

Collaborative Research Center TRR 257

Particle Physics Phenomenology after the Higgs Discovery

Institut für Theoretische Teilchenphysik (KIT)

Flavour anomalies, leptoquarks, renormalisation group fixed-points, and collider physics Ulrich Nierste, Karlsruhe Institute of Technology KIT Center Elementary Particle and Astroparticle Physics (KCETA) Institute for Theoretical Particle Physics (TTP)

www.kit.edu

Leptoquarks and semileptonic decays

Scalar leptoquarks are a popular explanation of flavour anomalies.

$$\begin{split} S_1 \text{ or } R_2 \text{ for} \\ R(D^{(*)}) &= \frac{B(B \to D^{(*)} \tau \nu)}{B(B \to D^{(*)} \ell \nu)}, \quad \ell = e, \mu, \end{split}$$

 S_3 for low- q^2 deficit in several $b \rightarrow s\ell^+\ell^-$, $\ell = e, \mu$, decay distributions.

2 Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,...

BSM mass reach

Flavour physics probes virtual effects of new heavy particles coupling to quarks, with a mass reach of

a few TeV in the case of S_1 or R_2 for $b \to c \tau \bar{\nu}$ and

a few tens of TeV in the case of S_3 for $b \to s\ell^+\ell^-$.

⇒ The firm establishment of a flavour anomaly helps for the design of a future hadron collider and could establish a "no-lose" situation for FCC-hh.

FCC-hh fansIavour physicsflavour physicistsFCC-ee: 10^{13} Z bosons are a perfect b factory!

Outline

- Status of new physics in $b \rightarrow c \tau \nu$
 - Status of new physics in $b \to s\ell^+\ell^-$
- Renormalisation group analysis of leptoquark solutions
- Leptoquarks at colliders
- Summary and outlook

Status of new physics in $b \rightarrow c \tau \nu$

Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,...

 $b \to c \tau \nu$

b-flavoured hadron $H_b = B_d, B^+, \Lambda_b$:

$$R(H_c) \equiv \frac{B(H_b \to H_c \tau \nu)}{B(H_b \to H_c \ell \nu)} \text{ with } \ell = e, \mu$$

Predictions involve form factors like $\langle D(\vec{p}_D) | \gamma^{\mu} | B(\vec{p}_B) \rangle$ or $\langle D^*(\vec{p}_D, \epsilon) | \gamma^{\mu} \gamma_5 | B(\vec{p}_B) \rangle$.

Lattice gauge theory calculates form factors for $\vec{p}_D = \vec{p}_B = 0$ and a few points with small $D^{(*)}$ velocity.

 $b \rightarrow c\tau\nu$: Developments since Quirks 2022

New LHCb $R(D^+)$ measurement: Significance of deviation from SM down:

 $3.3\sigma \rightarrow 3.1.\sigma$,

7

for the form factors used by HFLAV.

Different measurements (from four experiments) agree within normal statistical fluctuations.

Quirks in Quark Flavour Physics, Zadar, 21 June 2024,

Flavour anomalies, leptoquarks,...

$B \rightarrow D^*$ form factors

Compare

BGL (Boyd, Grinstein, Lebed 1995):

global fit by Gambino, Jung, Schacht in 2019 to all available calculations and data in $B \to D^* \ell \nu$ with light leptons $\ell = e, \mu$. Phys. Lett. B 795 (2019) 386

HQET (using expansions in $\Lambda_{\text{OCD}}/m_{c,b}$):

global fit by Iguro, Kitahara and Watanabe in 2022 to all available calculations and data (including q^2 shapes) in $B \to D^* \ell \nu$ with light leptons $\ell = e, \mu$. arXiv:2210.10751 Fermilab/MILC (2021):

first lattice calculation employing $q^2 \neq q_{\text{max}}^2$.

Eur. Phys. J. C 82 (2022) 1141, Eur.Phys.J.C 83, 21 (2023).

