$B_c \rightarrow \eta_c$ form factors at large recoil: interplay of soft-quark and soft-gluon double logarithms

Dennis Horstmann

based on work in progress with Guido Bell, Philipp Böer, Thorsten Feldmann and Vladyslav Shtabovenko [2309.08410, PoS]

Center for Particle Physics Siegen, Universität Siegen

Quirks in Quark Flavour Physics 2024, Zadar

June 19th 2024

B-physics

- \triangleright No significant(!) hint for new physics in direct searches yet
- \blacktriangleright High sensitivity to new physics contributions
- \triangleright Allows to test CP violation and the CKM matrix
- More precision necessary in view of future experimental developments
- \blacktriangleright Use lattice for suitable objects
	- \blacktriangleright Heavy-to-heavy transitions
	- \blacktriangleright Heavy-to-light form factors at small recoil
- ▶ Resort to QCD sum rules or factorization techniques for heavy-to-light form factors at large recoil

B-physics

- \triangleright Kinematics of heavy-to-light form factors at large recoil
	- Integrate out large momentum of heavy quark \rightarrow soft QCD dynamics
	- \triangleright At large recoil the light meson is very energetic \rightarrow collinear
- \triangleright Appropriate effective theory was worked out in the early 2000s
	- ▶ Soft-Collinear Effective Theory

[Bauer et al. '01, '02; Beneke et al. '02; Beneke, Feldmann, '03]

- \blacktriangleright Conceptual challenges
	- \blacktriangleright Endpoint divergences appears generically
	- \triangleright Spoil factorization, i.e. the separation of perturbative and non-perturbative effects

SCET at next-to-leading power

- ▶ Significant interest in SCET at next-to-leading power in recent years ▶ Threshold resummation **I Fig. 2018** [Beneke et al. 18-20] \blacktriangleright *H* \rightarrow *b* \bar{b} \rightarrow $\gamma\gamma$ and $gg \rightarrow b$ *[Neubert et al. 19-22]* ▶ Thrust distribution **I** Stewart et al. 19; Beneke et al. 22] **In Leptonic** *B* decays **a** [Feldmann, Gubernari, Huber, Seitz 22; Cornella, König, Neubert 22] **If Resolved contribution in** $B \to X_s \gamma$ **[T. Hurth, Szafron 22,** Tobias' talk yesterday!] ■ *eµ* backward scattering **bell**, Böer, Feldmann 22 In At next-to-leading power endpoint-divergent convolution integrals arise generically
- \triangleright For some processes this problem has been solved via refactorisation identities [Böer 2018; Neubert, Liu 2019]

Exclusive *B* decays do not belong to this class

Exclusive *B* decays at large recoil

$$
\langle \pi(p) | \bar{q} \gamma^{\mu} b | \bar{B}(p) \rangle = F_{+}(q^{2})(p_{B}^{\mu} + p^{\mu}) + F_{-}(q^{2})q^{\mu}
$$

$$
F_{i}(q^{2}) = C_{i}\xi_{B \to \pi}(q^{2}) + \phi_{B} \otimes T_{i}^{I}(q^{2}) \otimes \phi_{\pi}
$$

$$
\xi_{B \to \pi}(q^{2}) = \sum_{i} \int_{0}^{\infty} d\omega \int_{0}^{1} du \phi_{B}^{i}(\omega) T_{II}^{i}(u, \omega; q^{2}) \phi_{\pi}^{i}(u)
$$

- Complicated interplay of soft and collinear dynamics Factorisation theorem has been derived in the early days of SCET [Bauer, Pirjol, Stewart 02; Beneke, Feldmann 03; Neubert, Lange 03]
- \blacktriangleright Factorisation of soft overlap is plagued by endpoint divergences

Process considered:

