Quark-Hadron Duality Violation and Higher Order $1/m_b$ corrections in inclusive $B \rightarrow X_c \ell \bar{\nu}$

Quirks in Quark Flavour Physics 2024 - Zadar, Croatia

Ilija S. Milutin¹

in collaboration with Thomas Mannel $^1,\,{\rm Rens}\,\,{\rm Verkade}^2$ and K. Keri ${\rm Vos}^2$

¹CPPS, Universität Siegen, Germany

²GWFP, Maastricht University and Nikhef, The Netherlands

- Inclusive $B o X_c \ell \bar{
 u}$ for extraction of V_{cb}
 - $\rightarrow\,$ See talk by Keri Vos
- Heavy Quark Expansion (HQE) \rightarrow power series in $\Lambda_{\rm QCD}/m_b$

Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar, Wise, Neubert, Mannel,...

- Split *b* quark momentum as $p_b = m_b v + k$
 - ightarrow Expand in $k \sim iD$

Bernlochner, Prim, Vos (Eur. Phys. J. Spec. Top. (2024))

Matrix elements

• Perform Operator Product Expansion (OPE)

Chay, Georgi, Bigi, Shifman, Uraltsev, Vainstain, Manohar, Wise, Neubert, Mannel,...

$$\mathsf{d} \Gamma = \mathsf{d} \Gamma^{(3)} + \frac{1}{m_b^2} \mathsf{d} \Gamma^{(5)} + \frac{1}{m_b^3} \mathsf{d} \Gamma^{(6)} + \frac{1}{m_b^4} \mathsf{d} \Gamma^{(7)} + \dots, \qquad \mathsf{d} \Gamma^{(n)} = \sum_i \mathcal{C}_i^{(n)} \langle \mathcal{B} | \mathcal{O}_i^{(n)} | \mathcal{B} \rangle$$

• d $\Gamma^{(3)}$: Partonic result (d $\Gamma^{(4)} = 0$ due to Heavy Quark Symmetries)

• dΓ⁽⁵⁾: 2 parameters

$$2m_{B}\mu_{\pi}^{2} = -\langle B|\bar{b}_{\nu}(iD)^{2}b_{\nu}|B\rangle$$

$$2m_{B}\mu_{G}^{2} = \langle B|\bar{b}_{\nu}(-i\sigma^{\mu\nu})(iD_{\mu})(iD_{\nu})b_{\nu}|B\rangle$$

• dΓ⁽⁶⁾: 2 parameters

$$2m_B\rho_D^3 = \langle B|\bar{b}_v[iD_\mu, [ivD, iD^\mu]]b_v|B\rangle/2$$

$$2m_B\rho_{LS}^3 = \langle B|\bar{b}_v\{iD_\mu, [ivD, iD_\nu]\}(-i\sigma^{\mu\nu})b_v|B\rangle/2$$

dΓ⁽⁷⁾: 9 parameters (at tree level) Mannel, Turczyk, Uraltsev [1009.4622]; Kobach, Pal [1704.00008]
 dΓ⁽⁸⁾: 18 parameters (at tree level) Mannel, Turczyk, Uraltsev [1009.4622]; Kobach, Pal [1704.00008]

I. S. Milutin (Universität Siegen)

Counting Operators with Reparametrization Invariance

- In HQE, choice of v_{μ} is not unique Dugan, Golden, Grinstein, Chen, Luke, Manohar, Hill, Solon, Heinonen,...
- Lorentz invariance of QCD \rightarrow Reparametrization Invariance (RPI) imposed by $v_{\mu} \rightarrow v_{\mu} + \delta v_{\mu}$
- RPI relates different orders in $1/m_b$ expansion Mannel, Vos [1802.09409]
 - $\rightarrow\,$ This allows us to find combinations of operators which are RPI
- Up to 1/m⁴_b: total of 8 independent parameters Mannel, Vos [1802.09409]
- At $1/m_b^5$, we find only 10 RPI operators

