Theoretical status and prospects in inclusive semileptonic beauty and charm decays

K. Keri Vos

Maastricht University & Nikhef

= Quirks 2024 =

Motivation:

• Theoretically relatively easy to describe: factorization of strong interaction effects

Quark level process

Motivation:

• Theoretically relatively easy to describe: factorization of strong interaction effects

Motivation:

• Theoretically relatively easy to describe: factorization of strong interaction effects

Two options:

- Exclusive decays: pick one final state with the desired quarks ($V_{cb} \to D^{(*)}$ and $V_{ub} \to \pi)$
- Inclusive decays: everything you can think of! (denoted with X_c or X_u)

Motivation:

• Theoretically relatively easy to describe: factorization of strong interaction effects

Challenge:

- Dealing with QCD at large distances/small scales
- Parametrize fundamental mismatch in non-perturbative objects
 - Calculable: Lattice or Light-cone sumrules = Exclusive Decays
 - Measurable: from data = Inclusive Decays

- Set up OPE and heavy quark expansion
- Well established framework
- Extract important CKM parameters $|V_{cb}|, |V_{ub}|$ (and $|V_{cs}?$)
- Extract power corrections from data
- Cross check of exclusive decays

Inclusive $B \rightarrow X_c$ decays

Inclusive Decays

Inclusive $B \rightarrow X_c \ell \nu$: Heavy Quark Expansion (HQE)

- b quark mass is large compared to Λ_{QCD}
- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Optical Theorem ightarrow (local) Operator Product Expansion (OPE)

$$d\Gamma = d\Gamma_0 + \frac{d\Gamma_1}{m_b} + \frac{d\Gamma_2}{m_b^2} + \dots \qquad d\Gamma_i = \sum_k C_i^{(k)} \left\langle B | O_i^{(k)} | B \right\rangle$$

- $C_i^{(k)}$ perturbative Wilson coefficients
- $\langle B | \dots | B
 angle$ non-perturbative matrix elements ightarrow string of *iD*
- operators contain chains of covariant derivatives

<u>HQE elements:</u> $\langle B | \mathcal{O}_i^{(n)} | B \rangle = \langle B | \bar{b}_v(iD_\mu) \dots (iD_{\mu_n}) b_v | B \rangle$

• Extracted from data

Inclusive Decays

Inclusive $B \rightarrow X_c \ell \nu$: Heavy Quark Expansion (HQE)

- b quark mass is large compared to Λ_{QCD}
- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Optical Theorem ightarrow (local) Operator Product Expansion (OPE)

$$d\Gamma = d\Gamma_0 + \frac{d\Gamma_1}{m_b} + \frac{d\Gamma_2}{m_b^2} + \dots \qquad d\Gamma_i = \sum_k C_i^{(k)} \left\langle B | O_i^{(k)} | B \right\rangle$$

- $C_i^{(k)}$ perturbative Wilson coefficients
- $\langle B | \dots | B
 angle$ non-perturbative matrix elements ightarrow string of *iD*
- operators contain chains of covariant derivatives

<u>HQE elements:</u> $\langle B | \mathcal{O}_i^{(n)} | B \rangle = \langle B | \bar{b}_v(iD_\mu) \dots (iD_{\mu_n}) b_v | B \rangle$

- Extracted from data
- Ideas for the lattice Juetner et al. [202305.14092]

Inclusive Decays

Inclusive $B \rightarrow X_c \ell \nu$: Heavy Quark Expansion (HQE)

- b quark mass is large compared to Λ_{QCD}
- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Optical Theorem ightarrow (local) Operator Product Expansion (OPE)

$$d\Gamma = d\Gamma_0 + \frac{d\Gamma_1}{m_b} + \frac{d\Gamma_2}{m_b^2} + \dots \qquad d\Gamma_i = \sum_k C_i^{(k)} \left\langle B | O_i^{(k)} | B \right\rangle$$

- $C_i^{(k)}$ perturbative Wilson coefficients
- $\langle B | \dots | B
 angle$ non-perturbative matrix elements ightarrow string of *iD*
- operators contain chains of covariant derivatives

<u>HQE elements:</u> $\langle B | \mathcal{O}_i^{(n)} | B \rangle = \langle B | \bar{b}_v(iD_\mu) \dots (iD_{\mu_n}) b_v | B \rangle$

- Extracted from data
- $\Gamma_2: \mu_\pi^2$ and μ_G^2 at $1/m_b^2$
- $\Gamma_3: \rho_D^3$ and ρ_{LS}^3 at $1/m_b^3$
- Many more at $1/m_b^{4,5}$ Mannel, Turczyk, Uraltsev, JHEP 1010 (2011) 109

Moments of the spectrum

BABAR, PRD 68 (2004) 111104; BABAR, PRD 81 (2010) 032003; Belle, PRD 75 (2007) 032005. Pic from M. Fael

Non-perturbative matrix elements obtained from moments of differential rate

$$M_X^2 = (p_B - q)^2, E_\ell = v_B \cdot p_\ell$$
 and $q^2 = (p_
u + p_\ell)^2$
hadronic mass, lepton energy and q^2 moments