$B \rightarrow D^*$ form factors

DM (Dispersive Matrix approach, Rome lattice group): uses Fermilab/MILC data and Rome calculation of susceptibility χ , employs analyticity and unitarity constraints to derive two-sided bounds on form factors.

> G. Martinelli, S. Simula, and L. Vittorio, Phys. Rev. D 104 (2021) 094512, Eur. Phys. J. C 82 (2022) 1083, JHEP 08 (2022) 022. G. Martinelli, M. Naviglio, S. Simula, and L. Vittorio, Phys. Rev. D 106 (2022) 093002.

With DM method find $R(D^*)$ compatible with Standard Model prediction and furthermore $|V_{cb}|$ from $B \to D^* \ell \nu$ consistent with $|V_{cb}|$ from inclusive $B \to X_c \ell \nu$ decays.

$B \rightarrow D^*$ form factors vs new physics P = H

Next slides: confront all four form factor predictions with new data on the fraction $F_L^{D^*,\text{light}}$ of longitudinally polarized D^* in $B \to D^* \ell \nu$ and the forward-backward asymmetries A_{FB}^e and A_{FB}^{μ}

Belle, 2301.07529; Belle II, talk by Chaoyi Lyu at ALPS, March 2023

Discriminating $B \rightarrow D^* \ell \nu$ form factors via polarization observables and asymmetries

Fedele, Blanke, Crivellin, Iguro, UN, Simula, Vittorio, arXiv:2305.15457.

Predictions for $F_L^{D^*,\text{light}}$ and $A_{\text{FB}}^{e,\mu}$

12 Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,...

Effective BSM operators

Nice: We can describe all types of new physics in terms of effective four-quark operators:

$$O_{V}^{L} = \bar{c}_{L}\gamma^{\mu}b_{L}\bar{\tau}_{L}\gamma_{\mu}\nu_{\tau L},$$

$$O_{S}^{R} = \bar{c}_{L}b_{R}\bar{\tau}_{R}\nu_{\tau L},$$

$$O_{S}^{L} = \bar{c}_{R}b_{L}\bar{\tau}_{R}\nu_{\tau L},$$

$$O_{T} = \bar{c}_{R}\sigma^{\mu\nu}b_{L}\bar{\tau}_{R}\sigma_{\mu\nu}\nu_{\tau L}.$$

Fit the corresponding coefficients $C_V^L, C_S^{R,L}, C_T$ to data.

Blanke, Crivellin, de Boer, UN, Nisandzic, Kitahara, Phys. Rev. D 100(2019) 3, 035035

Iguro, Kitahara, Watanabe, arXiv:2210:10751, arXiv:2405:06062

13 Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,...

No BSM scenario has a measurable impact on $F_{L}^{D^*,\text{light}}$!

Fedele, Blanke, Crivellin, UN, Iguro, Simula, Vittorio, Phys. Rev. D 108 (2023) 5, 5

14 Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,...

Deviation from SM prediction:

4.3σ

using also new Belle/LHCb average $F_L^{D^*,\tau} = 0.49 \pm 0.05$

Good fits (pulls $\geq 4.0\sigma$) for all tree-level BSM scenarios, including charged-Higgs exchange. Iguro, Kitahara, Watanabe, arXiv:2405.06062

15 Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,...

BSM explanations of $b \to c \tau \bar{\nu}$ data

Charged Higgs boson: was known to be sensitive to effects of a hypothetical charged Higgs boson since 1992.

Grzadkowski, Hou, Phys. Lett. B 283 (1992) 427

Leptoquarks:

- bosons with quark-lepton coupling
- appear in SU(4) gauge theories, where lepton number is the fourth colour

16 Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,...

Status of new physics in $b \rightarrow s\ell^+\ell^-$

17 Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,...