► RPI → RPI + non-RPI

• Want an RPI-observable \rightarrow only depend on reduced set of RPI operators

- $\bullet\,$ Want an RPI-observable $\rightarrow\,$ only depend on reduced set of RPI operators
- Dilepton invariant mass (q^2) moments are RPI and can be used to extract $|V_{cb}^{incl}|$
 - $(q^2$ -cut needed due to experimental setup)

Bernlochner, Welsch, Fael, Olschewsky, Persson, von Tonder, Vos [2205.10274]

$$\langle (q^2)^n
angle_{ ext{cut}} = rac{\int_{q^2 > q_{ ext{cut}}^2} \mathrm{d}q^2 \ (q^2)^n rac{\mathrm{d}\Gamma}{\mathrm{d}q^2}}{\int_{q^2 > q_{ ext{cut}}^2} \mathrm{d}q^2 \ rac{\mathrm{d}\Gamma}{\mathrm{d}q^2}}$$

- Want an RPI-observable \rightarrow only depend on reduced set of RPI operators
- Dilepton invariant mass (q^2) moments are RPI and can be used to extract $|V_{cb}^{\text{incl}}|$
 - $(q^2$ -cut needed due to experimental setup)

Bernlochner, Welsch, Fael, Olschewsky, Persson, von Tonder, Vos [2205.10274]

$$\langle (q^2)^n
angle_{ ext{cut}} = rac{\int_{q^2 > q_{ ext{cut}}^2} \mathrm{d}q^2 \ (q^2)^n rac{\mathrm{d}\Gamma}{\mathrm{d}q^2}}{\int_{q^2 > q_{ ext{cut}}^2} \mathrm{d}q^2 \ rac{\mathrm{d}\Gamma}{\mathrm{d}q^2}}$$

• Data ightarrow values for reduced set of RPI parameters up to $1/m_b^4
ightarrow Br(ar{B}
ightarrow X_c \ell ar{
u})
ightarrow$

 $|V_{cb}^{
m incl}| = (41.69 \pm 0.63) imes 10^{-3}$ Bernlochner, Vos, et al. [2205.10274]

- Want an RPI-observable \rightarrow only depend on reduced set of RPI operators
- Dilepton invariant mass (q^2) moments are RPI and can be used to extract $|V_{cb}^{incl}|$
 - $(q^2$ -cut needed due to experimental setup)

Bernlochner, Welsch, Fael, Olschewsky, Persson, von Tonder, Vos [2205.10274]

$$\langle (q^2)^n
angle_{ ext{cut}} = rac{\int_{q^2 > q_{ ext{cut}}^2} \mathrm{d}q^2 \ (q^2)^n rac{\mathrm{d}\Gamma}{\mathrm{d}q^2}}{\int_{q^2 > q_{ ext{cut}}^2} \mathrm{d}q^2 \ rac{\mathrm{d}\Gamma}{\mathrm{d}q^2}}$$

• Data \rightarrow values for reduced set of RPI parameters up to $1/m_b^4 \rightarrow Br(\bar{B} \rightarrow X_c \ell \bar{\nu}) \rightarrow$ $|V_{cb}^{\rm incl}| = (41.69 \pm 0.63) \times 10^{-3}$ Bernlochner, Vos, et al. [2205.10274]

- First determination of V_{cb} up to $\mathcal{O}(1/m_b^4)$ and first extraction of $1/m_b^4$ matrix elements from data
- Agreement at $1 2\sigma$ level with previous $O(1/m_b^3)$ determinations Finauri, Gambino [2310.20324]; Bordone, Capdevila, Gambino [2107.00604]; Alberti, Gambino, Healey, Nandi[1411.6560]; Gambino, Schwanda [1307.4551]

I. S. Milutin (Universität Siegen)

Where do we currently stand?