Moments of the spectrum

BABAR, PRD 68 (2004) 111104; BABAR, PRD 81 (2010) 032003; Belle, PRD 75 (2007) 032005. Pic from M. Fael

Non-perturbative matrix elements obtained from moments of differential rate

$$M_X^2 = (p_B - q)^2, E_\ell = v_B \cdot p_\ell$$
 and $q^2 = (p_
u + p_\ell)^2$
hadronic mass, lepton energy and q^2 moments

• $\mu_{\pi}^2, \mu_G^2, \rho_D^3 + \cdots$ extracted from data \rightarrow total rate $\rightarrow |V_{cb}|$

Quirks in $|V_{cb}|$

$$\Gamma \propto |V_{cb}|^2 m_b^5 \left[\Gamma_0 + \Gamma_0^{(1)} \frac{\alpha_s}{\pi} + \Gamma_0^{(2)} \left(\frac{\alpha_s}{\pi}\right)^2 + \Gamma_0^{(3)} \left(\frac{\alpha_s}{\pi}\right)^3 + \frac{\mu_\pi^2}{m_b^2} \left(\Gamma^{(\pi,0)} + \frac{\alpha_s}{\pi} \Gamma^{(\pi,1)}\right) + \frac{\mu_G^2}{m_b^2} \left(\Gamma^{(G,0)} + \frac{\alpha_s}{\pi} \Gamma^{(G,1)}\right) + \frac{\rho_D^3}{m_b^3} (\Gamma^{(D,0)} + \Gamma_0^{(1)} \left(\frac{\alpha_s}{\pi}\right)) + \mathcal{O}\left(\frac{1}{m_b^4}\right) + \cdots \right)$$

Vices and Virtues:

- Systematic framework for power-corrections
- Higher precision: Include higher-order $1/m_b$ and α_s corrections in rate and moments!
- Proliferation of non-perturbative matrix elements
 - 4 up to $1/m_b^3$
 - 13 up to $1/m_b^4$ Dassinger, Mannel, Turczyk, JHEP 0703 (2007) 087
 - 31 up to $1/m_b^5$ Mannel, Turczyk, Uraltsev, JHEP 1011 (2010) 109

The advantage of q^2 moments

Mannel, KKV, JHEP 1806 (2018) 115; Fael, Mannel, KKV, JHEP 02 (2019) 177, Mannel, Milutin, KKV [2311.1200]

- Standard lepton energy and hadronic mass moments are not RPI quantities
- Only RPI moments are q^2 moments
- Determinations from Belle and Belle II availabe Phys. Rev. D 104, 112011 (2022), Phys. Rev. D 107, 072002 (2023)

The advantage of q^2 moments

Mannel, KKV, JHEP 1806 (2018) 115; Fael, Mannel, KKV, JHEP 02 (2019) 177, Mannel, Milutin, KKV [2311.1200]

- Standard lepton energy and hadronic mass moments are not RPI quantities
- Only RPI moments are q^2 moments
- Determinations from Belle and Belle II availabe Phys. Rev. D 104, 112011 (2022), Phys. Rev. D 107, 072002 (2023)

Quirks:

- Setting up the HQE: momentum of b quark: $p_b = m_b v + k$, expand in $k \sim iD$
- Choice of v not unique: Reparametrization invariance (RPI)
- links different orders in $1/m_b
 ightarrow$ reduction of parameters
- up to $1/m_b^4$: 8 parameters (previous 13) [Talk by Ilija]

Centralized moments as function of q_{cut}^2

Keri Vos (Maastricht)

#beautifulpuzzles!

 $|V_{cb}|_{\rm incl}^{q^2} = (41.69 \pm 0.27|_{\mathcal{B}} \pm 0.31|_{\Gamma} \pm 0.18|_{\rm exp.} \pm 0.17|_{\rm theo} \pm 0.34|_{\rm const.}) \times 10^{-3}$

- First extraction using q^2 moments with $1/m_b^4$ terms
- NNLO corrections to moments not included
- Higher order coefficients important to check convergence of the HQE

$$r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1} \text{GeV}^4$$
 $r_G^4 = (-0.21 \pm 0.69) \text{GeV}^4$

 $|V_{cb}|_{\rm incl}^{q^2} = (41.69 \pm 0.27|_{\mathcal{B}} \pm 0.31|_{\Gamma} \pm 0.18|_{\rm exp.} \pm 0.17|_{\rm theo} \pm 0.34|_{\rm const.}) \times 10^{-3}$

- First extraction using q^2 moments with $1/m_b^4$ terms
- NNLO corrections to moments not included
- Higher order coefficients important to check convergence of the HQE

$$r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1} \text{GeV}^4$$
 $r_G^4 = (-0.21 \pm 0.69) \text{GeV}^4$

- Inputs for $B o X_u \ell
 u$, B lifetimes and $B o X_s \ell \ell$ KKV, Huber, Lenz, Rusov, et al.
- Agreement with BCG extraction (differs due to branching ratio inputs) Bordone,Capdevila, Gambino [2021]

 $|V_{cb}|_{\rm incl}^{q^2} = (41.69 \pm 0.27|_{\mathcal{B}} \pm 0.31|_{\Gamma} \pm 0.18|_{\rm exp.} \pm 0.17|_{\rm theo} \pm 0.34|_{\rm const.}) \times 10^{-3}$

- First extraction using q^2 moments with $1/m_b^4$ terms
- NNLO corrections to moments not included
- Higher order coefficients important to check convergence of the HQE

$$r_E^4 = (0.02 \pm 0.34) \cdot 10^{-1} \text{GeV}^4$$
 $r_G^4 = (-0.21 \pm 0.69) \text{GeV}^4$

• Inputs for $B o X_u \ell
u$, B lifetimes and $B o X_s \ell \ell$ KKV, Huber, Lenz, Rusov, et al.

