario has a measurable impact on $F_L^{D^\ast,\text{light}}$!

Fedele,Blanke,Crivellin,UN,Iguro,Simula,Vittorio, *Phys.Rev.D 108 (2023) 5, 5*

Deviation from SM prediction:

4.3σ

using also new Belle/LHCb average $F_L^{D^*,\tau} = 0.49 \pm 0.05$

Good fits (pulls $\geq 4.0\sigma$) for all tree-level BSM scenarios, including charged-Higgs exchange. Iguro, Kitahara, Watanabe, arXiv:2405.06062

15 Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Plavour anomalies, leptoquarks,... **1988 Martion** Vllrich Nierste averages by long-dashed, dashed and dotted contours, respectively. On the other hand, the several

BSM explanations of $b \rightarrow c\tau\bar{\nu}$ data

 Charged Higgs boson: was known to be sensitive to effects of a hypothetical charged Higgs boson since 1992.

Grzadkowski,Hou, Phys. Lett. B **283** (1992) 427

Leptoquarks:

- bosons with quark-lepton coupling
- appear in SU(4) gauge theories, where lepton number is the fourth colour

Status of new physics $\sin b \rightarrow s\ell^{+}\ell^{-}$

$b \rightarrow s\ell^+\ell^-$ and $b \rightarrow s\nu\bar{\nu}$: Developments since Quirks 2022 \blacksquare YH.

 B elle II has measured $B(B\to K\nu\bar\nu)$ 2.7σ above the SM prediction. arXiv:2311.14647

persists since 2013

$$
B(B \to K^{(*)}\ell^+\ell^-),
$$

\n
$$
B(B_s \to \phi\mu^+\mu^-)
$$
 lower
\nthan SM predictions for
\n
$$
1.1 \text{ GeV}^2 \le q^2 \le 8 \text{ GeV}^2.
$$

 ν_{ℓ} and ℓ form an SU(2) doublet $L = \left(\begin{array}{c} \ell \ \ell \end{array}\right)$. *νℓ ℓ*)

⇒ potential connection between the two anomalies.

from Patrick Koppenburg's web page <https://www.nikhef.nl/~pkoppenb/anomalies.html>

b → *s* $\ell^+ \ell^-$: Developments since Quirks 2022 + \blacksquare

 $\mathsf{Hints\ of}\ B(B\to K^{(*)}e^+e^-)\neq B(B\to K^{(*)}\mu^+\mu^-)$ were not confirmed after 2022 reanalysis of LHCb data.

⇒ New-physics contributions must affect **both** $b \rightarrow s\mu^{+}\mu^{-}$ and $b \rightarrow se^{+}e^{-}$.

Leptoquarks: To avoid excessive contributions to $\mu \to e$ conversion, need different copies of S_3^{ℓ} , with S_3^e coupling to electrons and S_3^{μ} coupling to muons.

LHCb data are compatible with lepton flavour universality (LFU)

Effective hamiltonian

$$
H \propto \sum_{\ell=e,\mu,\tau} C_9^{\ell} Q_9^{\ell} + C_{10}^{\ell} Q_{10}^{\ell}
$$

$$
Q_9^{\ell} = \frac{\alpha}{4\pi} \bar{s}_L \gamma_{\mu} b_L \ell \gamma^{\mu} \ell \text{ and } Q_{10}^{\ell} = \frac{\alpha}{4\pi} \bar{s}_L \gamma_{\mu} b_L \ell \gamma^{\mu} \gamma_5 \ell \qquad b
$$

Leptoquark explanation

SU(3) triplet leptoquark. Mass $\langle 35$ TeV for couplings $\langle \mathcal{O}(1) \rangle$.

Contributes to both $C_9^{\ell\ell}$ and $C_{10}^{\ell\ell}$. Effects in $C_{10}^{\mu\mu}$ will affect $B(B_s \to \mu^+ \mu^-)$ as well. O.k. with LHCb data, less so with CMS data.

To avoid unacceptably large $\mu \to e$ conversion postulate one leptoquark S_3^ℓ per flavour $\ell = e, \mu, \tau$. But observed approximate lepton flavour universality requires $M_{S^e_3} \sim M_{S^{\mu}_3}$ and also similar couplings of S_3^e and S_3^{μ} .

Renormalisation group analysis of leptoquark solutions

Mass gap

Flavour anomalies are usually explained by postulating a new particle with mass in the TeV range *ad-hoc*. The other particles of a reasonable UV completion are heavier.