 $B_c → η_c$ at large recoil $γ ≡ v ⋅ v' = O(m_b/m_c)$

- **I** Non-relativistic approximation with $m_b \gg m_c \gg \Lambda_{\text{QCD}}$
- **P** Perturbative toy example for $B \to \pi$ form factors
- \blacktriangleright Factorisation theorems for heavy-to-light form factors have factorisable and non-factorisable terms
- \triangleright Non-factorisable part is called soft-overlap contribution

$$
F(\gamma) = \frac{1}{2E_{\eta}} \langle \eta_c(p_{\eta}) | (\bar{c} \Gamma b)(0) | B_c(p_B) \rangle \quad \text{with} \quad \Gamma = \frac{\bar{n}\psi}{4}
$$
\n
$$
{}_{m_{\bar{v}}v} \frac{\frac{1}{2E_{\eta}}}{\frac{1}{2E_{\eta}}} \frac{1}{m_{\bar{v}}v} + \frac{1}{2E_{\eta}v} \frac{1}{m_{\bar{v}}v}
$$
\n
$$
= F^{(0)}(\gamma) \equiv 20 \xi_0, \qquad \xi_0 = \frac{\alpha_s C_F}{4\pi} \frac{\pi^2 f_{\eta} f_B m_B}{N_c E_{\eta}^2 m_{\eta}}
$$

Dennis Horstmann (Siegen U.) 5/15

Goal of this work:

Diagrammatic resummation of leading double logs of the soft-overlap contribution

Double logs arise from both soft quarks and soft gluons

 \blacktriangleright A soft gluon diagram at 1-loop:

 \blacktriangleright A soft quark diagram at 1-loop:

$$
\begin{array}{c|c}\n\hline\n & \frac{1}{8} \\
\hline\n & \frac{1}{4} \\
\hline\n & \frac{1
$$

► Total result © 1-loop $(γ ≡ v ⋅ v' = O(m_b/m_c), L ≡ \ln 2γ)$:

$$
F^{(1)}(\gamma) \simeq \underbrace{-\frac{C_F L^2}{2} \times F^{(0)}(\gamma)}_{\text{soft-gluon corrections}} + \underbrace{\xi_0 L^2 \left(18 C_F - 2 C_A\right)}_{\text{soft-quark corrections}}
$$

Dennis Horstmann (Siegen U.) 7/15

Soft quark logs in $B_c \to \eta_c$ form factor

In light-cone gauge $(\bar{n} \cdot A = 0)$ all Abelian soft-quark logs are given by ladder diagrams:

Soft-quark logs are governed by recursive integral equations

$$
f_m(l_+, l_-) = 1 + \frac{\alpha_s C_F}{2\pi} \int\limits_{l_-}^{p_{\eta-}} \frac{dk_-}{k_-} \int\limits_{m_c^2/k_-}^{l_+} \frac{dk_+}{k_+} f_m(k_+, k_-)
$$

■ Analogous to *eµ* backward scattering [Bell, Böer, Feldmann 22] Final form factor with mixing due to complicated Dirac structure

Soft quark logs in $B_c \to \eta_c$ form factor

 \triangleright All non-Abelian soft-quark logs are given by ladder diagrams with single insertions of a 3-gluon vertex:

Recursive integral equations with all soft-quark contributions

$$
F(\gamma) \Big|_{\text{soft quark}} = \xi_0 \left(24 f(l_+, l_-) - 4 + \frac{4C_A}{C_F} (1 - f_m(l_+, l_-)) \right)
$$

$$
f(l_+,l_-) = 1 + \frac{\alpha_s}{4\pi} \int_{l_-}^{p_{\eta-}} \frac{dk_-}{k_-} \int_{m_c^2/k_-}^{l_+} \frac{dk_+}{k_+} \left(2C_F f(k_+,k_-) + \left(C_F - \frac{C_A}{2} \right) f_m(k_+,k_-) + \frac{C_A}{2} \right)
$$

$$
f_m(l_+, l_-) = 1 + \frac{\alpha_s C_F}{2\pi} \int\limits_{l_-}^{p_{\eta_-}} \frac{\mathrm{d}k_-}{k_-} \int\limits_{m_c^2/k_-}^{l_+} \frac{\mathrm{d}k_+}{k_+} f_m(k_+, k_-)
$$