Keri Vos (Maastricht)

#beautifulpuzzles!

Gambino, Finauri [2310.20324]

- Includes terms up to $1/m_b^3$
- **NEW!** Calculation of BLM α_s^2 corrections to q^2 moments

NEW! Includes QED corrections to the lepton moments Bigi, Bordone, Gambino, Haisch, Piccione, JHEP 11 (2023) 163

Combined E_{ℓ}, M_X, q^2 moments:

 $|\mathit{V_{cb}}|_{\rm incl, all}^{\rm GF} = (41.95 \pm 0.27|_{\rm exp} \pm 0.31|_{\rm th} \pm 0.25|_{\Gamma}) \times 10^{-3} = (41.95 \pm 0.48) \times 10^{-3}$

Gambino, Finauri [2310.20324]

- Includes terms up to $1/m_b^3$
- **NEW!** Calculation of BLM α_s^2 corrections to q^2 moments
- NEW! Includes QED corrections to the lepton moments Bigi, Bordone, Gambino, Haisch, Piccione, JHEP 11 (2023) 163

Combined E_{ℓ}, M_X, q^2 moments:

 $|\textit{V}_{\textit{cb}}|_{\rm incl, all}^{\rm GF} = (41.95 \pm 0.27|_{\rm exp} \pm 0.31|_{\rm th} \pm 0.25|_{\Gamma}) \times 10^{-3} = (41.95 \pm 0.48) \times 10^{-3}$

• Agrees with previous determinations, reduced uncertainty

Gambino, Finauri [2310.20324]

- Includes terms up to $1/m_b^3$
- **NEW!** Calculation of BLM α_s^2 corrections to q^2 moments
- NEW! Includes QED corrections to the lepton moments Bigi, Bordone, Gambino, Haisch, Piccione, JHEP 11 (2023) 163

Combined E_{ℓ}, M_X, q^2 moments:

 $|\textit{V}_{\textit{cb}}|_{\rm incl, all}^{\rm GF} = (41.95 \pm 0.27|_{\rm exp} \pm 0.31|_{\rm th} \pm 0.25|_{\Gamma}) \times 10^{-3} = (41.95 \pm 0.48) \times 10^{-3}$

- Agrees with previous determinations, reduced uncertainty
- Agrees with determination from three points at fixed cut

First combined Fit

- Complementary between different measurements
- Extracted $ho_D^3 = 0.176 \pm 0.019 \text{ GeV}^3$
- Important input for lifetimes and $B o X_u, B o X_s$

NEW: NNLO corrections to q^2 moments

Herren, Fael [2403.03976]

 $\overline{m_c}(2 \text{ GeV})$ not ideal choice

 $\overline{m_c}$ (3 GeV) better

NEW: NNLO corrections to q^2 moments

Herren, Fael [2403.03976]

NNLO effects mainly re-absorbed in the fit into a shift of ρ_D^3 , r_E^4 and r_G^4 . No major shift in $|V_{cb}|$.

NEW: NNLO corrections to q^2 moments

Herren, Fael [2403.03976]

NNLO effects mainly re-absorbed in the fit into a shift of ρ_D^3 , r_E^4 and r_G^4 . No major shift in $|V_{cb}|$.

Full combined analysis and updated q^2 fits in progress!

Keri Vos (Maastricht)

#beautifulpuzzles!

NEW: Inclusive decays: The Kolya package

Kolya package, Fael, Mulatin, KKV [in progress]

Open source Python package: https://gitlab.com/vcb-inclusive/kolya

- Observables:
 - Centralized $\langle E_\ell \rangle$ moments
 - Centralized $\langle q^2 \rangle$ moments
 - Centralized $\langle M_X^2 \rangle$ moments
 - Total rate + branching ratio with kinematic cut
- Includes all known $lpha_s$ corrections Herren, Steinhauser, Fael, Schonwald
- Includes power corrections up to $1/m_b^5$ Mannel, Milutin, KKV [2311.1200]

NEW: Inclusive decays: The Kolya package

Kolya package, Fael, Mulatin, KKV [in progress]

Open source Python package: https://gitlab.com/vcb-inclusive/kolya

- Observables:
 - Centralized $\langle E_\ell \rangle$ moments
 - Centralized $\langle q^2 \rangle$ moments
 - Centralized $\langle M_X^2 \rangle$ moments
 - Total rate + branching ratio with kinematic cut
- Includes all known $lpha_s$ corrections Herren, Steinhauser, Fael, Schonwald
- Includes power corrections up to $1/m_b^5$ Mannel, Milutin, KKV [2311.1200]

Quirks:

• Includes New Physics effects Fael, Rahimi, KKV [JHEP 02 (2023) 086]

New Physics?