- Green: known perturbative corrections Jezabek, Kuhn (1989); Melnikov (2008); Pak, Czarnecki (2008); Becher, Boos, Lunghi (2007); Alberti, Gambino, Nandi (2014); Mannel, Pivovarov, Rosenthal (2015); Gambino, Healey, Turczyk (2016); Mannel, Pivovarov (2020); Fael, Schonwald, Steinhauser (2020, 2021); Fael, Herren (2024)
- Next step for higher precision:
- $\rightarrow~1/m_b^5$
- \rightarrow Quark-Hadron Duality Violation

Going higher in the $1/m_b$ expansion

• Dimension 8 contains: Bigi, Mannel, Turczyk, Uraltsev [0911.3322]

Going higher in the $1/m_b$ expansion

• Dimension 8 contains: Bigi, Mannel, Turczyk, Uraltsev [0911.3322]

- Numerically: $m_c^2 \sim m_b \Lambda_{\rm QCD}$
- Dimension 8 contains enhanced terms which contribute like $1/m_b^4$ terms

Going higher in the $1/m_b$ expansion

• Dimension 8 contains: Bigi, Mannel, Turczyk, Uraltsev [0911.3322]

- Numerically: $m_c^2 \sim m_b \Lambda_{
 m QCD}$
- Dimension 8 contains enhanced terms which contribute like $1/m_b^4$ terms
- We need $1/m_b^3 \times 1/m_c^2$ contributions to complete the calculation at $1/m_b^4$
 - We calculate the full dimension 8 contributions
 - We extract the Intrinsic Charm contribution
 - We find that only 1 combination of parameters describes the IC in the q²-moments Mannel, ISM, Vos [2311.12002]

Mannel, ISM, Vos [2311.12002]

QHDV and $\mathcal{O}(1/m_b^5)$ in $B \to X_c \ell \bar{\nu}$

June 18, 2024

q^2 -moments

Mannel, ISM, Vos [2311.12002]

q^2 -moments

Mannel, ISM, Vos [2311.12002]

q^2 -moments

Mannel, ISM, Vos [2311.12002]

• We identified the 10 RPI operators at $1/m_b^5$

- We identified the 10 RPI operators at $1/m_b^5$
- The $1/m_b^3 \times 1/m_c^2$ contributions are (partially) cancelled by the strict $1/m_b^5$ contributions

- We identified the 10 RPI operators at $1/m_b^5$
- The $1/m_b^3 \times 1/m_c^2$ contributions are (partially) cancelled by the strict $1/m_b^5$ contributions
- We find an unexpectedly small overall contribution of the dimension-8 operators

- We identified the 10 RPI operators at $1/m_b^5$
- The $1/m_b^3 \times 1/m_c^2$ contributions are (partially) cancelled by the strict $1/m_b^5$ contributions
- We find an unexpectedly small overall contribution of the dimension-8 operators
- q^2 , E_ℓ , M_X^2 moments to $1/m_b^5$ available in open-source library kolya

- We identified the 10 RPI operators at $1/m_b^5$
- The $1/m_b^3 \times 1/m_c^2$ contributions are (partially) cancelled by the strict $1/m_b^5$ contributions
- We find an unexpectedly small overall contribution of the dimension-8 operators
- q^2 , E_ℓ , M_X^2 moments to $1/m_b^5$ available in open-source library kolya
- We provide so-called trace formulae for determinations of observables to ${\cal O}(1/m_b^5)$ for $B \to X_c \ell \bar{\nu}$ Mannel, ISM, Vos [2311.12002]

- We identified the 10 RPI operators at $1/m_b^5$
- The $1/m_b^3 \times 1/m_c^2$ contributions are (partially) cancelled by the strict $1/m_b^5$ contributions
- We find an unexpectedly small overall contribution of the dimension-8 operators
- q^2 , E_ℓ , M_X^2 moments to $1/m_b^5$ available in open-source library kolya
- We provide so-called trace formulae for determinations of observables to ${\cal O}(1/m_b^5)$ for $B \to X_c \ell \bar{\nu}$ Mannel, ISM, Vos [2311.12002]
- Work in progress: Full $|V_{cb}|^{
 m incl}$ fit to $1/m_b^5$