$b \to s\ell^+\ell^-$ and $b \to s\nu\bar{\nu}$: Developments since Quirks 2022

Belle II has measured $B(B \rightarrow K \nu \bar{\nu}) 2.7\sigma$ above the SM prediction. arXiv:2311.14647

persists since 2013

$$B(B \to K^{(*)}\ell^+\ell^-), \qquad \checkmark$$

$$B(B_s \to \phi\mu^+\mu^-) \text{ lower}$$

than SM predictions for

$$1.1 \text{ GeV}^2 \le q^2 \le 8 \text{ GeV}^2.$$

 ν_{ℓ} and ℓ form an SU(2) doublet $L = \begin{pmatrix} \nu_{\ell} \\ \ell \end{pmatrix}$.

 \Rightarrow potential connection between the two anomalies.

from Patrick Koppenburg's web page https://www.nikhef.nl/~pkoppenb/anomalies.html

19 Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,...

 $b \rightarrow s\ell^+\ell^-$: Developments since Quirks 2022

Hints of $B(B \to K^{(*)}e^+e^-) \neq B(B \to K^{(*)}\mu^+\mu^-)$ were not confirmed after 2022 reanalysis of LHCb data.

⇒ New-physics contributions must affect **both** $b \rightarrow s\mu^+\mu^-$ and $b \rightarrow se^+e^-$.

Leptoquarks: To avoid excessive contributions to $\mu \rightarrow e$ conversion, need different copies of S_3^{ℓ} , with S_3^e coupling to electrons and S_3^{μ} coupling to muons.

LHCb data are compatible with lepton flavour universality (LFU)

20 Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,...

Effective hamiltonian

$$H \propto \sum_{\ell=e,\mu,\tau} C_{9}^{\ell} Q_{9}^{\ell} + C_{10}^{\ell} Q_{10}^{\ell}$$

with

Leptoquark explanation

SU(3) triplet leptoquark. Mass < 35 TeV for couplings < O(1).

Contributes to both $C_9^{\ell\ell}$ and $C_{10}^{\ell\ell}$. Effects in $C_{10}^{\mu\mu}$ will affect $B(B_s \rightarrow \mu^+\mu^-)$ as well. O.k. with LHCb data, less so with CMS data.

To avoid unacceptably large $\mu \to e$ conversion postulate one leptoquark S_3^{ℓ} per flavour $\ell = e, \mu, \tau$. But observed approximate lepton flavour universality requires $M_{S_3^e} \sim M_{S_3^{\mu}}$ and also similar couplings of S_3^e and S_3^{μ} .

Renormalisation group analysis of leptoquark solutions

23 Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,...

Mass gap

Flavour anomalies are usually explained by postulating a new particle with mass in the TeV range *ad-hoc*. The other particles of a reasonable UV completion are heavier.

Leptoquarks: Motivation in models with quark-lepton unification, such as $SU(4)_c$ models à la Pati-Salam. Heavy gluons (which are vector-like leptoquarks) must have masses above 1000 TeV to comply with bounds on $B(K_L \rightarrow \mu e)$.

Mass gap between the LQ masses as and the scale of the UV completion:

⇒ study low-energy properties of LQ couplings without knowing details of the UV model with renormalisation group (RG) equations.

Prototype example: Probing SM gauge unification at GUT scale only involves SM RG equations. GUT masses only enter next-to-leading order corrections.

Consider lepton number conservation $y_{3ij}^a \propto \delta_{aj}$ to suppress LFV processes like $\mu \rightarrow e$ conversion.

²⁵ Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,...

Infrared fixed-point

RG beta functions are known for generic BSM theories. Machacek, Vaughn, 1983, 1984

At fixed points of the RG equations the beta functions are zero. Quasi-fixed point: The beta functions of the LQ couplings $y_{3\,ij}^a$ are zero, while the beta function of the SM couplings are not.

Infrared fixed point: $y_{3\,ij}^a$ at the low scale as probed in flavour or collider experiments is predicted.