Fael, Rahimi, KKV [2208.04282]

- NP would also influence the moments of the spectrum [Never tested!]
- Requires a simultaneous fit of hadronic parameters and NP

Summary of $|V_{cb}|$ inclusive

Fael, Prim, KKV, Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01090-w

• Need new branching ratio measurements!

First study of the possiblities using sum-over-exclusive technique

- B_s spectrum well-separated
- Only M_X^2 moments available
- Study SU(3) breaking of HQE

First study of the possiblities using sum-over-exclusive technique

- B_s spectrum well-separated
- Only M_X^2 moments available
- Study SU(3) breaking of HQE

- Improve knowledge D_s^{**} states
- Understand non-resonant contribution
- V_{cs} extraction requires Branching ratio from Belle II!

Heavy quark expansion for charm?

Why HQE for charm?

- Expansion parameters $\alpha_s(m_c)$ and $\Lambda_{\rm QCD}/m_c$ less than unity, but not so small \ldots
- Turn vice into virtue: more sensitive to higher $1/m_Q$ corrections
- Exploit the full physics potential of BES III, LHCb ...
- Constrain Weak Annihilation (WA) contributions

 $ightarrow B_d
ightarrow s\ell\ell$ [Huber, Hurth, Lunghi, Jenkins, KKV, Qin] $ightarrow V_{ub}$

Why HQE for charm?

- Expansion parameters $\alpha_s(m_c)$ and $\Lambda_{\rm QCD}/m_c$ less than unity, but not so small ...
- Turn vice into virtue: more sensitive to higher $1/m_Q$ corrections
- Exploit the full physics potential of BES III, LHCb ...
- Constrain Weak Annihilation (WA) contributions

 $ightarrow B_d
ightarrow s\ell\ell$ [Huber, Hurth, Lunghi, Jenkins, KKV, Qin] $ightarrow V_{ub}$

• Extraction of $|V_{cs}|$ and $|V_{cd}|$?

Why HQE for charm?

- Expansion parameters $\alpha_s(m_c)$ and $\Lambda_{\rm QCD}/m_c$ less than unity, but not so small ...
- Turn vice into virtue: more sensitive to higher $1/m_Q$ corrections
- Exploit the full physics potential of BES III, LHCb ... •
- Constrain Weak Annihilation (WA) contributions

 $\rightarrow B_d \rightarrow s\ell\ell$ [Huber, Hurth, Lunghi, Jenkins, KKV, Qin]

• Extraction of $|V_{cs}|$ and $|V_{cd}|$?

Quirks:

- Valence and non-valence WA operators at higher orders
- Scale for radiative corrections
- Charm mass definition

 $\rightarrow V_{ub}$
$D \to X_q \ell \nu$ is not a copy of $B \to X_c \ell \nu!$

OPE for $b
ightarrow c \ell ar{
u}$: $m_Q \sim m_q \gg \Lambda_{
m QCD}$

- q is treated as a heavy degree of freedom
- two-quarks operators: $\bar{Q}_{\nu}(iD^{lpha}\cdots iD^{eta})Q_{
 u}$
- IR sensitivity to mass m_q

$$\Gamma\Big|_{1/m_Q^3} = \left[\frac{34}{3} + 8\log\rho + \dots\right] \frac{\rho_D^3}{m_Q^3}, \quad \text{with } \rho = (m_q/m_Q)^2$$

OPE for $c
ightarrow s \ell ar{
u}$: $m_Q \gg m_q \sim \Lambda_{
m QCD}$

- q dynamical degree of freedom
- four-quark operators remain in OPE (weak annihilation)
- no explicit $log(m_q/m_Q)$: hidden inside new non-perturbative HQE parameters

OPE for $c
ightarrow s \ell ar
u$: $m_Q \gg m_q \sim \Lambda_{
m QCD}$

- q dynamical degree of freedom
- four-quark operators remain in OPE (weak annihilation)
- no explicit $log(m_q/m_Q)$: hidden inside new non-perturbative HQE parameters

- Additional HQE parameters for c o q: $T_i \equiv rac{1}{2m_D} \langle D | O_i^{4\mathrm{q}} | D
 angle$
- Up to $1/m_c^4$ only two extra HQE params: au_m and au_ϵ .
- RPI quantities depend on reduced set

OPE for $c
ightarrow s \ell ar
u$: $m_Q \gg m_q \sim \Lambda_{
m QCD}$

- q dynamical degree of freedom
- four-quark operators remain in OPE (weak annihilation)
- no explicit $log(m_q/m_Q)$: hidden inside new non-perturbative HQE parameters

- Additional HQE parameters for c o q: $T_i \equiv rac{1}{2m_D} \langle D | O_i^{4\mathrm{q}} | D
 angle$
- Up to $1/m_c^4$ only two extra HQE params: au_m and au_ϵ .
- RPI quantities depend on reduced set

Let's test the HQE for charm on data!

What mass to use?