• QHD in OPE: well behaved Taylor series and analytic in $\Lambda_{\rm QCD}/Q$ where $Q = m_b v - q$

• QHD in OPE: well behaved Taylor series and analytic in Λ_{QCD}/Q where $Q = m_b v - q$ \rightarrow data currently shows no indications of failure of HQE

• QHD in OPE: well behaved Taylor series and analytic in Λ_{QCD}/Q where $Q = m_b v - q$ \rightarrow data currently shows no indications of failure of HQE

ightarrow but factorially increasing number of HQE parameters hint for QHD Violation

Modelling QHDV

• Optical theorem:

dF
$$\propto L^{\mu
u}$$
 Im $\left[{\cal T}_{\mu
u}(vQ,Q^2)
ight]$

ightarrow leptonic tensor $L^{\mu
u}$

 $\rightarrow\,$ hadronic tensor as imaginary part of time-ordered product:

$${\cal T}_{\mu
u}(Q)=\int {
m d}^4x\,e^{-iQ\cdot x}\langle B(p)|\,T\{ar b_
u(x)\Gamma_\mu c(x)\,ar c(0)ar \Gamma_
u b_
u(0)\}|B(p)
angle$$

Modelling QHDV

• Optical theorem:

dF
$$\propto L^{\mu
u}$$
 Im $\left[{{\cal T}_{\mu
u}}(vQ,Q^2)
ight]$

ightarrow leptonic tensor $L^{\mu
u}$

 $\rightarrow\,$ hadronic tensor as imaginary part of time-ordered product:

$${\cal T}_{\mu
u}(Q)=\int {
m d}^4x\,e^{-iQ\cdot x}\langle B(p)|\,T\{ar b_
u(x)\Gamma_\mu c(x)\,ar c(0)\overline{\Gamma}_
u\,b_
u(0)\}|B(p)
angle$$

• Expand external field propagator for the charm quark:

$$-iS_{\text{BGF}} = \frac{1}{\not Q + i\not D - m_c}$$

= $\frac{1}{\not Q - m_c} - \frac{1}{\not Q - m_c}(i\not D)\frac{1}{\not Q - m_c} + ...$
= $\sum_{k=0}^{\infty} \left(\frac{1}{Q^2}\right)^{k+1} \not Q \left[-(i\not D)\not Q\right]^k \quad (m_c = 0)$

• Taking forward matrix element with *B* meson with velocity *v*:

$$T_{\mu\nu}(Q) = \sum_{k=0}^{\infty} \left(\frac{1}{Q^2}\right)^{k+1} \langle B(v) | \bar{b}_v \Gamma_\mu Q[-(i \not D) Q]^k \overline{\Gamma}_\nu b_v(0) | B(v) \rangle$$

• Taking forward matrix element with *B* meson with velocity *v*:

$$T_{\mu\nu}(Q) = \sum_{k=0}^{\infty} \left(\frac{1}{Q^2}\right)^{k+1} \langle B(v) | \bar{b}_v \Gamma_\mu Q[-(i \not D) Q]^k \overline{\Gamma}_\nu b_v(0) | B(v) \rangle$$