Leptoquarks: Motivation in models with quark-lepton unification, such as SU(4) *c* models à la Pati-Salam. Heavy gluons (which are vector-like leptoquarks) must have masses above 1000 TeV to comply with bounds on $B(K_L \rightarrow \mu e)$.

Mass gap between the LQ masses as and the scale of the UV completion:

 study low-energy properties of LQ couplings without knowing details of the UV model with renormalisation group (RG) equations. ⇒

Prototype example: Probing SM gauge unification at GUT scale only involves SM RG equations. GUT masses only enter next-to-leading order corrections.

Consider lepton number conservation $y^a_{3\,ij}\propto\delta_{aj}\,$ to suppress LFV processes like $\mu \rightarrow e$ conversion.

Infrared fixed-point

RG beta functions are known for generic BSM theories. Machacek, Vaughn, 1983, 1984

At fixed points of the RG equations the beta functions are zero. Quasi-fixed point: The beta functions of the LQ couplings $y^a_{3\,ij}$ are zero, while the beta function of the SM couplings are not.

Infrared fixed point: $y^a_{3\,ij}$ at the low scale as probed in flavour or collider experiments is predicted.

Infrared fixed-point for S_3^{ℓ} **scenario**

3 Result for S_3^{ℓ} leptoquarks:

again dynamically fulfilled and masses of the order *MS^e*

Result for S_3^{ℓ} **leptoquarks:** Fedele, UN, Wüst, JHEP 11 (2023) 131, Bachelor thesis F.Wüst

Infrared fixed-point solutions: following requirements *i*) and *ii*) are:

and two more pairs found from permutations of (e,μ,τ) . Partial lepton-flavour universality (LFU) as an emerging feature! The third generation comes with opposite sign for $C_{9,10}^{\tau\tau}$. Prediction for $b\to s\tau^+\tau^-!$ **a** LFU needs three copies of S_3^{ℓ} , with just two S_3^{ℓ} find opposite signs. and two more pairs found from permutations of (e, μ, τ) . $\frac{1}{2}$ tions, when allowed all three copies of $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ solutions is characgeneration comes with opposite sign for $C_{9,10}^{v}$. Prediction for b - $C_{9,10}^{\ell\ell}$ Prediction for $b \to s\tau^+\tau^-$

Infrared fixed-point for (S_1^{ℓ}, S_3^{ℓ}) scenario

Figure 3. Scenario of Eq. (5.2): Left panel: running of the couplings (*y^e* 3 21 and *^y^µ* 3 32) from the to s- μ coupling! Bizarre: s-e coupling converges to b - μ coupling and b -e coupling converges

ermandies, In Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,...
28 31 and *Quirks in Quark Flavour Physics, Zadar, 21 June 2024,* Flavour anomalies, leptoquarks,... Flavour anomalies, leptoquarks,... Solution is expected to the Flavour anomalies, the products...

$Inf \textsf{rared fixed-point}\ (S_1^\ell,S_3^\ell)$ scenario

The infrared fixed point for the S_1^{τ} coupling is smaller that the coupling ϕ inferred from $b \to c\tau\bar\nu$ data (for S_1^τ masses allowed by collider searches). Landau pole: 4

 \Rightarrow upper bound on scale of quark-lepton unification:

$$
M_{\rm QLU} \lesssim 10^{11}\,\text{GeV}
$$

29 Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,… Ulrich Nierste Figure 4. Extra 4. Emergence of a Landau political political productive, $\frac{1}{2}$ in the coupling $\frac{1}{2}$

Prediction for $B \to K^{(*)} \nu \bar{\nu}$

For the fixed-point solution for the S_3^{ℓ} couplings and the S_1^{ℓ} coupling fixed from the $b\to c\tau\nu$ anomaly we find a 10% enhancement of $B(B\to K\nu\bar\nu)$ and $B(B \to K^* \nu \bar \nu)$ from the S_1^{ℓ} contribution, detectable by Belle II.

Leptoquarks at colliders

Radiative corrections…

…to collider processes with leptoquarks (LQ):

 QCD corrections to pair production at Tevatron and LHC: M. Krämer, T. Plehn, M. Spira, P.M. Zerwas, Phys. Rev. Lett. 79, 341 (1997), Phys.Rev.D 71 (2005) 057503; QCD and QED corrections to resonant production: A. Greljo, N. Selimovic, JHEP 03 (2021) 279. NNLO resummation of soft gluon radiation in pair production C. Borschensky, B. Fuks, A. Kulesza, D. Schwartländer, JHEP 02 (2022) 157.