Bigi, Shifman, Uraltsev, Vainshtein, hep-ph/9704245, hep-ph/9405410; Czarnecki, Melnikov, Uraltsev, hep-ph/9708372.

- Renormalon issues require short-distance mass
- Kinetic mass: relating hadron versus quark mass QCD corrections using hard cut off μ

$$m_Q(\mu)^{\rm kin} = m_Q^{\rm Pole} - \left[\overline{\Lambda}\right]_{\rm pert} + \left[\frac{\mu_\pi^2}{2m_Q}\right]_{\rm pert} + \dots$$
$$[\overline{\Lambda}]_{\rm pert} = \frac{4}{3} C_F \frac{\alpha_s(m_c)}{\pi} \mu \qquad [\mu_\pi^2]_{\rm pert} = C_F \frac{\alpha_s(m_c)}{\pi} \mu^2$$

- Higher-order terms in the HQE generate corrections $(lpha_s/\pi)\mu^n/m_Q^n$.

What mass to use?

Bigi, Shifman, Uraltsev, Vainshtein, hep-ph/9704245, hep-ph/9405410; Czarnecki, Melnikov, Uraltsev, hep-ph/9708372.

- Renormalon issues require short-distance mass
- Kinetic mass: relating hadron versus quark mass QCD corrections using hard cut off μ

$$m_Q(\mu)^{\rm kin} = m_Q^{\rm Pole} - \left[\overline{\Lambda}\right]_{\rm pert} + \left[\frac{\mu_\pi^2}{2m_Q}\right]_{\rm pert} + \dots$$
$$[\overline{\Lambda}]_{\rm pert} = \frac{4}{3} C_F \frac{\alpha_s(m_c)}{\pi} \mu \qquad [\mu_\pi^2]_{\rm pert} = C_F \frac{\alpha_s(m_c)}{\pi} \mu^2$$

- Higher-order terms in the HQE generate corrections $(lpha_s/\pi)\mu^n/m_Q^n$.
- $\Lambda_{QCD} < \mu < m_Q$: expansion parameters μ/m_Q
 - Well established for m_B : $\mu/m_B\simeq 0.2$
 - Charm??

$$ightarrow \mu = 1 \text{ GeV}
ightarrow \mu/m_c \simeq 1$$

ightarrow \mu = 0.5 GeV
ightarrow \mu/m_c \simeq 0.4

Challenge: $\mu = 0.5$ GeV touches upon the non-perturbative regime?

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344 Boushmelev, Mannel, KKV [2301.05607]

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

• Replace *m_c* by moments of the spectral density!

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344 Boushmelev, Mannel, KKV [2301.05607]

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

- Replace *m_c* by moments of the spectral density!
- First study shows small improvement in pert. series

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344 Boushmelev, Mannel, KKV [2301.05607]

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

- Replace *m_c* by moments of the spectral density!
- In progress: Similar approach for the charm + power corrections

Extracting weak annihilation from data

CLEO data, Gambino, Kamenik [1004.0114]

- Lepton energy moments extracted from spectrum
- Kinetic mass for charm at $\mu = 0.5$ GeV threshold, HQE parameters as input
- Max 2% weak annihilation (WA) contribution to $B o X_u \ell
 u$

Extracting weak annihilation from data

CLEO data, Gambino, Kamenik [1004.0114]

- Lepton energy moments extracted from spectrum
- Kinetic mass for charm at $\mu = 0.5~{
 m GeV}$ threshold, HQE parameters as input
- Max 2% weak annihilation (WA) contribution to $B o X_u \ell
 u$
- In progress: Feasibility study to measure q^2 moments at BESIII Bernlochner, Gilman, Malde, Prim, KKV, Wilkinson

It's Quirks all the way down...

It's Quirks all the way down...

• Many (charming) quirks to still get to the bottom of

It's Quirks all the way down...

- Many (charming) quirks to still get to the bottom of
- Need to revise previous assumptions and ensure reliable systematic uncertainties

It's Quirks all the way down...

- Many (charming) quirks to still get to the bottom of
- Need to revise previous assumptions and ensure reliable systematic uncertainties
- Stay tuned for update to reduce the Quirks in inclusive decays

It's Quirks all the way down...

- Many (charming) quirks to still get to the bottom of
- Need to revise previous assumptions and ensure reliable systematic uncertainties
- Stay tuned for update to reduce the Quirks in inclusive decays

Close collaboration between theory and experiment necessary!