• Order by order (schematically, all Lorentz indices suppressed):

$$\begin{split} \langle B(v)|\bar{b}_{v}\Gamma \not{Q}\overline{\Gamma}b_{v}|B(v)\rangle &= a_{0}^{(i,0)}(vQ) ,\\ \langle B(v)|\bar{b}_{v}(-1)\Gamma \not{Q}(i\not{D}) \not{Q}\overline{\Gamma}b_{v}|B(v)\rangle &= \Lambda_{\mathrm{HQE}}\left(a_{0}^{(i,1)}(vQ)^{2} + a_{1}^{(i,1)}Q^{2}\right) ,\\ \langle B(v)|\bar{b}_{v}\Gamma \not{Q}(i\not{D}) \not{Q}(i\not{D}) \not{Q}\overline{\Gamma}b_{v}|B(v)\rangle &= \Lambda_{\mathrm{HQE}}^{2}\left(a_{0}^{(i,2)}(vQ)^{3} + a_{1}^{(i,2)}(vQ)Q^{2}\right) ,\\ &\cdots \end{split}$$

ightarrow the index i=1,...,5 denotes the five scalar components of $\mathcal{T}_{\mu
u}$

I. S. Milutin (Universität Siegen)

• Introduce dimensionless variables $r^2 = Q^2 / \Lambda_{\rm HQE}^2$ and $t = v Q / \Lambda_{\rm HQE}$:

$$T_{i}(t,r^{2}) = \frac{1}{\Lambda_{\mathrm{HQE}}} \sum_{l=0}^{\infty} \left(\frac{1}{r^{2}}\right)^{l+1} P_{l}^{(i)}(t) , \qquad P_{l}^{(i)}(t) = \sum_{k=0}^{l+1} t^{l+1-k} a_{k}^{(i,k+l)}$$

• Introduce dimensionless variables $r^2 = Q^2 / \Lambda_{
m HQE}^2$ and $t = v Q / \Lambda_{
m HQE}$:

$$T_{i}(t,r^{2}) = \frac{1}{\Lambda_{\mathrm{HQE}}} \sum_{l=0}^{\infty} \left(\frac{1}{r^{2}}\right)^{l+1} P_{l}^{(i)}(t) , \qquad P_{l}^{(i)}(t) = \sum_{k=0}^{l+1} t^{l+1-k} a_{k}^{(i,k+l)}$$

• We can study coefficients $a_k^{(i,k+l)}$ using known contributions to $1/m_b^5$

• Introduce dimensionless variables $r^2 = Q^2 / \Lambda_{\rm HQE}^2$ and $t = vQ / \Lambda_{\rm HQE}$:

$$T_{i}(t,r^{2}) = \frac{1}{\Lambda_{\mathrm{HQE}}} \sum_{l=0}^{\infty} \left(\frac{1}{r^{2}}\right)^{l+1} P_{l}^{(i)}(t) , \qquad P_{l}^{(i)}(t) = \sum_{k=0}^{l+1} t^{l+1-k} a_{k}^{(i,k+l)}$$

• We can study coefficients $a_k^{(i,k+l)}$ using known contributions to $1/m_b^5$ \rightarrow model factorial growth as $P_l(t) = (2l)!p_l(t)$

• Introduce dimensionless variables $r^2 = Q^2 / \Lambda_{
m HQE}^2$ and $t = v Q / \Lambda_{
m HQE}$:

$$T_{i}(t,r^{2}) = \frac{1}{\Lambda_{\mathrm{HQE}}} \sum_{l=0}^{\infty} \left(\frac{1}{r^{2}}\right)^{l+1} P_{l}^{(i)}(t) , \qquad P_{l}^{(i)}(t) = \sum_{k=0}^{l+1} t^{l+1-k} a_{k}^{(i,k+l)}$$

- We can study coefficients $a_k^{(i,k+l)}$ using known contributions to $1/m_b^5$
 - \rightarrow model factorial growth as $P_l(t) = (2l)! p_l(t)$
 - \rightarrow use known contributions to make ansatz for polynomials $p_l(t)$

$$p_l^{(1,4)}(t) = t^{l+1} + t^l + \dots + t$$

$$p_l^{(2,3)}(t) = t^l + t^{l-1} + \dots + t + 1$$

$$p_l^{(5)}(t) = t^{l+1} + t^l + \dots + t^2$$

Borel Transform

- Now perform Borel Transform of $T_{\mu\nu}(r^2,t)$ w.r.t. $\lambda=1/r$ and transform back
- Schematically:

$$F(\lambda) = \sum_{n} (2n)! \lambda^{2n}$$
$$B(M) = \sum_{n} M^{2n} = \frac{1}{1 - M^2} = \frac{1}{1 + M} \frac{1}{1 - M}$$
$$F(\lambda) = \int_{0}^{\infty} dM e^{-M} B(\lambda M)$$