Dennis Horstmann (Siegen U.) 9/15

Interplay with soft gluons

Sudakov logs account for soft gluon effects

$$
F(\gamma) = \xi_0 \exp \left\{ -\frac{\alpha_s C_F}{4\pi} L^2 \right\} \times \left(24 f(l_+, l_-) - 4 + \frac{4C_A}{C_F} (1 - f_m(l_+, l_-)) \right)
$$

$$
f(l_+, l_-) = 1 + \frac{\alpha_s}{4\pi} \int_{l_-}^{p_{\eta}} \frac{dk_-}{k_-} \int_{k_+}^{l_+} \frac{dk_+}{k_+} \exp \left\{ -S \left(\frac{l_+}{k_+}, \frac{p_{\eta-}}{k_-} \right) \right\} \left(2C_F f(k_+, k_-) - \left(\frac{C_A}{2} - C_F \right) f_m(k_+, k_-) + \frac{C_A}{2} \right)
$$

$$
f_m(l_+, l_-) = 1 + \frac{\alpha_s C_F}{2\pi} \int_{l_-}^{l} \frac{dk_-}{k_{-m_c^2/k_-}} \int_{k_-}^{l} \frac{dk_+}{k_+} \exp\left\{-S\left(\frac{l_+}{k_+}, \frac{p_{\eta-}}{k_-}\right)\right\} f_m(k_+, k_-)
$$

$$
S(x,y)\equiv \frac{\alpha_s\,C_F}{2\pi}\ln x\ln y
$$

Dennis Horstmann (Siegen U.) 10/15

Order-by-order solution and asymptotics

 \blacktriangleright First few terms of an iterative solution are given by $(z \equiv \frac{\alpha_s C_F}{2\pi} \ln^2 2\gamma)$:

$$
F(z) = \xi_0 e^{-\frac{z}{2}} \left(20 + \frac{18C_F - 2C_A}{C_F} z + \frac{15C_F - 4C_A}{6C_F} z^2 - \frac{3C_F + 2C_A}{180C_F} z^3 + \frac{-51C_F + 22C_A}{10080C_F} z^4 + \frac{291C_F - 86C_A}{907200C_F} z^5 \right) + \dots
$$

 \triangleright We are able to determine the asymptotics in the limit

$$
m_B \to \infty \quad \Rightarrow \quad z \to \infty
$$

⇓

$$
F(z) \simeq \xi_0 \exp \left\{-\frac{z}{2}\right\} \left((z-1) \left(12 + \frac{16C_A}{C_F} - \frac{12C_{FA}}{C_F} (\ln z + \gamma_E) \right) - \frac{10C_A}{C_F} - 4 + \dots \right)
$$

Dennis Horstmann (Siegen U.) 11/15

Comparison to Sudakov

Standard Sudakov behavior is modified

$$
z = \frac{\alpha_s C_F}{2\pi} \ln^2 2\gamma
$$

Red band: physical values of z

Dennis Horstmann (Siegen U.) 12/15

Independent check at fixed order

- \triangleright Naive factorization theorem can be used to perform checks at fixed order in perturbation theory
- \blacktriangleright To check the double log at $\mathcal{O}(\alpha_s^2)$ the only missing coefficient is the leading $1/\epsilon^4$ pole in the hard-collinear region
- \triangleright We calculate this pole using two independent setups
- \triangleright Both use typical tool chain (qgraf, Form, Fire, pySecDec, ...)

 \blacktriangleright Confirms prediction from nested integral equations at $\mathcal{O}(\alpha_s^2)$ \blacktriangleright Check at $\mathcal{O}(\alpha_s^3)$ is work in progress

Comparison to special cases

 $B_c \rightarrow \eta_c$ form factor at large recoil

$$
F(\gamma) = \xi_0 \exp \left\{ -\frac{\alpha_s C_F}{4\pi} L^2 \right\} \times \left(24 f(l_+, l_-) - 4 + \frac{4C_A}{C_F} (1 - f_m(l_+, l_-)) \right)
$$

$$
f(l_+, l_-) = 1 + \frac{\alpha_s}{4\pi} \int_{l_-}^{p_{\eta}} \frac{dk_-}{k_-} \int_{k_+}^{l_+} \frac{dk_+}{k_+} \exp \left\{ -S \left(\frac{l_+}{k_+}, \frac{p_{\eta-}}{k_-} \right) \right\} \left(2C_F f(k_+, k_-) - \left(\frac{C_A}{2} - C_F \right) f_m(k_+, k_-) + \frac{C_A}{2} \right)
$$

$$
f_m(l_+, l_-) = 1 + \frac{\alpha_s C_F}{2\pi} \int_{l_-}^{p_{\eta}-1} \frac{dk_-}{k_{-\eta_c^2/k_-}} \int_{k_+}^{l_+} \frac{dk_+}{k_+} \exp\left\{-S\left(\frac{l_+}{k_+}, \frac{p_{\eta-}}{k_-}\right)\right\} f_m(k_+, k_-)
$$