Backup

State-of-the-art in inclusive $b \rightarrow c$

Jezabek, Kuhn, NPB 314 (1989) 1; Melnikov, PLB 666 (2008) 336; Pak, Czarnecki, PRD 78 (2008) 114015; Becher, Boos, Lunghi, JHEP 0712 (2007) 062; Alberti, Gambino, Nandi, JHEP 1401 (2014) 147; Mannel, Pivovarov, Rosenthal, PLB 741 (2015) 290; Fael, Schonwald, Steinhauser, Phys Rev. D 104 (2021) 016003; Fael, Schonwald, Steinhauser, Phys Rev. Lett. 125 (2020) 052003; Fael, Schonwald, Steinhauser, Phys Rev. D 103 (2021) 014005,

$$\begin{split} \Gamma &\propto |V_{cb}|^2 m_b^5 \left[\Gamma_0 + \Gamma_0^{(1)} \frac{\alpha_s}{\pi} + \Gamma_0^{(2)} \left(\frac{\alpha_s}{\pi} \right)^2 + \Gamma_0^{(3)} \left(\frac{\alpha_s}{\pi} \right)^3 + \frac{\mu_{\pi}^2}{m_b^2} \left(\Gamma^{(\pi,0)} + \frac{\alpha_s}{\pi} \Gamma^{(\pi,1)} \right) \right. \\ &+ \frac{\mu_G^2}{m_b^2} \left(\Gamma^{(G,0)} + \frac{\alpha_s}{\pi} \Gamma^{(G,1)} \right) + \frac{\rho_D^3}{m_b^3} (\Gamma^{(D,0)} + \Gamma_0^{(1)} \left(\frac{\alpha_s}{\pi} \right)) + \mathcal{O} \left(\frac{1}{m_b^4} \right) + \cdots \right) \end{split}$$

- Include terms up to $1/m_b^{4st}$ see also Gambino, Healey, Turczyk [2016]
- α_s^3 to total rate and kinetic mass Fael, Schonwald, Steinhauser [2020, 2021]
- $\alpha_s
 ho_D^3$ for total rate Mannel, Pivovarov [2020]
- Kinetic mass scheme 1411.6560,1107.3100; hep-ph/0401063

 $\begin{array}{ccc} E_{\ell}, M_X \text{ moments:} & q^2 \text{ moments}^*: \\ |V_{cb}|_{\mathrm{incl}}^{\mathrm{BCG}} = (42.16 \pm 0.51) \times 10^{-3} & |V_{cb}|_{\mathrm{incl}}^{q^2} = (41.69 \pm 0.63) \times 10^{-3} \end{array}$

Gambino, Schwanda, PRD 89 (2014) 014022; Alberti, Gambino et al, PRL 114 (2015) 061802; Bordone, Capdevila, Gambino, Phys.Lett.B 822 (2021) 136679; Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

Keri Vos (Maastricht)

Inclusive $B \rightarrow X_u$ semileptonic decays

Inclusive V_{ub}

Inclusive $B \to X_u \ell \nu$

- Experimental cuts necessary to remove charm background
- Local OPE as in b
 ightarrow c cannot work
- Switch to different set-up using light-cone OPE
- Introduce non-perturbative shape functions (\sim parton DAs in DIS)
- Different frameworks: BLNP, GGOU, DGE, ADFR

Recent update:

Belle [2102.00020]

$$|V_{ub}|_{
m incl} = (4.10 \pm 0.28) \cdot 10^{-3}$$

Inclusive determinations need to be scrutinized

Update of BLNP approach

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b\Lambda_{\rm QCD}})$
- $\rightarrow~S:$ Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$

Update of BLNP approach

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b\Lambda_{\rm QCD}})$
- $\rightarrow~S:$ Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$
- In progress: include known α_s^2 corrections

Update of BLNP approach

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b\Lambda_{\rm QCD}})$
- $\rightarrow~S:$ Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$
- In progress: include known α_s^2 corrections

Update of BLNP approach

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b\Lambda_{\rm QCD}})$
- $\rightarrow~S:$ Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$
- In progress: include known α_s^2 corrections
- Moments of shape functions can be linked to HQE parameters in b
 ightarrow c
 - In progress: include higher-moments
 - kinetic mass scheme as in b
 ightarrow c

Update of BLNP approach

- Systematic framework: Soft Collinear Effective Theory (SCET)
- Separates the different scales in the problem

- \rightarrow H: Hard scattering kernel at $\mathcal{O}(m_b)$
- \rightarrow J: universal Jet function at $\mathcal{O}(\sqrt{m_b\Lambda_{\rm QCD}})$
- $\rightarrow~S:$ Shape function at $\mathcal{O}(\Lambda_{\rm QCD})$
- In progress: include known α_s^2 corrections
- Moments of shape functions can be linked to HQE parameters in b
 ightarrow c
 - In progress: include higher-moments
 - kinetic mass scheme as in b
 ightarrow c
- Shape function is non-perturbative and cannot be computed
 - In progress: new flexible parametrization

Shape function parametrization

Preliminary! Olschewsky, Lange, Mannel, KKV [2306.xxxx]

- α_s^2 corrections give large corrections [see also Pezcjak 2019]
- Required to make precision predictions

Contamination of the $B \rightarrow X_c \ell \nu$ signal

Rahimi, Mannel, KKV [arXiv: 2105.02163]

Avoid background subtraction by calculating the full inclusive width:

 $\mathrm{d}\Gamma(B \to X\ell) = \mathrm{d}\Gamma(B \to X_c \ell \bar{\nu}) + \mathrm{d}\Gamma(B \to X_u \ell \bar{\nu}) + \mathrm{d}\Gamma(B \to X_c (\tau \to \ell \bar{\nu} \nu) \bar{\nu})$

- $\underline{b} \rightarrow u \ell \nu$ contribution: suppressed by V_{ub}/V_{cb}
- $b \rightarrow c(\tau \rightarrow \mu \nu \bar{\nu}) \bar{\nu}$ contribution: phase space suppressed
- QED effects
- Quark-hadron duality violation?