Borel Transform

- Now perform Borel Transform of $T_{\mu\nu}(r^2,t)$ w.r.t. $\lambda=1/r$ and transform back
- Schematically:

$$F(\lambda) = \sum_{n} (2n)! \lambda^{2n}$$
$$B(M) = \sum_{n} M^{2n} = \frac{1}{1 - M^2} = \frac{1}{1 + M} \frac{1}{1 - M}$$
$$F(\lambda) = \int_0^\infty dM \, e^{-M} B(\lambda M)$$

 Singularity creates ambiguity → define duality violation as difference between the two integration prescriptions (taking into account possible factors of t):

$$\frac{1}{1-M+i\epsilon}-\frac{1}{1-M-i\epsilon}=2i\pi\delta(1-M)$$

Borel Transform

- Now perform Borel Transform of $T_{\mu\nu}(r^2,t)$ w.r.t. $\lambda = 1/r$ and transform back
- Schematically:

$$F(\lambda) = \sum_{n} (2n)! \lambda^{2n}$$
$$B(M) = \sum_{n} M^{2n} = \frac{1}{1 - M^2} = \frac{1}{1 + M} \frac{1}{1 - M}$$
$$F(\lambda) = \int_0^\infty dM \, e^{-M} B(\lambda M)$$

 Singularity creates ambiguity → define duality violation as difference between the two integration prescriptions (taking into account possible factors of t):

$$\frac{1}{1-M+i\epsilon}-\frac{1}{1-M-i\epsilon}=2i\pi\delta(1-M)$$

• Finally, analytically continue to the Minkowskian case by $\lambda \rightarrow i\kappa = i\Lambda_{HQE}/\sqrt{Q^2}$ I. S. Milutin (Universität Siegen) QHDV and $O(1/m_b^5)$ in $B \rightarrow X_c \ell \bar{\nu}$ June 18, 2024 • This will lead to: Mannel, ISM, Verkade, Vos [WIP]

$$\begin{aligned} &-\frac{1}{\pi}\hat{\Delta}_{DV}\mathrm{Im}\left[\mathcal{T}_{1,4}(vQ,Q^{2})\right] = \\ &\mathcal{C}_{\mathrm{DV}}\frac{N}{\Lambda_{\mathrm{HQE}}-vQ}\frac{vQ}{\sqrt{Q^{2}}}\left(\sin\left(\frac{\sqrt{Q^{2}}}{\Lambda_{\mathrm{HQE}}}\right) - \sqrt{\frac{vQ}{\Lambda_{\mathrm{HQE}}}}\sin\left(\frac{1}{\sqrt{\Lambda_{\mathrm{HQE}}}}\sqrt{\frac{Q^{2}}{vQ}}\right)\right)\end{aligned}$$

- ightarrow similar expressions for $T_{2,3,5}$
- $\rightarrow~$ N is a normalisation and $\mathcal{C}_{\rm DV}$ characterises "strength" of QHDV
- $\rightarrow~\Lambda_{\rm HQE}{=}0.5~GeV$ as default (based on HQE parameters)