$$
S(x, y) \equiv \frac{\alpha_s C_F}{2\pi} \ln x \ln y
$$

■ *µe* backward scattering **bell** [Bell, Böer, Feldmann 22]

$$
F(l_-, l_+) = 1 + \frac{\alpha_{\text{em}}}{2\pi} \int_{l_-}^{l_-} \frac{\mathrm{d}k_-}{k_-} \int_{m^2/k_-}^{l_+} \frac{\mathrm{d}k_+}{k_+} F(k_-, k_+)
$$

$$
\triangleright h \to b\overline{b} \to \gamma\gamma
$$
 [Neubert et al. 19-22]

$$
\mathcal{M}_{b}(h \to \gamma\gamma)\Big|_{DL} = \mathcal{M}_{0} \int_{m_{b}^{2}}^{M_{h}} \frac{dl_{+}}{l_{+}} \int_{m_{b}^{2}/l_{+}}^{M_{h}} \frac{dl_{-}}{l_{-}} \exp\left\{-s\left(\frac{M_{h}}{l_{+}}, \frac{M_{h}}{l_{-}}\right)\right\}
$$

Dennis Horstmann (Siegen U.) 14/15

Summary and outlook

- \blacktriangleright Resort to diagrammatic techniques
- \blacktriangleright Understood $B_c \to \eta_c$ form factor at large recoil in double log approximation
- \triangleright Complicated interplay of soft gluon and soft quark logs
- \triangleright Dirac structure leads to mixing
- \triangleright Standard Sudakov behavior is modified
- \triangleright We recover special cases of *h* → $\gamma\gamma$ and *e*µ backward scattering
- \blacktriangleright Cross check at $\mathcal{O}(\alpha_s^3)$
- \blacktriangleright Develop EFT language
- \blacktriangleright Improve phenomenology

Iterative solution to arbitrary orders

$$
f_m(z) = \sum_{n=0}^{\infty} c_n z^n, \qquad \hat{f}(z) = \sum_{n=0}^{\infty} d_n z^n, \qquad z = \frac{\alpha C_F}{2\pi} \ln^2(2\gamma),
$$

$$
c_n = \sum_{k=0}^{n-1} \frac{(-1)^{n-k-1} \Gamma(n+k+1)}{\Gamma(2n+1)} c_k,
$$

$$
d_n = \sum_{k=0}^{n-1} \frac{(-1)^{n-k-1} \Gamma(n+k+1)}{\Gamma(2n+1)} \left\{ d_k - \frac{C_{FA}}{2C_F} \left(\mathcal{H}_{n-k-1} + \frac{1}{n-k} \right) c_k \right\},
$$

with $n \geq 1$, $c_0 = 1$, $d_0 = 1 + C_A/(4C_F)$, \mathcal{H}_n is the *n*-th harmonic number and $f(z) = \hat{f}(z) - C_A/(4C_F)$

Dennis Horstmann (Siegen U.) 16/15

Convergence of the order-by-order solution

Convergence of *f* up to different powers of *z*:

Difference of the asymptotic result for f and it's expansion up to $\mathcal{O}(z^{100})$:

A soft gluon diagram at 1-loop:

pb⁺ *l*⁺ *p*η⁺ *p*η[−] ∼ *pb*[−] *l*[−]

Fermion denominators in the loop (soft gluon is on-shell):

$$
(p_b - k)^2 - m_b^2 = (p_{b+} - k_+)(p_{b-} - k_-) + k_\perp^2 - m_b^2
$$

\n
$$
\rightarrow -p_{b+}k-
$$

\n
$$
(p_\eta - l - k)^2 - m_c^2 = (p_{\eta+} - l_+ - k_+)(p_{b-} - l_- - k_-) + k_\perp^2 - m_c^2
$$

\n
$$
\simeq (-l_+ - k_+)(p_{b-} - k_-) + k_\perp^2 - m_c^2
$$

\n
$$
\rightarrow -p_{b-}k+
$$

Dennis Horstmann (Siegen U.) 18/15

Gluon denominators in the loop (soft quark is on-shell):