Infrared fixed-point for $S_3^{\mathscr{C}}$ scenario

Result for S_3^{ℓ} leptoquarks:

Fedele, UN, Wüst, JHEP 11 (2023) 131, Bachelor thesis F.Wüst

Infrared fixed-point solutions:

y^{e}_{321}	y^{e}_{331}	y^{μ}_{322}	y^{μ}_{332}	$y_{323}^{ au}$	$y_{333}^{ au}$
0.760	0.189	0.191	0.759	0.639	-0.452
0.189	0.760	0.759	0.191	0.639	-0.452

and two more pairs found from permutations of (e, μ, τ) . Partial lepton-flavour universality (LFU) as an emerging feature! The third generation comes with opposite sign for $C_{9,10}^{\ell\ell}$. Prediction for $b \to s\tau^+\tau^-$! LFU needs three copies of S_3^{ℓ} , with just two S_3^{ℓ} find opposite signs.

Infrared fixed-point for (S_1^ℓ, S_3^ℓ) scenario $\mathbf{P} \bigtriangledown \mathbf{H}$

Bizarre: *s*-*e* coupling converges to *b*- μ coupling and *b*-*e* coupling converges to s- μ coupling!

28 Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,...

Infrared fixed-point (S_1^{ℓ}, S_3^{ℓ}) scenario

The infrared fixed point for the S_1^{τ} coupling is smaller that the coupling inferred from $b \rightarrow c\tau\bar{\nu}$ data (for S_1^{τ} masses allowed by collider searches). Landau pole:

⇒ upper bound on scale of quark-lepton unification:

$$M_{\rm QLU} \lesssim 10^{11}\,{\rm GeV}$$

29 Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,...

Prediction for $B \to K^{(*)} \nu \bar{\nu}$

For the fixed-point solution for the S_3^{ℓ} couplings and the S_1^{ℓ} coupling fixed from the $b \to c\tau\nu$ anomaly we find a 10% enhancement of $B(B \to K\nu\bar{\nu})$ and $B(B \to K^*\nu\bar{\nu})$ from the S_1^{ℓ} contribution, detectable by Belle II.

Leptoquarks at colliders

Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,...

Radiative corrections...

...to collider processes with leptoquarks (LQ):

 QCD corrections to pair production at Tevatron and LHC: M. Krämer, T. Plehn, M. Spira, P.M. Zerwas, Phys. Rev. Lett. 79, 341 (1997), Phys.Rev.D 71 (2005) 057503;
 QCD and QED corrections to resonant production: A. Greljo, N. Selimovic, JHEP 03 (2021) 279.
 NNLO resummation of soft gluon radiation in pair production C. Borschensky, B. Fuks, A. Kulesza, D. Schwartländer, JHEP 02 (2022) 157.

But if we invoke $\mathcal{O}(1)$ quark-lepton-LQ couplings to explain B anomalies, radiative corrections with these might be sizeable as well.

Radiative corrections...

...linking low-energy to collider observables. Innes Bigaran, Rodolfo Capdevilla, UN

Focus: universal radiative corrections linking couplings y_{njk}^{XY} with X, Y = L, R, probed at low and high energy to each other.

Define two renormalisation schemes with couplings $y_{njk}^{XY,\text{low}}$ and $y_{njk}^{XY,\text{high}}$, defined such that radiative corrections vanish for zero LQ momentum q or for on-shell LQ, $q^2 = M_{\text{LQ}}^2$.

 $c_{L,R}$

 $\begin{array}{l} {}^{c_{L,R}} \mbox{For } y_{1\,23}^{LL,R\!\!\!\!R,low} \mbox{ this condition on the counterterm is imposed for } q=0. \ b \to c \tau \bar{\nu} \mbox{ data} \\ \mbox{ constrain } y_{1\,23}^{LL,R\!\!\!R,low} \times y_{1\,33}^{LL,R\!\!\!R,low} \mbox{ as a function of } M_{LS}, \\ \mbox{ by } y_{1\,23}^{LL,R\!\!\!R,high} \mbox{ is defined by imposing this for } q^2 = M_{S_1}^2. \end{array}$

34 Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,...