Differential rates for QHDV

• Γ_0 : partonic rate, $\hat{q}^2 = q^2/m_b^2$, $y = 2E_\ell/m_b$

Conclusions and outlook

- We identified the 10 RPI operators at $1/m_b^5$
- The $1/m_b^3 \times 1/m_c^2$ contributions are (partially) cancelled by the strict $1/m_b^5$ contributions
- We find an unexpectedly small overall contribution of the dimension-8 operators
- q^2 , E_ℓ , M_X^2 moments to $1/m_b^5$ available in open-source library kolya
- We provide so-called trace formulae for determinations of observables to $\mathcal{O}(1/m_b^5)$ for $B \to X_c \ell \bar{\nu}$ Mannel, ISM, Vos [2311.12002]

Conclusions and outlook

- We identified the 10 RPI operators at $1/m_b^5$
- The $1/m_b^3 \times 1/m_c^2$ contributions are (partially) cancelled by the strict $1/m_b^5$ contributions
- We find an unexpectedly small overall contribution of the dimension-8 operators
- q^2 , E_ℓ , M_X^2 moments to $1/m_b^5$ available in open-source library kolya
- We provide so-called trace formulae for determinations of observables to $\mathcal{O}(1/m_b^5)$ for $B \to X_c \ell \bar{\nu}$ Mannel, ISM, Vos [2311.12002]
- We built a model for QHDV guided by known contributions to $1/m_b^5$ Mannel, ISM, Verkade, Vos [soon!]
 - We model the factorial growth of the number of HQE parameters
 - We make an educated ansatz for the vQ dependence of $T_{\mu\nu}$ based on known contributions
 - We define the QHDV using the ambiguity arising from the inverse Borel transform

Conclusions and outlook

- We identified the 10 RPI operators at $1/m_b^5$
- The $1/m_b^3 \times 1/m_c^2$ contributions are (partially) cancelled by the strict $1/m_b^5$ contributions
- We find an unexpectedly small overall contribution of the dimension-8 operators
- q^2 , E_ℓ , M_X^2 moments to $1/m_b^5$ available in open-source library kolya
- We provide so-called trace formulae for determinations of observables to $\mathcal{O}(1/m_b^5)$ for $B \to X_c \ell \bar{\nu}$ Mannel, ISM, Vos [2311.12002]
- We built a model for QHDV guided by known contributions to $1/m_b^5$ Mannel, ISM, Verkade, Vos [soon!]
 - We model the factorial growth of the number of HQE parameters
 - We make an educated ansatz for the vQ dependence of $T_{\mu\nu}$ based on known contributions
 - We define the QHDV using the ambiguity arising from the inverse Borel transform
- Work in progress:
 - Full $|V_{cb}|^{\text{incl}}$ fit to $1/m_b^5$
 - Effect of QHDV on kinematic moments
 - Constructing observables sensitive to $\mathsf{QHDV} \to \mathsf{test}$ our model on data

Back-up 1: Cancellation without LLSA

• Assume for all dimension 8 operators that $X_i^5 \sim \Lambda_{\rm QCD}^5$ and vary signs:

I. S. Milutin (Universität Siegen)

Back-up 2: Calculation of forward matrix element

• Step 1: expand charm propagator ($Q^{\mu} = m_b v^{\mu}$)

$$\begin{split} -iS_{\mathrm{BGF}} &= \frac{1}{\not Q + i\not D - m_c} \\ &= \frac{1}{\not Q - m_c} - \frac{1}{\not Q - m_c} (i\not D) \frac{1}{\not Q - m_c} \\ &+ \frac{1}{\not Q - m_c} (i\not D) \frac{1}{\not Q - m_c} (i\not D) \frac{1}{\not Q - m_c} + \dots \end{split}$$

Back-up 2: Calculation of forward matrix element

• Step 2: insert in forward matrix element

$$T = \left[\Gamma \frac{1}{\not{Q} - m_c} \Gamma^{\dagger} \right]_{\alpha\beta} \langle \bar{b}_{\alpha} b_{\beta} \rangle$$