Goal:

provide theoretical description and compare with Monte-Carlo data used by Belle (II)

Challenge:

estimate how much this description would improve V_{cb} determination

$b ightarrow u \ell u$ contribution: Local OPE

Neubert (1994); Bosch, Paz, Lange, Neubert (2004,2005)

- Can be analyzed in local OPE as $B o X_c \ell
 u$ by taking $m_c o 0$ limit
- For V_{ub} determination
 - large charm background requires experimental cuts
 - reduces the inclusivity and local OPE no longer converges
 - spectrum described by non-local OPE
 - convolution of pert. coefficients with shape function

Goal:

provide theoretical description and compare with Monte-Carlo data used by Belle (II)

- NLO + $1/m_b^2 + 1/m_b^3$
- In agreement with partonic calc of DFN De Fazio, Neubert (1999); Gambino, Ossola, Uraltsev (2005)
- First study: no α_s for $1/m_b^2$, no additional uncert. due to missing higher orders
- Inputs HQE parameters from $B \to X_c \ell \nu$ study Gambino, Schwanda [2014]; Gambino, Healey, Turczy [2016]

Rahimi, Mannel, KKV [arXiv: 2105.02163]; De Fazio, Neubert 1999; Bosch, Lange, Neubert, Paz 2005

Compare local OPE with generator level Monte-Carlo data provided by Cao, Bernlochner

Monte Carlo:

- BLNP: specific shape function input parameters shape function parameters b = 3.95 and $\Lambda = 0.72$
- DFN: α_s corrections convoluted with the exponential shape function model
 - Inputs from $B o X_c \ell \nu$ and $B o X_s \gamma$ data using KN-scheme Kagan, Neubert 1998
 - $(\lambda_1^+, \lambda_2^+, \lambda_1^-, \lambda_2^-)$ are obtained by varying $\bar{\Lambda}$ and μ_{π}^2 within 1σ Buchmuller, Flacher, 2006

Hadronic contributions: "hybrid Monte Carlo" Belle Collabroation [arXiv:2102.00020.]

- convolution with hadronization simulation based on Pythia
- plus explicit resonances: $\bar{B} \to \pi \ell \bar{\nu}$ and $\bar{B} \to \rho \ell \bar{\nu}$

Monte Carlo versus HQE

Rahimi, Mannel, KKV [arXiv: 2105.02163]; MC data by Lu Cao and Florian Bernlochner

MC-results are in good agreement with the HQE results

Monte Carlo versus HQE

Rahimi, Mannel, KKV[arXiv: 2105.02163]; MC data by Lu Cao and Florian Bernlochner

Wide spread between MC for higher moments

Monte Carlo versus HQE

Rahimi, Mannel, KKV[arXiv: 2105.02163]; MC data by Lu Cao and Florian Bernlochner

Rahimi, Mannel, KKV[arXiv: 2105.02163];

Remarks:

- DFN: Smearing corresponding to a shape function, mimicking some non-perturbative effects; may not capture all
- BLNP: should reproduce the HQE, with parameters adjusted to local HQE prediction
 - should include higher moments of the shape-function model?
 - include subleading shape functions?
- our HQE: interesting to include α_s to HQE parameters, α_s^2 ?

Spectral-Density Mass

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = rac{\sigma(e^+e^-
ightarrow ext{hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

Spectral-Density Mass

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = rac{\sigma(e^+e^-
ightarrow ext{hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

• Start from vacuum correlator

$$\int d^4x \, e^{-iqx} \langle 0 | T[j_{\mu}(x)j_{\nu}(0)] | 0 \rangle = (g_{\mu\nu}q^2 - q_{\mu}q_{\nu}) \Pi(q^2)$$

Spectral-Density Mass

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = rac{\sigma(e^+e^-
ightarrow ext{hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

• Expand around $q^2 = 0$: $(\bar{C}_n = \bar{C}_n^{(0)} + \frac{\alpha_s(\mu)}{\pi} \bar{C}_n^{(1)} + ...)$

$$\Pi(q^2) = \Pi(0) + \frac{4}{9} \frac{3}{16\pi^2} \sum_{n=1}^{\infty} \bar{C}_n \left(\frac{q^2}{4m_c^2}\right)$$
Spectral-Density Mass

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = rac{\sigma(e^+e^-
ightarrow ext{hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

• Expand around $q^2 = 0$: $(\bar{C}_n = \bar{C}_n^{(0)} + \frac{\alpha_s(\mu)}{\pi} \bar{C}_n^{(1)} + \ldots)$

$$\Pi(q^2) = \Pi(0) + \frac{4}{9} \frac{3}{16\pi^2} \sum_{n=1}^{\infty} \bar{C}_n\left(\frac{q^2}{4m_c^2}\right) = \Pi(0) + \frac{q^2}{12\pi^2} \int \frac{ds}{s} \frac{R(s)}{s-q^2}$$

Spectral-Density Mass

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = rac{\sigma(e^+e^-
ightarrow ext{hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