Couplings at low and high energy

 $\kappa_{1jk}^{LL} \equiv \frac{y_{1jk}^{LL,\text{high}}}{y_{1jk}^{LL,\text{low}}}$ captures the process-independent part of the radiative corrections

entering collider-physics observables of S_1 , if $y_{1jk}^{LL \text{low}}$ is taken from flavour data.

If only one LQ species is present, there are no vertex corrections. For these need both S_1 and R_2 :

 $S_{1} \xrightarrow{p}_{Q_{L}} (Q_{L}) \xrightarrow$

35 Quirks in Quark Flavour Physics, Zadar, 21 June 2024,

Flavour anomalies, leptoquarks,...

Couplings at low and high energy

The κ_{njk}^{XY} factors are close to one, if all y_{njk}^{XY} are $\leq \mathcal{O}(1)$. In these cases one can use the y_{njk}^{XY} inferred from the flavour anomalies for collider searches.

Perturbation theory seems to work for y^{XY}_{njk} = Ø(5). Collider searches first exclude the parameter region with small LQ mass and large couplings, thus for this the κ^{XY}_{njk} factors matter. If such a scenario shall explain flavour anomalies (with not-too-heavy LQ), the couplings must be hierarchical, e.g. |y^{LL,RR}₁₂₃ | ≫ |y^{LL,RR}₁₃₃ | or |y^{LL,RR}₁₂₃ | ≪ |y^{LL,RR}₁₃₃ |.
 κ^{XY}_{nik} < 1 ⇒ couplings in collider processes weaker than in flavour physics

Vertex corrections

The vertex correction in scenarios with both S_1 and R_2 involves different couplings than the tree-level coupling, e.g.

37 Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,...

Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,...

Summary

- Current flavour anomalies probe BSM physics with particle masses in the multi-TeV range.
 - \Rightarrow instrumental to justify and design future hadron colliders
- $\bullet b \to c\tau\bar{\nu}:$
 - Form factors better known thanks to new polarisation measurements in $b \rightarrow c \ell \bar{\nu}$ polarisation data.
 - Charged-Higgs and various leptoquark scenarios have pulls of 4.0σ compared to SM.
 - Future: D^* and au polarisation data

Summary

 $b \to s\ell^+\ell^-$:

Data show approximate LFU between *e* and *µ*. Popular S₃ leptoquark needs several copies with lepton number conservation
Leptoquark models:

- embedding into theory of quark-lepton unification requires a mass gap, opportunity to use RG methods
- $S_3^{\ell\ell}$ couplings have IR fixed point with equal contributions to two of the three $C_{9,10}^{\ell\ell}$ coefficients, while the third one has opposite sign.
 - \Rightarrow Two-generation LFU emerges dynamically.

Summary

- Radiative corrections with virtual leptoquarks involve small loop functions.
 - Does perturbation theory permit largish quark-lepton-LQ couplings? Will this permit us to explain $b \rightarrow c\tau\bar{\nu}$ anomalies with large LQ masses evading collider search bounds?
 - For O(1) couplings our radiative corrections are very small.
 Since collider exclusion bounds probe the large-coupling region most efficiently, the κ^{XY}_{njk} factors should be included when deriving bounds on the couplings y^{XY}_{njk}.

Backup slides

42 Quirks in Quark Flavour Physics, Zadar, 21 June 2024, Flavour anomalies, leptoquarks,...

 $b \rightarrow s\ell^+\ell^-$

Claim: enhancement of charm loop could fake BSM signal. Test this by fitting for q^2 -dependence of C_9^{BSM} :

Compatible with

Bordone, Isidori, Mächler, Tinari, arXiv:2401.18007

43 Quirks in Quark Flavour Physics, Zadar, 21 June 2024,

Flavour anomalies, leptoquarks,...