- $\left[\Gamma \frac{1}{\not{Q} - m_c} \gamma^{\mu} \frac{1}{\not{Q} - m_c} \Gamma^{\dagger} \right]_{\alpha\beta} \langle \bar{b}_{\alpha} (iD_{\mu}) b_{\beta} \rangle$
+ $\left[\Gamma \frac{1}{\not{Q} - m_c} \gamma^{\mu} \frac{1}{\not{Q} - m_c} \gamma^{\nu} \frac{1}{\not{Q} - m_c} \Gamma^{\dagger} \right]_{\alpha\beta} \langle \bar{b}_{\alpha} (iD_{\mu}) (iD_{\nu}) b_{\beta} \rangle$
+ ...

Back-up 2: Calculation of forward matrix element

• Step 3: Determine Trace formula

- Start at dimension 8 \rightarrow lengthy, but systemically calculable
- Compute dim-7, including $1/m_b$ correction through e.o.m.

$$(ivD)b_v = -rac{1}{2m_b}(iD)(iD)b_v$$

• ...

• Compute dim-3, including corrections up to $1/m_b^5$

$$\langle ar{b}_lpha b_eta
angle = 2m_B \Big(rac{1+
et }{4} + rac{1}{8m_b^2} (\mu_G^2 - \mu_\pi^2) + \mathcal{O}(1/m_b^6) \Big)_{eta lpha}$$

- Need full (non-RPI) set of basic parameters up to $1/m_b^5$
- Step 4: Compute the trace with the geometric series

- At $1/m_b^5 \rightarrow$ too many HQE parameters to fit to data
- LLSA: Lowest-Lying-State Approximation to estimate through known parameters μ_{π}^2 , μ_G^2 , ρ_D^3 and ρ_{LS}^3 Mannel, Turczyk, Uraltsev [1009.4622]

$$\langle B|ar{b} \ AC\Gamma \ b(0)|B
angle = rac{1}{2m_B}\sum_n \langle B|ar{b} \ A \ b(0)|n
angle \cdot \langle n|ar{b} \ C\Gamma \ b(0)|B
angle$$

•
$$A = i D_{\mu_1} ... i D_{\mu_k}$$
, $C = i D_{\mu_{k+1}} ... i D_{\mu_n}$

$$-\frac{1}{\pi}\hat{\Delta}_{DV}\operatorname{Im}\left[\mathcal{T}_{2,3}(vQ,Q^{2})\right] = \mathcal{C}_{DV}\frac{N}{\Lambda_{HQE}-vQ}\frac{\Lambda_{HQE}}{\sqrt{Q^{2}}}\left(\sin\left(\frac{\sqrt{Q^{2}}}{\Lambda_{HQE}}\right) - \sqrt{\frac{vQ}{\Lambda_{HQE}}}\sin\left(\frac{1}{\sqrt{\Lambda_{HQE}}}\sqrt{\frac{Q^{2}}{vQ}}\right)\right)$$

$$\begin{split} -\frac{1}{\pi} \hat{\Delta}_{DV} \mathrm{Im} \left[\mathcal{T}_{5}(vQ,Q^{2}) \right] = \\ \mathcal{C}_{\mathrm{DV}} \frac{N}{\Lambda_{\mathrm{HQE}} - vQ} \frac{(vQ)^{2}}{\Lambda_{\mathrm{HQE}}\sqrt{Q^{2}}} \left(\sin \left(\frac{\sqrt{Q^{2}}}{\Lambda_{\mathrm{HQE}}} \right) - \sqrt{\frac{\Lambda_{\mathrm{HQE}}}{vQ}} \sin \left(\frac{1}{\sqrt{\Lambda_{\mathrm{HQE}}}} \sqrt{\frac{Q^{2}}{vQ}} \right) \right) \end{split}$$

Back-up 5: QHDV in q^2 moments

• Preliminary

Back-up 5: QHDV in q^2 moments

• Preliminary

Back-up 6: Dependence on $\Lambda_{\rm HQE}$

• Preliminary