• Expand around $q^2 = 0$: $(\bar{C}_n = \bar{C}_n^{(0)} + \frac{\alpha_s(\mu)}{\pi} \bar{C}_n^{(1)} + ...)$

$$\Pi(q^2) = \Pi(0) + \frac{4}{9} \frac{3}{16\pi^2} \sum_{n=1}^{\infty} \bar{C}_n \left(\frac{q^2}{4m_c^2}\right) = \Pi(0) + \frac{q^2}{12\pi^2} \int \frac{ds}{s} \frac{R(s)}{s-q^2}$$

• \bar{C}_n known up to α_s^2 and related to moments

$$\bar{C}_n = (4m_c^2)^n M_n \quad \text{with} \quad M_n = \int \frac{ds}{s^{n+1}} R(s) \tag{1}$$

Spectral-Density Mass

Chetyrkin, Kuehn, Steinhauser hep-ph/9705254, Penin, Pivovarov hep-ph/9805344

- m_c not observable ightarrow no physical meaning
- Extracted from data: moments of the spectral density in $e^+e^-
 ightarrow$ hadrons

$$R(s) = rac{\sigma(e^+e^-
ightarrow ext{hadrons})}{\sigma(e^+e^-
ightarrow \mu^+\mu^-)}$$

• Expand around $q^2 = 0$: $(\bar{C}_n = \bar{C}_n^{(0)} + \frac{\alpha_s(\mu)}{\pi} \bar{C}_n^{(1)} + ...)$

$$\Pi(q^2) = \Pi(0) + \frac{4}{9} \frac{3}{16\pi^2} \sum_{n=1}^{\infty} \bar{C}_n \left(\frac{q^2}{4m_c^2}\right) = \Pi(0) + \frac{q^2}{12\pi^2} \int \frac{ds}{s} \frac{R(s)}{s-q^2}$$

• \bar{C}_n known up to α_s^2 and related to moments

$$ar{\mathcal{L}}_n = (4m_c^2)^n M_n \quad \text{with} \quad M_n = \int \frac{ds}{s^{n+1}} R(s)$$
 (1)

• Replace m_c : $m_c = \frac{1}{2} \left(\frac{\bar{C}_n}{M_c} \right)^{1/(2n)}$

Shape functions

Bigi, Shifman, Uraltsev, Luke, Neubert, Mannel, · · ·

• Leading order shape functions

$$2m_B f(\omega) = \langle B(v) | \bar{b}_v \delta(\omega + i(n \cdot D)) b_v | B(v) \rangle$$

• Charged Lepton Energy Spectrum (at leading order)

$$rac{d\Gamma}{dy}\sim\int d\omega heta(m_b(1-y)-\omega)f(\omega)$$

• Moments of the shapefunction are related to HQE (b
ightarrow c) parameters:

$$f(\omega) = \delta(\omega) + \frac{\mu_{\pi}^2}{6m_b^2}\delta''(\omega) - \frac{\rho_D^3}{m_b^3}\delta'''(\omega) + \cdots$$

• Shape function is non-perturbative and cannot be computed

What about theory correlations?

Bernlochner, Welsch, Fael, Olschewsky, Persson, van Tonder, KKV [2205.10274]

- Flexible correlations between moments $\rho_{\rm mom}$ and different cuts $\rho_{\rm cut}$
- Included by adding a penalty term to the χ^2
- Scan over large range of values
- V_{cb} constant w.r.t. theory correlations

Interplay between electrons and muons

KKV, Rahimi [2207.03432]

$$R_{e/\mu}(X) \equiv \frac{\Gamma(B \to X_c e \bar{\nu}_e)}{\Gamma(B \to X_c \mu \bar{\nu}_\mu)}$$

- Belle II result: $R(X_{e/\mu}) = 1.033 \pm 0.022$ with cut, see H. Junkerkalefeld [ICHEP]
- In agreement with new SM predictions: 1.006 \pm 0.001 at 1.2σ

Interplay between electrons and muons

KKV, Rahimi [2207.03432]

$${\cal R}_{e/\mu}(X)\equiv rac{\Gamma(B o X_c ear
u_e)}{\Gamma(B o X_c \muar
u_\mu)}$$

- Belle II result: $R(X_{e/\mu}) = 1.033 \pm 0.022$ with cut, see H. Junkerkalefeld [ICHEP]
- In agreement with new SM predictions: 1.006 ± 0.001 at 1.2σ
- Next step ratios with $\tau!$

$$R_{ au/\ell}(X) = 0.221 \pm 0.004$$

Interplay between electrons and muons

KKV, Rahimi [2207.03432]

$${\cal R}_{e/\mu}(X)\equiv rac{\Gamma(B o X_c ear
u_e)}{\Gamma(B o X_c \muar
u_\mu)}$$

- Belle II result: $R(X_{e/\mu}) = 1.033 \pm 0.022$ with cut, see H. Junkerkalefeld [ICHEP]
- In agreement with new SM predictions: 1.006 ± 0.001 at 1.2σ
- Next step ratios with τ ! Need new measurements!

$$R_{ au/\ell}(X) = 0.221 \pm 0.004$$