But if we invoke $\mathscr{O}(1)$ quark-lepton-LQ couplings to explain B anomalies, radiative corrections with these might be sizeable as well.

Radiative corrections…

…linking low-energy to collider observables. Innes Bigaran, Rodolfo Capdevilla, UN

Focus: universal radiative corrections linking couplings y_{njk}^{XY} with $X, Y = L, R$, probed at low and high energy to each other.

Define two renormalisation schemes with couplings $y_{njk}^{XY,\text{low}}$ and $y_{njk}^{XY,\text{high}},$ defined such that radiative corrections vanish for z ero LQ momentum q or for on-shell LQ, $q^2 = M_{\text{LQ}}^2$.

Coupling renormalisation

Figure 3. Radiative corrections to *b* ! *c*⌧⌫. The fermion self-energy diagrams are not shown.

Couplings at low and high energy

 $\kappa_{1jk}^{LL} \equiv \frac{\sum_{i,j,k}^{L}}{n_{i,j}L}$ captures the process-independent part of the radiative corrections $y_{1 j k}^{LL, \mathrm{high}}$ *yLL*,low 1 *jk*

entering collider-physics observables of S_1 , if $y_{1jk}^{LL\, \rm low}$ is taken from flavour data.

If only one LQ species is present, there are no vertex corrections. For these need both S_1 and R_2 . Q_L *p^Q u^R p^Q* Q_L *p^Q u^R p^Q*

35 Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,... **The Cluit Cluit Correction Nierste** ¹ (middle) and *yRR*

Couplings at low and high energy

 \int_0^{∞} The κ^{XY}_{njk} factors are close to one, if all y^{XY}_{njk} are $\leq \mathcal{O}(1)$. In these cases one can use the y_{njk}^{XY} inferred from the flavour anomalies for collider searches.

Perturbation theory seems to work for $y_{njk}^{XY} = \mathcal{O}(5)$. Collider searches first exclude the parameter region with small LQ mass and large couplings, thus for this the $\,\kappa^{XY}_{njk}$ factors matter. If such a scenario shall explain flavour anomalies (with not-too-heavy LQ), the couplings must be hierarchical, e.g. $|y_{1\,23}^{LL,RR}| \gg |y_{1\,33}^{LL,RR}|$ or $|y_{1\,23}^{LL,RR}| \ll |y_{1\,33}^{LL,RR}|$. $\kappa^{XY}_{njk} < 1 \ \ \Rightarrow$ couplings in collider processes weaker than in flavour physics

Vertex corrections

The vertex correction in scenarios with both S_1 and R_2 involves different couplings than the tree-level coupling, e.g.

Summary

- Current flavour anomalies probe BSM physics with particle masses in the multi-TeV range.
	- \Rightarrow instrumental to justify and design future hadron colliders
- $b \rightarrow c\tau\bar{\nu}$
	- **Form factors better known thanks to new polarisation measurements** in $b\to c\ell\bar\nu$ polarisation data.
	- Charged-Higgs and various leptoquark scenarios have pulls of 4.0σ compared to SM.
	- Future: D^* and τ polarisation data

Summary

 $b \rightarrow s\ell^+\ell^-$

l Data show approximate LFU between e and μ . Popular S^3_3 leptoquark needs several copies with lepton number conservation Leptoquark models:

- embedding into theory of quark-lepton unification requires a mass gap, opportunity to use RG methods
	- $\int S_3^{\ell\ell}$ couplings have IR fixed point with equal contributions to two of the
	- three $\mathcal{C}^{\ell\ell}_{9,10}$ coefficients, while the third one has opposite sign.
	- ⇒ Two-generation LFU emerges dynamically.

Summary

- Radiative corrections with virtual leptoquarks involve small loop functions.
	- Does perturbation theory permit largish quark-lepton-LQ couplings? Will this permit us to explain $b\to c\tau\bar\nu$ anomalies with large LQ masses evading collider search bounds?
	- For $\mathcal{O}(1)$ couplings our radiative corrections are very small. Since collider exclusion bounds probe the large-coupling region most efficiently, the κ_{njk}^{XY} factors should be included when deriving bounds on the couplings y_{njk}^{XY} .

Backup slides

 $b \rightarrow s \ell^+ \ell^-$

Test this by fitting for q^2 -dependence of C_9^{BSM} :

A BSM explanation of $b \to s \ell^+ \ell^-$ data require contribution

Bordone,Isidori,Mächler,Tinari, arXiv:2401.18007

